
COURSEWORK 2

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

MATH60028
Probability Theory

Author: Pantelis Tassopoulos

Date: March 9 2023



Problems

Question 1

Let n ∈ N, (λk)k≤n be a collection of non-negative that sums to 1 and (ζη)k≤n be
a collection of random variables. Let φk be the characteristic function of ζk for
1 ≤ k ≤ n. Show that the function

n∑
k=1

λk ·φk(t)

is a characteristic function as required.

Question 2

Let φ(t) be a characteristic function corresponding to an arbitrary distribution func-
tion F : R→ [0,1]. Using the result from Question one, show that the real part of
a characteristic function is itself, a characteristic function whereas the imaginary
part of a characteristic function can never be a characteristic function.

Question 3

Consider n independent fair coin tosses Xn distributed. How many tosses do you
need to make to be sure with a 95% chance that my estimate is within 0.01 of the
actual value.

Question 4

Suppose you and your friend are tossing fair coins. For n ∈N, consider the probabil-
ity of both of you getting the same number of heads and obtain the asymptotics for
these probabilities.

Solutions

Question 1

We want to define the discrete random variable η in the following way:

η =



1, with probabilityλ1,

· · ·
k, with probabilityλk ,

· · ·
n, with probabilityλn,

(1)
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This defines a random since the λk are non-negative and sum to 1. Since η as defined
in (1) is discrete, its distribution function is

Fη(x) =
n∑

k=1

λk ·1(−∞,k](x), x ∈R

From lectures, the characteristic functions φk are associated with distribution func-
tions Fk , k = 1, · · · ,n. Having obtained the distribution functions thereof, applying
Kolmogorov’s Extension theorem (the consistency relations obviously hold by as-
suming independence) yields mutually independent random variables ζk ,η on the
probability space (Rn+1,B(Rn+1),P), where P = ⊗nk=1Pk ⊗Pη . The probability mea-
sures Pk ,Pη are the probability measures induced by the corresponding distribution
functions FK ,Fη . Now, we compute the characteristic function of ζη (which is a ran-
dom variable as it is a sum of measurable functions on the measurable sets {η = k}):

φζη (t) = E[exp(itζη)] =
∫
Ω

exp(itζη)dP

=
n∑

k=1

∫
{η=k}

exp(itζη)dP =
n∑

k=1

∫
{η=k}

exp(itζk)dP

since
n⊔

k=1

{η = k} =Ω.

with Ω =R
n+1. Furthermore,

n∑
k=1

∫
{η=k}

exp(itζk)dP =
n∑

k=1

∫
Ω

exp(itζk)1{η=k}(ω)dP(ω)

n∑
k=1

∫
Ω

exp(itζk)1k(η(ω))dP(ω) =
n∑

k=1

E[exp(itζk) ·1k(η)]

Now, by the independence of ζk with η, the expectations factorise and we obtain

φζη (t) =
n∑

k=1

E[exp(itζk) ·1k(η)] =
n∑

k=1

E[exp(itζk)] ·E[1k(η)]

n∑
k=1

E[exp(itζk)]P(η = k) =
n∑

k=1

λk ·φk(t)

Thus,
n∑

k=1

λk ·φk(t)

is indeed a characteristic function as required.

2



Question 2

Let φ(t) be a characteristic function corresponding to an arbitrary distribution func-
tion F : R→ [0,1]. This enables us to construct a random variable X on the proba-
bility space (R,B(R),PF), where PF is the probability measure induced F, X :Ω→R

and X(ω) = ω, which has distribution F. Now, using the result from Question one,
the random variable

Z = X ·1{η=1} −X ·1{η=2}

with η as in (1) where n = 2 and λ1 = λ2 =
1
2 , has characteristic function

φZ(t) =
1
2
(φX(t) +φ−X(t)) =

1
2

(
E[eitX] +E[e−itX]

)
= E

[
eitX + e−itX

2

]
=ℜE

[
eitX

]
=ℜφX(t)

using the linearity of expectation. So, indeed, one has that the real part of a charac-
teristic function is itself, a characteristic function. Now, forℑφX(t), notice that

ℑφX(0) =ℑE[ei0X] =ℑE[1] =ℑ1 = 0

since taking expectations is equivalent to integration with respect to a probability
measure. This means that the imaginary part of a characteristic function can never
be a characteristic function on its own as characteristic functions evaluate to one
when t = 0, whereas by the above,ℑφ(0) = 0.

Question 3

A coin toss can be modelled using a Bernoulli random variable X with success prob-
ability p taking values in {0,1}. That is, X = 1 with probability p; this is then inter-
preted as the coil landing with heads on top. Now, we consider n independent such
tosses Xn distributed as X. The sample mean

Sn =
1
n

n∑
k=1

Xk

has mean E[Sn] =
1
n

n∑
k=1

E[Xk] =
1
n
np = p and variance Var[Sn] = 1

n2

n∑
k=1

Var[Xk] =

1
n2

np(1 − p) =
p(1− p)

n
by the linearity of expectation and the independence of the

Xk. Chebychev’s inequality now yields for all ϵ > 0,

P (|Sn −E[Sn]| ≥ ϵ) = P (|Sn − p| ≥ ϵ) ≤ Var[Sn]
ϵ2

=
p(1− p)
nϵ2

≤ 1
4nϵ2

(2)
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since p ∈ [0,1] implies p(1−p) ≤ 1
4 . Now, set ϵ = 0.01, and let n =

⌈
5002
5

⌉
. Substituting

the above in (2) gives

P (|Sn − p| ≥ ϵ) = P (|Sn − p| ≥ 0.01) ≤ 1
4nϵ2

=
1

4
⌈
5002
5

⌉
· 0.012

≤ 1
4
5(500 · 0.01)2

=
1
20

=
5

100
.

Thus,

P (|Sn − p| ≤ ϵ) ≥ 1− 5
100

=
95
100

This precisely means that it suffices to make n =
⌈
5002
5

⌉
= 50000 tosses to be sure

with a 95% chance that my estimate is within 0.01 of the actual value.

Question 4

Assuming independence between tosses, the number of heads thrown by my friend

and myself can be modelled as Xn =
n∑

k=1

Ak and Yn =
n∑

k=1

Bk respectively, where the

Ak and the Bk are iid Bernoulli random variables with success probability 1
2 taking

values in {0,1}. This means that Xn and Yn are iid Binomial random variables with
success probability 1

2 . Now, the probability that I obtain the same number of heads
as my friend is

P(Xn = Yn) = P

 n⊔
k=1

{Xn = Yn = k}

 = n∑
k=1

P(Xn = k,Yn = k) =
n∑

k=1

P(Xn = k)P(Yn = k)

by independence of Xn and Yn. Now, since Xn,Yn have the binomial distribution:

P(Xn = Yn) =
n∑

k=1

P(Xn = k)P(Yn = k) =
n∑

k=1

[(
n
k

)
1
2n

]2

=
1
4n

n∑
k=1

(
n
k

)2
=

(2n
n

)
4n

using a standard binomial identity. Now, consider the random variables representing
the total number of heads

Sn = Xn +Yn =
n∑

k=1

Ak +Bk ∼ Bin
(1
2
,2n

)
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being the sum of two iid binomial Bin(12 ,n) rv’s. The moment generating function of
S̄n = Sn −E[Sn] = Sn −n, i.e. Sn upon centering is

φS̄n(t) = E[eitS̄n] = E[eitSn]e−int = E

exp
it n∑

k=1

(Ak +Bk)


e−int

=
n∏

k=1

E[it(Ak +Bk)]e
−int =

n∏
k=1

E[itAk]E[itBk]e
−int

=
(1
2
+
1
2
eit

)2n
e−int

by the independence of the Ak and the Bk and using the expression for the charac-
teristic function of a Bernoulli random variable. Now, notice that the integral

In =
∫ π

−π
φS̄n(t)dt =

∫ π

−π

(1
2
+
1
2
eitdt

)2n
e−intdt =

1
4n

2n∑
k=0

∫ π

−π

(
2n
k

)
ei(k−n)tdt

=
1
4n

2n∑
k=0

∫ π

−π

(
2n
k

)
cos((n− k)t)dt = 2π

(2n
n

)
4n

Now, to derive the asymptotics of the above probability, consider

√
nIn =

√
n

∫ π

−π

(1
2
+
1
2
eitdt

)2n
e−intdt =

√
n

∫ π

−π

(
cos

t
2

)2n
dt

The substitution t→ t
√

n
2 yields

√
nIn =

√
2
∫ π
√

n
2

−π
√

n
2

cos t

2
√

n
2

2ndt = √2∫ π
√

n
2

−π
√

n
2

φn(t)dt

where φn is the characteristic function of

Sn −E[Sn]√
Var[Sn]

since
√

Var[Sn] =
√

2n
4 =

√
n
2 and E[Sn] = 2n, that is the standardised total number

of heads in 2n coin tosses. Now, by the Central Limit Theorem, one has that for all
t ∈R,

φn(t)→ exp
(
−t

2

2

)
, n→∞.

I claim that on Jn = [−π
√

n
2 ,π

√
n
2 ], one has

φn(t) ≤ exp
(
−t

2

4

)
, t ∈ Jn (3)
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This will be accomplished in steps. First, note that is suffices to consider positive t,
since both functions in (3) are even in t. Now, on [0, π2 ],

sin(x) ≥ 2
π
x.

One can show this elementary inequality by showing that the smooth function sinx
x

(setting its value to one at x = 0), is non-increasing on [0, π2 ]. Integrating this in-
equality from 0 to t ∈ [0, π2 ] gives

0 ≤ cos(t) ≤ 1− 1
π
t2, t ∈

[
0,

π
2

]
.

Thus, on Jn cos t

2
√

n
2

2n ≤ (
1− t2

2πn

)2n
.

Finally, to show that (
1− t2

2πn

)2n
≤ exp

(
−t

2

4

)
, t ∈ Jn,

we take natural logarithms of both sides (both sides are positive and the natural
logarithm is monotonically increasing and on Jn, t2

2πn ≤
π
4 < 1) to obtain

2n ln
(
1− t2

2πn

)
≤ −t

2

4
⇐⇒ ln

(
1− t2

2πn

)
≤ − t

2

8n

Now, another elementary inequality for t ∈ (−1,0] is

ln(1 + x) ≤ x

which can be obtained by proving the inequality 1 + x ≤ ex for all x ∈ R and taking
natural logarithms. Since, t2

2πn ≤
π
4 < 1 for t ∈ Jn, we have from the above

ln
(
1− t2

2πn

)
≤ − t2

2πn

and finally,

ln
(
1− t2

2πn

)
≤ − t2

2πn
≤ − t

2

8n
, t ∈ Jn

since π < 4, thereby showing (3). Thus, the functions

fn(t) = 1Jn(t)φn(t) ≤ exp
(
−t

2

4

)
, t ∈R

Furthermore, as Jn ↑ R and φn(t)→ exp
(
− t22

)
as n→∞, the fn converge point-wise

to exp
(
− t22

)
and are majorised by exp

(
− t24

)
, both integrable functions on R. Thus,

by Lebesgue’s dominated convergence theorem,
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√
nIn = 2π

(2n
n

)
4n
√
n =
√
2
∫
R

fn(t)dt→
√
2
∫
R

exp
(
−t

2

2

)
dt = 2

√
π, n→∞

Thus, we obtain the following asymptotics for the probability of getting the same
number of heads in n fair coin tosses between two people:

√
n

4n

(
2n
n

)
→ 1
√
π

or equally
1
4n

(
2n
n

)
∼ 1
√
n

=⇒ 1
4n

(
2n
n

)
= O

(
1
√
n

)
, n→∞.

Note that the exact same limiting behaviour can be obtained through the use of
Stirling’s approximation on the probability

1
4n

(
2n
n

)
,

the advantage of the previous method is that it is more explicit.
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