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Introduction

The aim of these notes is to provide a survey of some basic theory and classical results in
random matrix theory, as well as to include more recent progress in the field.

In the first part, given by Pantelis Tassopoulos, we aim to discuss some elementary results
from spectral theory that will be nonetheless essential in setting up the probabilistic framework for
random matrices. Then, will outline some global properties of the spectrum of Wigner matrices
and give an outline of the key ideas in the proof of Wigner’s semi-circle law. We then consider
issues of fluctuations around this semi-circle law and results when moment conditions are relaxed,
highlighting the lack of universality therein.

Arthur’s part is mainly just from Wendelin Werner, Alice Guionnet, and Edouard Maurel-
Segala’s notes.

Throughout, we will give pointers to the relevant literature and encourage the reader to initiate
their own investigations in this rich and rewarding field.

∗DPMMS, Cambridge University.
†DPMMS, Cambridge University.
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1 Some Spectral Theory

We start with a general result from the theory of finite dimensional Hilbert spaces, the Spectral
Theorem.

Theorem 1.1. (Spectral Theorem) Let V be a finite-dimensional real or complex Hilbert
space of dimension n P N and let T : V Ñ V be a self-adjoint linear operator. Then, there
exists an orthonormal basis pviq

n
i“1 of V and real scalars pλiq

n
i“1 P R such that Tvi “ λivi for

all 1 ď i ď n.

Proof. Omitted, but can be found in any standard reference on the subject.

In this exposition, V will be CnpRnq, n P N throughout these notes, where as usual we identify
a self-adjoint linear operator T : Cn Ñ CnpRn Ñ Rnq with a Hermitian (resp. symmetric) matrix.

We make an important definition that is guaranteed to us by the spectral theorem 1.1, namely
that of an eigenvalue functional.

Definition 1.1. (Eigenvalue Functionals) LetA P Cnˆn be a Hermitian matrix and λ1 ě ¨ ¨ ¨ ě

λn be its respective eigenvalues. Then for 1 ď i ď n we define the ith eigenvalue functional to
be that map A ÞÑ λipAq for A Hermitian.

We have a simple characterisation of the eigenvalue functionals as a min-max of convex func-
tions.

Theorem 1.2. (Courant-Fischer) Let A be an n ˆ n real symmetric or Hermitian matrix.
Then we have the following characterisation of the eigenvalue functionals

λipAq “ sup
dimpV q“i

inf
vPV :∥v∥“1

v˚Av

“ inf
dimpV q“n´i`1

sup
vPV :∥v∥“1

v˚Av
(1)

where V denotes any subspace of Rn or Cn respectively.a

aThe p¨q˚ denotes either complex conjugation and transpose in the complex case, and just taking the
transpose in of a vector in the real case.

Proof. By the spectral theorem 1.1, there exists an orthonormal basis peiq
n
i“1 of eigenvectors of A.

Fix 1 ď i ď n. Then, we easily obtain the inequality

λipAq ď sup
dimpV q“i

inf
vPV :∥v∥“1

v˚Av (2)

by setting V “ spante1, ¨ ¨ ¨ , eiu. To obtain the reverse inequality, observe that for any i-dimensional
subspace V of Rn or Cn, there exists a vector v P V, ∥v∥ “ 1 such that v˚Av ď λipAq. Indeed, let
W “ spantei, ¨ ¨ ¨ , enu which has codimension i ´ 1 and so dimpV X W q ě 1 and so we obtain

v˚Av ď

n
ÿ

k“1

λi|vi|
2 ď λipAq, (3)

with v as above. For the second equality, use the equality just proved with ´A in place of A and
note λipAq “ ´λn´i`1p´Aq to conclude.

This characterisation of the spectrum allows us to make a statement about the regularity of the
eigenvalue functionals for real symmetric or Hermitian matrices, namely, that they are Lipschitz
continuous with respect to the operator norm (equivalently the Frobenius norm). This clarifies any
measurability issues when considering random entries and showcases the stability of the spectrum
of such matrices.
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Corollary 1.2.1. (Stability of spectrum) Let n P N, A,B P MnˆnpC orRq be Hermitian or
real symmetric matrices respectively, then have for all 1 ď i ď n

|λipA ` Bq ´ λipAq| ď ∥B∥op ď ∥B∥F (4)

where ∥¨∥op and ∥¨∥F denote the operator and Frobenius norms respectively.

Proof. For v P CnporRnq, ∥v∥ “ 1, have the following

|v˚Bv| ď ∥B∥op “ maxt|λ1pAq, |λnpAq|u. (5)

and
v˚Av ´ ∥B∥op ď v˚pA ` Bqv ď v˚Av ` ∥B∥op (6)

and conclude by invoking the theorem 1.2.

Furthermore, we make the observation that in a sense, the ’typical’ behaviour of real symmetric
or Hermitian matrices is that they have simple spectra, that is that their eigenvalues are distinct.
To be more precise it is easy to see using the eigenvalue decomposition (theorem 1.1) that the
collection of matrices with simple spectra is an open, dense subset of the space of real symmetric
or Hermitian matrices. This will have important ramifications for computing densities against the
Lebesgue measure, of the laws of the GUE and GOE ensembles, which will be defined later on.

In fact one can obtain more regularity for the eigenvalue functionals when the spectrum is
simple and in fact show the following.

Proposition 1.1. Fix n P N and letA be a real symmetric or Hermitian matrix inMnˆnpR orCq

with simple spectrum. Then the eigenvalue functionals λipAq for 1 ď i ď n depend smoothly
with respect to A.

Proof. To observe this, define the smooth function

F : Mnˆn ˆ R Ñ R
pA, λq ÞÑ F pA, λq :“ detpA ´ λIq

(7)

and observe that in a neighbourhood of a point pA, λipAqq, 1 ď i ď n where A has simple spectrum,
F pA, λipAqq “ 0 and DλF ‰ 0 (roots of the characteristic polynomial are simple). Thus, one
applies the Implicit Function Theorem to conclude.

One can prove a similar result and show that one can make a locally smooth choice of eigenvec-
tors, since they are determined up to a sign or complex phase once normalised, in a neighbourhood
of a real symmetric or Hermitian matrix with simple spectrum.

Proposition 1.2. (Smooth dependence of eigenvectors) Fix n P N and let A be a real sym-
metric or Hermitian matrix in MnˆnpR orCq with simple spectrum. Then one can make a
smooth selection of eigenvectors B ÞÑ uipBq for 1 ď i ď n satisfying

#

BuipBq “ λipBquipBq

u˚
i pBquipBq “ 1

(8)

for B in a neighbourhood of A, where the λipAq are the eigenvalue functionals.

Proof. Let A P Mnˆn be such that its spectrum λ1pAq ą ¨ ¨ ¨ ą λnpAq is simple. Then, observe
that the matrix A ´ λipAqI has a one-dimensional kernel. Thus, by an elementary fact from
linear algebra, there is an n ´ 1 ˆ n ´ 1 dimensional invertible minor of A ´ λipAqI. Since the
determinant B ÞÑ detpB ´ λipBqIq is a smooth function of B in a neighbourhood of A, we get
that in a neighbourhood of A, the same minor is invertible. This is illustrated in the figure below,
the linear system 8 is represented and the invertible minor is the matrix excluding the highlighted
rows and columns in yellow (the choice of rows and columns is uniform in a neighbourhood).
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One can then decompose this linear system into the matrix minor and the highlighted row which
by the dimensionality constraint must be expressible as a linear combination of the remaining rows.
Thus, this system is invertible, assuming one fixes the coordinate corresponding to the highlighted
row (to one for instance) and so one can recover smoothly chosen eigenvectors in a neighbourhood
of A and to conclude one normalises them, which is again a smooth proceduce.

The above enable us to obtain time-evolution equations for the eigenvalue functionals on a
smooth one-parameter family of real symmetric or Hermitian matrices At. Assume that A0 has a
simple spectrum, then given local smooth choices of eigenvectors puiq

n
i“1ptq and eigenvalues in a

neighbourhood of A0, hence in a neighbourhood of 0 in t, we can differentiate in time the evolution
equations

#

Atui “ λipAtqui

u˚
i ui “ 1

(10)

and obtain Hadamard’s second variation formula

d2λi

dt2
“ u˚

i
:Atui ` 2

ÿ

j‰i

|u˚
j

9Atui|
2

λi ´ λj
, 1 ď i ď n (11)

where the overhead dots indicate taking entry-wise derivatives twice (in the t-dependent entries
of A). This and higher order formulas appear in [TV15], where the authors prove a result that
establishes universality results for non-Hermitian matrices assuming independence of the entries
satisfying exponential decay, and a moment matching condition (to fourth order). This equation
can be interpreted as saying, in analogy with physics, being a second order time evolution equation,
that there is a ’repulsive’ force between eigenvalues, which becomes arbitrarily large whenever the
eigenvalues are sufficiently close. This equation is also in direct analogy with the stochastic differ-
ential equation obtained by the spectra of real symmetric and Hermitian matrix-valued Brownian
motions, namely Dyson Brownian motion which will be discussed in the final section.

We illustrate however, with an elementary example that the local smoothness of eigenvalues in
general cannot be made global, especially when the spectrum ceases to be simple.

Non-global smoothness of eigenvalue functionals
Consider the one parameter family of real symmetric matrices

Mt “

„

t 0
0 ´t

ȷ

, t P p´ϵ, ϵq (12)

for any ϵ ą 0. Then clearly λ1pMtq “ |t| and λ2pMtq “ ´|t| for all t and so the eigenvalue
functionals are not smooth at zero, where the spectrum becomes simple.
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2 Wigner matrices and the semi-circle law

We now start with the central objects of study in random matrix theory, namely Wigner
matrices which we define now. We will state everything in terms of Hermitian matrices but keep
in mind that the results clearly also apply to real symmetric ones.

Definition 2.1. (Wigner matrix) Let pZi,jq1ďiăj , pYiq1ďi be mutually independent infinite
families of centred, iid random variables (only between families, not necessarily across them).
Define the family of Hermitian matrices

Xn;i,j “ Xn;j,i “

#

Zi,j , if 1 ď i ă j ď n

Yi, if 1 ď i “ j ď n
(13)

and call them the Wigner ensemble corresponding to the Z, Y (or in an abuse of notation a
Wigner matrix).

Remark. In a sense this family while very general may seem a bit contrived. For instance the
distribution of eigenvalues is not in general invariant under a change of basis. This invariance does
hold true in the important special case when ErY 2

1 s “ 2 and ErZ2
1,2s “ 1, and the Z, Y are gaussian,

namely for the GOE and GUE ensembles, which we will explore later on. We consider the initial
enlarged class of Wigner matrices because they still exhibit remarkable universal properties.

Before embarking on these universality results we make a small digression and pick up on an
observation from the previous section, namely that the ’typical’ behaviour of Hermitian matrices is
to have a simple spectrum (being an open and dense in the set of Hermitian matrices endowed with
the usual norm topology). For random matrices, this question is not so clear a priori due to possible
degeneracies in the laws of the entries which could lead to a simple spectrum with high probability.
However, assuming no ’asymptotic degeneration’, a recent result in [TV14], the authors show that
for a general class of random matrices the spectrum becomes asymptotically simple, remarkably
relaxing independence between the diagonal entries, summarised in the following result.

Theorem 2.1. ([TV14, Theorem 5]) Fix A,µ ą 0 and let n P N be sufficiently large (ě
n0pA,µq). Then, suppose that for all n, have an independent family of ξn;i,j , 1 ď i ă j ď n
(real or complex valued) such that the ’asymptotic non-degeneration’ condition is satisfied

sup
n

sup
x

Ppξn;i,j “ xq ď 1 ´ µ, 1 ď i ă j ď n (14)

and furthermore let ξn;i,i be real random variables independent of the ξn;i,j 1 ď i ă j ď n
set ξn;i,j “ ξn;j,i for 1 ď i, j ď n then the families pξn;i,jq1ďi,jďn have simple spectrum with

probability at least 1 ´ 1{nA.

Remark. This result applies to a class of random matrices that contains the Wigner matrices,
particularly the adjacency matrices of a large family of random graphs, namely the Erdős-Renyi
random graphs Gpn, pq with n vertices and success probability p P p0, 1q, solving a long standing
conjecture due to Babai, namely that the Gpn, 1{2q has an asymptotically simple spectrum.

2.1 Global properties of the spectrum of Wigner matrices

Having defined Wigner matrix ensembles, we now proceed with making a couple of preliminary
definitions that will allow us to state the classical result due to Wigner, namely the semi-circle law.

Definition 2.2. (Spectral measure) Fix n P N and lest pXnqn be a Wigner ensemble as in
2.1, define its corresponding family of spectral measures to be the atomic measures

µXn “
1

n

n
ÿ

i“1

δλipXnq, n P N (15)
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where the λi are the eigenvalue functionals.

Definition 2.3. (Semi-circle law) Call the Borel measure

σpAq “
1

2π

ż

A

1r´2,2spxq
a

4 ´ x2 dx, A P BpRq, (16)

where BpRq denotes the Borel sets, the semi-circle law.

Remark. Observe that the density is the semi-circle with radius two normalised by area.

Theorem 2.2. (Wigner) Let pXnqn be a Wigner ensemble with entries having finite second
moments, satisfying the normalisation condition Er|Z1,2|2s “ 1 (with Z1,2 as in definition 2.1).
Then we have for all functions f P CbpRqa and ϵ ą 0

lim
nÑ8

P
ˆ

ˇ

ˇ

ˇ

ż

R
f dµXn?

n
´

ż

R
f dσ

ˇ

ˇ

ˇ
ě ϵ

˙

“ 0. (17)

aThat is, continuous and bounded.

Remark. Note that this convergence in probability for a fixed test function can be promoted to
almost sure convergence provided the entries are almost surely uniformly bounded.

We will also henceforth make the abbreviation

xf, µy :“

ż

R
f dµ, f P CbpRq, µ P MpRq (18)

where MpRq denotes the space of Borel measures on R with finite total variation (particular
probability measures, which is all that is going to concern us in these notes).

To prove Theorem 2.2, we will first state two supporting lemmas that once combined will make
the proof a fairly straightforward consequence thereof.

Lemma 2.1. Let pXnqn be a Wigner ensemble with uniformly bounded entries, satisfying the
normalisation condition Er|Z1,2|2s “ 1 (with Z1,2 as in definition 2.1). Then we have for any
k P N

E
”

xxk, µXn?
n

y

ı

nÑ8
ÝÑ xxk, σy. (19)

Note the convergence is deterministic.

Lemma 2.2. Let pXnqn be a Wigner ensemble as in lemma 2.1. Then, we have for all ϵ ą 0
and k ě 1

lim
nÑ8

P
´ˇ

ˇ

ˇ
xxk, µXn?

n
y ´ E

”

xxk, µXn?
n

y

ı ˇ

ˇ

ˇ

¯

“ 0. (20)

Assuming for a moment that lemmas 2.1, 2.2 are true, we are led to the following proof of
Wigner’s Theorem.

Proof. (Wigner, sketch) Let pXnqn be a Wigner ensemble with uniformly bounded entries, satis-
fying the normalisation condition Er|Z1,2|2s “ 1 (with Z1,2 as in definition 2.1). An elementary
calculation gives that the moments of the semi-circle law σ are

xxk, σy “

#

C k
2
, k even

0, k odd
(21)

where Cn “
`

2n
n

˘

, n ě 1 are the Catalan numbers and one can estimate them by Cn ď 4n, n P N.
We now claim that for all ϵ ą 0 and k ě 1

lim sup
nÑ8

Ppx|x|k ¨ 1|x|ą5, µXn?
n

y ą ϵq “ 0. (22)
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Indeed, notice that by Markov’s inequality and lemma 2.1

lim sup
nÑ8

Ppx|x|k ¨ 1|x|ą5, µXn?
n

y ą ϵq

ď lim sup
nÑ8

E
”

px|x|2k ¨ 1|x|ą5, µXn?
n

y ą ϵ
ı

ϵ ¨ 5k
ď

x|x|2k, σy

ϵ ¨ 5k
ď

4k

ϵ ¨ 5k
, k ě 1.

(23)

Since lim sup
nÑ8

Ppx|x|k ¨ 1|x|ą5, µXn?
n

y ą ϵq is increasing in k and the upper bound decreasing geo-

metrically to zero, it can only be that equation 22 holds. This essentially is a localisation result
showing that any contribution from a test function outside the compact interval r´5, 5s is negli-
gible in the limit, in probability. One can without loss of generality consider test functions with
support in r´5, 5s and essentially reduce the proof to showing convergence in probability against
polynomials supported on r´5, 5s, using Weierstrass’ Approximation Theorem from Analysis. But
this is nothing more that combining the results from lemmas 2.1 and 2.2 and invoking linearity.

To relax the boundedness assumption and prove the result in the generality of the statement
of the theorem, one needs to perform a truncation argument, wherein one considers the entries

X̂n;i,j “
1

σi,jpCq
pXn;i,j ¨ 1|Xn;i,j |ďC ´ E

“

Xn;i,j ¨ 1|Xn;i,j |ďC

‰

q, n ě 1 (24)

where

σ2
i,jpCq “

#

VarpXn;i,j1|Xn;i,j |ďCq, 1 ď i ‰ j ď n

1, 1 ď i “ j ď n
(25)

and C ą 0 is a sufficiently large cut-off constant such that σ2
i,jpCq ą 0, which can be chosen

uniformly in n, i, j P N. It is not hard to show that

X̂n;i,j
CÑ8
ÝÑ Xn;i,j , n P N, inL2pPq (26)

uniformly in n, i, j P N. Now observe that we have shown Wigner’s theorem applies to the matrix
ensemble pX̂nqn and can conclude be showing weak convergence with respect to bounded Lipschitz
functions which are dense in CbpRq with the local uniform topology.

Proof. (Lemma 2.1) First notice that we have the identity for k ě 1

xxk, µny “

ż

R
xkµnpdxq “

1

n
k
2 `1

TrXk
n (27)

and taking expectations yields

Exxk, µny “
1

n
k
2 `1

ÿ

i1,¨¨¨ ,ik“1

EXi1,i2 ¨ ¨ ¨ ¨ Xik´1,ik ¨ Xik,i1 . (28)

Observe that every term in the above expectation corresponds to a path of length k on the set of
vertices ti1, ¨ ¨ ¨ , iku with k edges ijijmodk`1, 1 ď j ď k. Since the Xi, j are centred and indepen-
dent, we only get contributions from paths where every edge is traversed at least twice (possibly
in reverse). Hence, there can be at most k{2 unique edges and at most k{2 ` 1 unique vertices in
ti1, ¨ ¨ ¨ , iku.

Define the weight t of a sequence i “ i1, i2, ¨ ¨ ¨ , ik to be the number of distinct indices. For

1 ď t ď k
2 ` 1, define the set

πt “ t1 ď i1, ¨ ¨ ¨ , ik ď n : |i1, ¨ ¨ ¨ , ik| “ tu. (29)

For 1 ď t ď k
2 ` 1, define the equivalence relation „ on πt, where we declare i „ i1 for i, i1 P πt

if and only if there exists a bijection π on t1, ¨ ¨ ¨ , nu such that ij ÞÑπ i1
j , 1 ď j ď k. The number

of distinct equivalence classes in πt only depends on k (and not n) since one can always pick a
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Figure 1: Illustration of type sequences induced from their corresponding paths when k “ 4.

representative in t1, ¨ ¨ ¨ , ku for every i P πt. Then using that there exists some deterministic C ą 0
such that for all i, j |Xi,j | ď C almost surely, we can conclude that for t ă k

2 ` 1

1

n
k
2

k
2

ÿ

t“1

ÿ

iPπt

|EXi1,i2 ¨ ¨ ¨ ¨ Xik´1,ik ¨ Xik,i1 |

ď Ck 1

n
k
2 `1

k
2

ÿ

t“1

¨#tris„ : i P πtu ď������:0 asn Ñ 8
O

´

nt´ k
2 `1

¯

(30)

Where we used that #tris„ : i P πtu “
`

n
t

˘

ď nt. Thus, we see that if k is odd, then Exxk, µny Ñ

0 “ xxk, σy as n Ñ 8. When k is even, asymptotically the only contribution comes from t “ k
2 `1.

Thus, let k be even and consider π k
2 `1, that is the collection of sequences i corresponding to

paths visiting exactly k
2 edge where each edge is traversed exactly twice. Define the type value of

an an edge appearing in the path i to be `1 if it has not been traversed before and ´1 otherwise.
Now, using the equivalence relation „, we see that i „ i1 if and only if they have the same type
sequence.

Now, taking the cumulative sum of the type values of a path i, (and linearly interpolating
between integer values), we obtain a path from 0 to k starting and ending at zero. For instance,
when k “ 4, we have two possible such paths corresponding to type sequences, see figure 1 below.
Thus, we have

#tequivalence classes inπ k
2 `1u “ #ttype sequences of length ku “ C k

2
, (31)

where that last equality is a known fact and can be shown by establishing a recurrence relation
for #ttype sequences of length ku and showing that it is the same as that for the Catalan numbers
C k

2
. Piecing together the above with 28 and 30, we conclude the proof.

Proof. (Lemma 2.2, [Fei12, Lemma 3.2.2] sketch) One can argue similarly as in the proof of lemma
2.1 using an albeit more involved combinatorial argument and show that

Var

ˆ

1

n
TrpXk

nq

˙

“ O

ˆ

1

n2

˙

Ñ 0, n Ñ 8 (32)

which in fact is sufficient to promote the convergence in probability to almost sure convergence,
by an application of Borel-Cantelli, assuming the boundedness condition throughout.

Remark. (Theorem 2.2) A shortfall of this method (i.e. the moment method) is that it is not
constructive in the sense that the proof does not construct the semi-circle law explicitly as we only
show convergence to the moments which do not have to a priori uniquely determine a probability
distribution. That they do can be shown using a separate argument and follows from the geometric
growth of the moments.

2.2 Free probability

We make another small digression into the notion of free probability and its connection to
random matrices. In particular, one can interpret Wigner’s theorem, theorem 2.2 as an analogue
of the Central Limit Theorem for a different kind of probability, namely free probability where the
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notion of an underlying sample space is abstracted away and one proceeds with a formalism where
the primitive objects are the random variables themselves, which can exist as elements of a more
abstract space with certain closure properties and convergence in distribution is replaced a notion
extending that of convergence of moments. To begin establishing this connection, we make the
following definition, namely that of a non-commutative probability space.

Definition 2.4. (Non-commutative probability space) A complex unital algebra A with an
involution A Ñ A, x ÞÑ x˚ s.t.

• pλx ` µyq˚ “ λx˚ ` µy˚

• pxyq˚ “ y˚x˚

• x˚˚ “ x

• 1 “ 1˚, where 1 denotes the unit of A

for all x, y P A, λ, µ P C and a C-linear operator τ : A Ñ C such that τpx˚q “ τpxq, x P A
and τp1q “ 1 is called a non-commutative probability space.

Remark. The operator τ can be thought of as generalising the expectation operator and the
condition τp1q “ 1 is supposed to reflect the fact that in Kolmogorov’s formalism, the probability
of the sample space (corresponding the the expectation of the constant random variable equal to
unity) is one.

Examples of Free probability spaces
The pairs pL8´,Eq, pMnˆn,

1
nTrq, pL8´ b Mnˆn,E 1

nTrq where the ˚ operation is the com-
plex conjugation and hermitian transpose respectively, are all examples of non-commutative
probability spaces.

The point is to define a notion of convergence that allows for comparison against different do-
mains of random variables that depends on a generalisation of convergence of moments. We thus
are led to make the definition of convergence in moments.

Definition 2.5. (Free convergence) Let pAn, τnqnPN, pA8, τ8q be non-commuting probability
spaces. For each n P N, let Xn be a sequence of elements (random variables) in An and
likewise X8 in A8. We say Xn converges to X8 in the sense of moments is for all k ě 1,

τnpXnq
nÑ8
ÝÑ τ8pX8q. (33)

Definition 2.6. (Semi-circular element) Let pA, τq be a non-commutative probability space
and let X P A be such that X˚ “ X and have moments τpXnq “ 0, n odd and τpXnq “ Cn{2,
n even where C¨ denote the Catalan numbers. Then, X is called a semi-circular element of
unit variance.

We can thus re-interpret lemma 2.1 as saying the following.

Theorem 2.3. (Free Central Limit Theorem) Let pXnqnPN be a family of Wigner matrices
where the entries have al moments finite (could assume entries with sub-gaussian tails, say)
and Er|Z1,2|2s “ 1. Then the rescaled matrices Mn “ Xn{

?
n P L8´ b Mnˆn converge in the

sense of moments to any semi-circular element belonging to some non-commutative probability
space.

Remark. Examples of semi-circular elements are the identity function x ÞÑ x in L8pdσq en-
dowed with trace operator τpfq “

ş

R f dσ, the function θ ÞÑ 2 cospθq in the Lebesgue space

L8pr0, πs, 2
π sin2pθqdθq and less trivial examples like U `U˚, where U : en ÞÑ en`1 is the right shift

operator on ℓ2pNq on the underlying non-commutative space of all bounded operators Bpℓ2pNqq

with trace τpXq “ xe0, Xe0yℓ2pNq where e0, e1, ¨ ¨ ¨ is the standard basis of ℓ2pNq and ˚ denotes
the Hilbert adjoint. [Tao10] has a nice introductory exposition of free probability and goes on to
discuss more important aspects of the theory that involve tools from spectral theory.
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3 Limits of Universality

We saw in the previous section that the Wigner’s theorem, theorem 2.2 shows that the global
convergence of the spectrum of Wigner matrices is largely stable against heavy-tailed laws, only
requiring the first two moments of entries being finite. However, universality has limits when con-
sidering the fluctuations of local statistics of the spectrum of Wigner matrices. In this direction,
we start by providing a result regarding the fluctuations of the largest eigenvalues λ1 of Wigner
matrix ensembles which exhibits a remarkable asymmetry, in a sense which be clarified below.

A natural question one may ask having established Wigner’s theorem is whether the largest
eigenvalue converges in probability to the right boundary of the support of the semi-circle measure
σ. One direction is a very quick corollary from Wigner’s theorem which we now prove.

Corollary 3.0.1. Let pXnqn be a Wigner ensemble whose entries have finite second moments,
satisfying the normalisation condition Er|Z1,2|2s “ 1 (with Z1,2 as in definition 2.1). Then,
for all δ ą 0, we have

lim
nÑ8

P
ˆ

λ1

ˆ

Xn
?
n

˙

ă 2 ´ δ

˙

“ 0. (34)

Proof. Fix δ ą 0 and let f be a non-negative smooth, compactly supported function supported on
r2 ´ δ, 2s satisfying the condition xf, σy “ 1. On the event where λ1pXn{

?
nq ă 2 ´ δ n P N, the

spectral measure µXn{
?
n is supported on p´8, 2´ δq and so xf, µXn{

?
ny “ 0. Hence, by inclusion

we have the upper bound

P
ˆ

λ1

ˆ

Xn
?
n

˙

ă 2 ´ δ

˙

ď P
`

|xf, µXn{
?
ny ´ xf, σy|

˘ nÑ8
ÝÑ 0 (35)

by Wigner’s theorem.

One might hope to attain a complimentary estimate for the probability of λ1pXn{
?
nq ą 2` δ,

δ ą 0, but this is not true in general as λ1pXn{
?
nq may even fail to converge in general when the

entries of the Wigner matrices have sufficiently heavy tails. For instance, in [BY88] the authors
show that λ1pXn{

?
nq Ñ 2 almost surely if and only if the fourth moments are finite. However,

imposing all moments being finite and satisfying certain growth conditions, we obtain the following.

Theorem 3.1. ([Kem13, Theorem 6.2]) Let pXnqn be a Wigner ensemble whose entries have
all moments finite, satisfying the normalisation condition Er|Z1,2|2s “ 1 (with Z1,2 as in
definition 2.1) and a moment growth condition (see [Kem13, proof of Theorem 6.2]). Then,
for all ϵ, δ ą 0

lim
nÑ8

P
ˆ

n1{6´ϵ

ˆ

λ1

ˆ

Xn
?
n

˙

´ 2

˙

ą δ

˙

“ 0. (36)

Remark. This finally gives convergence in probability of the largest eigenvalue λ1pXn{
?
nq to two

and can be interpreted as saying that there is no non-trivial structure at scales with exponent
arbitrarily close to 1{6, though in general this is not tight and can be improved to Opn´2{3q for
matrices with symmetric distributions, see [SS98] where the authors show that largest eigenvalues
at this scale have a non-trivial distributional limit in the family of the Tracy-Wigom distributions.

One can also obtain various limiting results for heavy-tailed entries which do not correspond
to the Gaussian case, particularly the following.

Theorem 3.2. ([AG11, Thm 21.2.7] Heavy-tailed distributions) Let pZi,jq1ďiăj , pYiq1ďi be
mutually independent infinite families of centred, iid random variables distributed with law
P on R such that there is a ’slowly varying function’ Lp¨q such that

P p|x| ě uq ď
Lpuq

uα
, u ą 0 (37)

for some α P p0, 2q. Then, with αn “ inftu ą 0 : |P p|x| ě uq| ď 1{nu, n P N (which is of order
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„ n
1
α " n

1
2 for α ă 2), the empirical measures

µn “
1

n

n
ÿ

i“1

δλipXnq{αn
, n P N (38)

converge for all test functions f P CbpRq almost surely

xf, µny
nÑ8
ÝÑ xf, µα, y, (39)

where µα is symmetric, with unbounded support and smooth density satisfying the asymp-
totics ραpxq „ 1{|x|α`1, |x| Ñ 8.

Finally, we mention an example where local fluctuations around the semi-circle law, when
interpreted as the maximal separation between the cumulative distribution functions of the laws
of the empirical and limiting measures, are not in general universal and with decay that depends
on the number of moments available.

Theorem 3.3. ([Bai93, Theorem 4.1] Local fluctuation cdf) With

µn “
1

n

n
ÿ

i“1

δλipXnq{
?
n, n P N (40)

the spectral measures of Wigner matrix ensemble pXnqn, then if Er|Y1|4s ` Er|Z1,2|4s ă 8

sup
xPR

|Erµnpp´8, xsq ´ σpr´2, x _ ´2sqs| “ Opn´ 1
4 q (41)

and if instead Er|Y1|6s ` Er|Z1,2|6s ă 8, then

sup
xPR

|Erµnpp´8, xsq ´ σpr´2, x _ ´2sqs| “ Opn´ 1
2 q. (42)
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4 GOE and GUE

One of the initial motivating reasons that led Wigner to study random matrices is that they
are randomly chosen linear operators. Viewed in this way, the chosen (orthonormal) basis of RN

that one chooses to represent this linear operator as a matrix should not really matter in the
model. In other words, one would like to have a model of random matrices with the property that
for any N ˆ N orthogonal matrix O, the law of the random N ˆ N matrix X is invariant under
X ÞÑ OXO´1.

For general Wigner matrices, when one changes the orthonormal basis, then it looks as if some
correlations between the different obtained matrix elements do appear, and this is indeed the case
in the generic case — which then shows that such matrices with independent inputs are in general
not invariant in distribution under change of basis.

As we shall see now, there however exists a natural and very interesting particular choice of
random symmetric matrices that have both properties: (a) the matrix elements are independent,
and (b) the law of the matrix is invariant under (orthonormal) change of coordinates. This is the
Gaussian orthogonal ensemble that will be discussed now.

Definition 4.1 (Unnormalized Gaussian Orthogonal Ensemble (GOE)). In this model,
XN P SN pRq is a matrix with independent entries, such that:

• Xi,i „ N p0, 2q,

• for i ă j, Xi,j „ N p0, 1q.

To see that this is what we looked for, notice how we can describe the law of the GOE. We
write x “ pxi,jq and denote the eigenvalues of x by λ1, ..., λN . Then

Lemma 4.1. The probability distribution of pXi,jq at pxi,jq with respect to the Lebesgue
measure dx is proportional to :

exp

ˆ

´
1

4
Trpx2q

˙

“ exp

˜

´
1

4

N
ÿ

i“1

λ2
i

¸

Proof.

´
1

4

N
ÿ

i“1

λ2
i “ ´

1

4
Trpx2q “ ´

1

4

N
ÿ

i“1

px2qi,i “ ´
1

4

N
ÿ

i“1

N
ÿ

j“1

xi,jxj,i “ ´
1

2

ÿ

iăj

x2
i,j ´

1

4

N
ÿ

i“1

x2
i,i

So the probability distribution at x only depends of the eigenvalues of x, which are of course
invariant under conjugation by an orthogonal matrix. This allows us to get :

Lemma 4.2. The GOE distribution is invariant under conjugation X ÞÑ OXOT by an or-
thogonal matrix O P ON pRq.

Proof. Density proportional to expp´ 1
4TrpX

2qq which is invariant under conjugation, and the de-
terminant of the jacobian is 1 (these are basically rotations in N dimensional space) (conjugation
is a group action and compactness of ON pRq)
OR : It is a centered Gaussian vector, we can compute the covariances...

Little detour by Haar measure : Now that we know the GOE is invariant by conjugation by an
orthogonal matrix, we would like to find a probability law on OnpRq that is in a sense ”uniform
over OnpRq”, i.e. invariant under translation, just as the most natural probability measure (i.e.,
uniform measure) on the circle is defined by rotation invariance. Phrased slightly differently, the

12



distribution of a uniform random element of OnpRq should be a translation invariant probability
measure µ on OnpRq: for any measurable subset A Ď OnpRq and any fixed M P OnpRq,

µpMAq “ µpAMq “ µpAq

We actually know how to do this in a very general case :

Theorem 4.1 (Haar). If G is a locally compact topological group, then there exists an
unique (up to multiplicative constant) Borel measure µ such that :

• µ is invariant by left-translation

• µ is finite on compact sets

OnpRq is a compact group, which means the Haar measure is finite on it, so we can see it as a
probability measure.
Now that we have this measure, we are finally able to describe the GOE as ”X “ O∆OT ”, where
∆ is diagonal and gives the law of the eigenvalues of the GOE, and O is independant and follows
HaarpOnpRqq.

Lemma 4.3. There exists a probability ν on RN and λ with law ν independent of O „

HaarpOnpRqq such that OdiagpλqOT follows the law of the GOE.

Proof. Let X be a GOE. Almost surely, the eigenvalues are distinct. Let Λ be the diagonal ma-
trix of the ordered spectrum, and pOiq an orthonormal family of associated eigenvectors. Then
X “ OΛOT .

If P „ HaarpOnpRqq independently of X, and Q “ PO. Then Q „ HaarpOnpRqq independently
of Λ and QΛQT „ PXPT „ X. So it is a GOE.

Theorem 4.2. Let ∆pλq “
ś

iăjpλj ´ λiq be the Vandermonde determinant of λ P RN .

Consider the random variable λ with density ∆pλqe´
ř

λ2
i {2dλ. Let O „ HaarpON pRqq be a

random orthogonal matrix independent of λ. Then O diagpλqOT follows the law of the GOE.

Proof. We only have to check that the law of the spectrum of O diagpλqOT is the same as that of
the GOE. Two ways to do it : either directly, using that since the spectrum is simple, the map
Ψ : pO, λq ÞÑ OdiagpλqOT is N !-to-1, it suffices to compute the determinant of the Jacobian of this
map. Or we can do it directly on a diffeomorphism by looking in a neighborhood of identity at the
exponential map over antisymmetric matrices.

Since OT “ O´1 we have

DO,ΛΨpdO, dΛq “ OdΛOT ` dOΛOT ´ OΛO´1dOO´1

Since everything is invariant under conjugation, it suffices to look at O “ IN .

DI,ΛΨpdO, dΛq “ dΛ ` dOΛ ´ ΛdO

So we have

DI,ΛΨp0, Ei,iq “ Ei,i

DI,ΛΨpEi,i, 0q “ Ei,i

DI,ΛΨpEi,j , 0q “ pλi ´ λjqEi,j

So the determinant is ∆pλq.

Remark. The ∆pλq factor is due to the shape of SN pRq.
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Remark. This gives us the law of the eigenvalues of the unnormalized GOE. A priori it is not
easy to guess the order of magnitude of these eigenvalues because there are two competing effects:
the e´

ř

λ2
i {2 gaussian term prevent them from being too large, while ∆pλq tend to repel the N

eigenvalues from one another, which means they could become large when we make N Ñ 8.
Wigner’s theorem in fact gives us that they will localize at order of magnitude

?
N .

Definition 4.1 (Gaussian Unitary Ensemble (GUE)). In this model, XN P HN pCq is a
matrix with independent entries, such that:

• Xi,i „ N p0, 1q,

• for i ă j, RepXi,jq and ImpXi,jq are independent and follow N
`

0, 1
2

˘

.

The normalization is chosen such that E
“

|XN
i,j |2

‰

“ 1, regardless of the choice of i and j.

Remark. The law of the GUE has density exp
`

´ 1
2TrH

2
˘

at H P HN pCq.

Theorem 4.3. For a Gaussian Unitary Ensemble (GUE), the empirical spectral measure µ̂N

of the eigenvalues of XN converges almost surely in distribution to the semicircular law as
N Ñ 8. The law of the eigenvalues has density ∆pλq2e´

ř

λ2
i {2dλ.

Proof. Similar to GOE. See [TV15] for further details.
((Stieltjes transform + concentration inequality (Talagrand Lipschitz)))

Now that we know the law of the spectra of the GOE and GUE, it is natural to have a look at
the process defined by replacing the Gaussian random variables by independent Brownian motions.
We get a random matrix Xptq, with Xi,jptq “ Bi,jptq for i ă j and Xi,iptq “ Bi,iptq. Then Xptq{

?
t

has the law of a GOE.

For any fixed t, we know the law of the eigenvalues of Xptq, but we want to study the coupling,
i.e. the evolution of λiptq with t.

Theorem 4.4 (Dyson Brownian motion). The eigenvalues λiptq follow the law of the
Dyson Brownian motion, i.e.

dλiptq “

c

2

β
dBi,iptq `

ÿ

k‰i

1

λi ´ λk
dt

with β “ 1 for the GOE and β “ 2 for the GUE.

Proof. (Sketch)(We prove it for the GOE; the proof for the GUE case is analogous) Let Optq,Λptq
be such that Xptq “ OptqΛptqOptqT with Λptq diagonal and independent of Optq orthogonal (see
[AGZ10, Theorem 4.3.2] for details). Then for all t, XptqOptq “ OptqΛptq. If we admit they are
semi-martingales, dO “ dMO ` V Odt and dΛ “ dMΛ ` V Λdt. Differentiating and taking the
martingale and finite variation parts, we get (double differentials indicate covariation processes)

dXO ` XdMO “ dMOΛ ` OdMΛ

XV Odt `
1

2
dXdO “ V OΛdt ` OV Λdt.

Once again, by invariance under orthogonal transformations, we can change basis and so it suffices
to look at Optq “ IN , so Xptq “ Λ (fixing t arbitrary), treating the stochastic and Lebesgue
differentials as ’infinitesimals’. Now,

dX “
“

dMOΛ ´ ΛdMO
‰

` dMΛ (43)

V Λdt “
“

ΛV O ´ V OΛ
‰

dt `
1

2
dXdMO (44)

Let us now compute dXdMO. O and Λ are independent so dMΛdMO “ 0 and by (43) we get for
i ‰ j (since it is clearly 0 on the diagonal):

“

dMOΛ ´ ΛdMO
‰

i,j
“ pλi ´ λjqdMO

i,j “ dXi,j ´ dMΛ
i,j “ dXi,j
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So

1

2

`

dXdMO
˘

i,i
“

ÿ

k‰i

pλi ´ λkqdMO
i,kdM

O
k,i “ ´

ÿ

k‰i

1

λi ´ λk
dXi,kdXk,i “ ´

ÿ

k‰i

1

λi ´ λk
dt

Since dMOΛ ´ ΛdMO and ΛV O ´ V OΛ have zero diagonal,

dλiptq “ pdMΛqi,i ` pV Λqi,idt “ dXi,i `
1

2

`

dXdMO
˘

i,i
“

c

2

β
dBi,iptq `

ÿ

k‰i

1

λi ´ λk
dt.

One can also consult [TV15] and [AGZ10, Theorem 4.3.2] for more details.

4.1 Dyson Brownian motion as non-intersection Brownian motions and
the Pitman transform

Finally, we mention that in the papers [O’C02], the author establishes a procedure for re-
constructing the law of n P N Dyson Brownian motions from n independent standard Brownian
motions by performing deterministic operations on said Brownian motions, which amounts to per-
forming a ’bubble sort’, where the sorting operator on pairs of continuous functions known as the
Pitman transform, which we briefly describe below.

With f “ pf1, f2q where fi : r0,8q ÞÑ R for i “ 1, 2. For f P C2
˚,˚pr0,8qq, we define Wf “

pWf1,Wf2q P C2
˚,˚pr0,8qq (the space of pairs of continuous functions on the positive reals), the

Pitman transform of f as follows. For x ă y P r0,8q, define the maximal gap size

Gpf1, f2qpx, yq :“ maxt max
sPrx,ys

pf2psq ´ f1psqq, 0u .

Then define
Wf1ptq “ f1ptq ` Gpf1, f2qp0, tq , (45)

Wf2ptq “ f2ptq ´ Gpf1, f2qp0, tq ,

for all t P r0,8q.

Suppose we replace f1, f2 with two independent Brownian motions B1, B2 starting from the
origin. We now analyse the law of

WB1p¨q “ B1p¨q `

ˆ

max
0ďsď¨

pB2psq ´ B1psqq

˙

_ 0. (46)

as a random continuous function in C˚,˚pr0, ysq. We have the following characterisation of two
dimensional Dyson Brownian motion (λGUE

1 , λGUE
2 ) (using the GUE version).

Theorem 4.5. ([O’C02, Theorem 2]) The processes pλGUE
1 , λGUE

2 qp¨q
d
“ pWB1,WB2qp¨q,

where the distributional equality is understood as that for elements of C˚,˚pr0,8qq.

Furthermore, observe that by an orthogonal transformation, we have the distributional equality
(as C˚,˚pr0, ysq-valued random variables)

WB1p¨q
d
“

B1p¨q ´ B2p¨q
?
2

`
?
2

ˆ

max
0ďsď¨

B2psq

˙

,

since Brownian motion attains positive values arbitrarily close to the origin almost surely. By
[Pit74], we have that

´B2p¨q ` 2 ¨ max
0ďsď¨

¨B2psq
d
“ BES0p3qp¨q (47)

where BES3p0q denotes the Bessel-3 process started from zero, that is to say to say the distribution
of the radial part of a three-dimensional Brownian motion started from the origin. Now, observing
that WB1p¨q corresponds to the top line rate of a two Dyson Brownian motion (arising from two
non-colliding Brownian motions), we have the decomposition

λGUE
1

d
“

1
?
2
BMp0q `

1
?
2
BES3p0q, (48)

where BMp0q and BES3p0q denote a Brownian motion starting from the origin and an independent
Bessel-3 process starting from the origin, respectively.
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