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Problems

Question 1

Let n € IN, (Ax)r<y be a collection of non-negative that sums to 1 and (C, )<, be
a collection of random variables. Let ¢, be the characteristic function of ; for
1 <k < n. Show that the function

> e ilt)
k=1

is a characteristic function as required.

Question 2

Let ¢(t) be a characteristic function corresponding to an arbitrary distribution func-
tion F : R — [0,1]. Using the result from Question one, show that the real part of
a characteristic function is itself, a characteristic function whereas the imaginary
part of a characteristic function can never be a characteristic function.

Question 3

Consider n independent fair coin tosses X,, distributed. How many tosses do you
need to make to be sure with a 95% chance that my estimate is within 0.01 of the
actual value.

Question 4

Suppose you and your friend are tossing fair coins. For n € IN, consider the probabil-
ity of both of you getting the same number of heads and obtain the asymptotics for
these probabilities.

Solutions

Question 1

We want to define the discrete random variable # in the following way:

1, with probability ],

n =<k, with probabilityl, (D

n, with probability,,




This defines a random since the A are non-negative and sum to 1. Since # as defined
in (1) is discrete, its distribution function is

F,(x) = Z/\k Tk (®), x€R
k=1

From lectures, the characteristic functions ¢ are associated with distribution func-
tions Fy,k = 1,---,n. Having obtained the distribution functions thereof, applying
Kolmogorov’s Extension theorem (the consistency relations obviously hold by as-
suming independence) yields mutually independent random variables C;,# on the
probability space (R"*!, B(R"*!),IP), where P = ®;_, P, ® P,. The probability mea-
sures [Py, IP,, are the probability measures induced by the corresponding distribution
functions Fy, F,. Now, we compute the characteristic function of ,, (which is a ran-
dom variable as it is a sum of measurable functions on the measurable sets {1 = k}):

$c, (1) = Elexp(itC,)] = L exp(itC,)dP

=Zf

n
exp(itC,)dP = ZJ exp(it(;)dIP
k=1~ tn=k} k=1 |

n=k}

since
n

| [n=k=0.

k=1
with Q = R"**!. Furthermore,
n r n
Z exp(it(y)dIP = ZJ exp(itC) L}, =gy (w)dP(w)
k=1 7=k} k=179
n r n
Y| explitCotp(@)dP(w) = ) Elexp(itTy) - 1e(n)]

k=19 k=1
Now, by the independence of C; with 7, the expectations factorise and we obtain

$c,(t)= ) Elexp(itly)- 1)) = ) Elexp(itCi)]- E[1(1)]
k=1 k=1

) _Elexp(itC)IP(y = k)= ) A-ilt)
k=1 k=1

Thus,
D ki)
k=1

is indeed a characteristic function as required.




Question 2

Let ¢(t) be a characteristic function corresponding to an arbitrary distribution func-
tion F : R — [0,1]. This enables us to construct a random variable X on the proba-
bility space (R, B(RR), IPr), where IPf is the probability measure induced F, X : Q — IR
and X(w) = w, which has distribution F. Now, using the result from Question one,
the random variable

Z=X1y=1y =X+ Lyy=g)

with # asin (1) wheren=2and A, = A, = %, has characteristic function

(IE[eitX] + ]E[e—itX]) _ ]Eleitx + e_itxl

N | =

D2(0) = 3(bx(0)+ p_x(t) =

= RzlE[e“X] = Redy(t)

using the linearity of expectation. So, indeed, one has that the real part of a charac-
teristic function is itself, a characteristic function. Now, for Im¢x(t), notice that

Imx(0) = ImE[¢'®X] = ImIE[1] = Tm1 =0

since taking expectations is equivalent to integration with respect to a probability
measure. This means that the imaginary part of a characteristic function can never
be a characteristic function on its own as characteristic functions evaluate to one
when t = 0, whereas by the above, I ¢(0) = 0.

Question 3

A coin toss can be modelled using a Bernoulli random variable X with success prob-
ability p taking values in {0,1}. That is, X = 1 with probability p; this is then inter-
preted as the coil landing with heads on top. Now, we consider n independent such
tosses X,, distributed as X. The sample mean

1 n
Sn - E ZXk
k=1
n 1 n
has mean E[S,] = %ZIE[X;(] =_np=p and variance Var[S, ]| = #ZVar[Xk] =
k=1 k=1
p(1-p)
n

1
—np(l-p) = by the linearity of expectation and the independence of the
n

X. Chebychev’s inequality now yields for all € > 0,
Var(§, ]

H)(lsn_]E[Sn]l >€)= H)(lsn_pl >€)<

_pd-p 1 @)

ne? = 4ne?




since p € [0, 1] implies p(1 —p) < ;. Now, set € = 0.01, and let n = [%02]. Substituting
the above in (2) gives

1
IP(|Sn_p|Z€):lP(lsn_plZO'Ol)S 4ne?
1 1 1 5
= [ 500 2<4 2720100
4{ 1001 £(500-0.01)
Thus,

5 95
P —pl<e)>1—-— = ——

This precisely means that it suffices to make n = |-5%—02-| = 50000 tosses to be sure

with a 95% chance that my estimate is within 0.01 of the actual value.

Question 4
Assuming independence between tosses the number of heads thrown by my friend

and myself can be modelled as X, ZA" and Y, ZBk respectively, where the

Ay and the B; are iid Bernoulli random variables Wlth success probability % taking
values in {0,1}. This means that X,, and Y,, are iid Binomial random variables with
success probability % Now, the probability that I obtain the same number of heads
as my friend is

n n

I_I{Xn =Y, = k}] = ilP(Xn =k Y, =k)= ZIP(Xn = k)P(Y, = k)
k=1

k=1

by independence of X,, and Y,,. Now, since X,,, Y,, have the binomial distribution:

n n 2
=Y P(X,=KP(Y, =k) = Z[(:)%]
k=1 k=1

n

- % Z(Z)z G

k=1

using a standard binomial identity. Now, consider the random variables representing
the total number of heads

n
1
Su=Xy+Y,= ) Ap+By ~Bin(§,2n)
k=1




being the sum of two iid binomial Bin(%, n) rv’s. The moment generating function of
S,=S,-E[S,]=S,—n,ie. S, upon centering is

—int

(Ps_n(t) — ]E[eits_”] — IE[eitSn]e—int - exp

it i(Ak + Bk)] e

k=1
n . n [ .
= ]_[IE[it(Ak + By)]e " = r E[itA|E[itB;]e""
k=1 k=1
1 1 2n )
(§+ 2 ) e

by the independence of the A; and the B, and using the expression for the charac-
teristic function of a Bernoulli random variable. Now, notice that the integral

” T, N 1 & (7 (2n)
I, = - (t)dt = (— —”dt) Ty = — J iWe=mit gy
[Lostnae= [ (Gogera) ema= gy (V)
)
— n
= ZJ ( )cos n—k)t)dt =27 1n

Now, to derive the asymptotics of the above probability, consider

2n U 2n
Vnl, = \/_j — 4= e”dt) e_’”tdtzx/ﬁj (cos%) dt
—TC

The substitution ¢ — t,/5 yields

T
_m/_(cos ﬁ) dt = ‘/_j

where ¢, is the characteristic function of

‘/Eln:\/_

n—E[S,]
vVvar[S, ]

since +/Var[S,] = ,/274” = \/g and E[S, ] = 2n, that is the standardised total number

of heads in 2n coin tosses. Now, by the Central Limit Theorem, one has that for all
telR,

¢u(t) — exp(—?), n — oo.

I claim that on J,, = [-t4/, /5], one has

t2

b, (t) < exp (_Z)’ te], 3)




This will be accomplished in steps. First, note that is suffices to consider positive ¢,
since both functions in (3) are even in t. Now, on [0, 7],

) 2
sin(x) > —x.
Tt

sinx
X
]. Integrating this in-

One can show this elementary inequality by showing that the smooth function
(setting its value to one at x = 0), is non-increasing on [O,%
equality from 0 to t € [0, Z] gives

1
0§cos(t)§1——t2, te[O,E].
T 2

COS —— <{1-—1 .
2\/? 21tn

2\ 2
(1_ﬁ) SCXP(—Z), t€]n,

we take natural logarithms of both sides (both sides are positive and the natural
. . . . . 2 :
logarithm is monotonically increasing and on J,,, ﬁ < X <1) to obtain

t2 t2 £2 £2
2nln|1 - — S——@lnl—— < ——
2nn 4 21n 8n

Thus, on J,

Finally, to show that

Now, another elementary inequality for ¢ € (—1,0] is
In(1+x)<x

which can be obtained by proving the inequality 1 + x < ¢* for all x € R and taking

. . 2
natural logarithms. Since, ﬁ < T <1for t €],, we have from the above

and finally,
( t? ) t2 t2
Inll-—|<——<-———, t€],

since 7t < 4, thereby showing (3). Thus, the functions

t2

fn(t):1],1(t)¢n(t)ﬁexp(—z), LR

Furthermore, as J, TR and ¢,,(t) — exp (—%) as n — oo, the f, converge point-wise

to exp(—%) and are majorised by exp(—%), both integrable functions on IR. Thus,
by Lebesgue’s dominated convergence theorem,

6



G o~ 2\
«/mn:2nF«/E_«/Eﬁan(t)dH«/ELexp(—i)dt_2«/%, n— oo

Thus, we obtain the following asymptotics for the probability of getting the same
number of heads in # fair coin tosses between two people:

Vi) 1
47\ n \Vr

1(2n 1 . 1(2n 0 1

_ ~ — J— = —, n— .

4n\ n \Vn 4"\ n \Vn OO
Note that the exact same limiting behaviour can be obtained through the use of
Stirling’s approximation on the probability

1 (2n
4\ n |

the advantage of the previous method is that it is more explicit.
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