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Problems

Question 1

Part (a)

Let H and Y are independent and identical distributed random variables, where

FH (t) = FY (t) =
∫
{s≤t}

1[0,1](s)ds =


1, t ≥ 1
t, t ∈ (0,1)
0, t ≤ 0

= z ·1[0,1)(z) +1[1,∞)(z), z ∈R (1)

is the cumulative distribution function of a uniform random variable on [0,1]. Com-
pute the distribution of Z =H +Y .

Part (b)

Suppose that X,Y are independent random variables on the probability space (Ω,F ,P)
and furthermore that Y is uniformly distributed on [0,1]. Recall that the fractional
part

{X +Y } = X +Y − ⌊X +Y ⌋ ∈ [0,1) (2)

where ⌊x⌋ denotes the greatest integer less than or equal to x ∈R. By (8), to compute
the distribution of {X +Y }.

Question 2

Let ζ ∼ N (m1,σ
2
1 ) and η ∼ N (m2,σ

2
2 ) be independent normally distributed random

variables with densities

fζ(s) =
1
σ1
·φ

(
(s −m1)

σ1

)
and fη(s) =

1
σ2
·φ

(
(s −m2)

σ2

)
, σ ∈R

where

φ(x) =
1
√
2π

exp
(
−x

2

2

)
, x ∈R.

Compute the law of ζ + η.

Question 3

Let H be an integrable non-negative real-valued random variable on the probability
space (Ω,F ,P), with distribution function F(x). Furthermore, let

G(x) =

 1
E[H]

∫ x

0
1−F(s)ds, x ∈ [0,∞)

0, otherwise
(3)

Show that G is a distribution function.
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Question 4

Let ξ be a non-negative rando variable on a probability space (Ω,F ,P), its expecta-
tion is defined as:

E[ξ] = sup
n∈N

E[ξn], ξn ↑ ξ (4)

where the (ξn)n∈N are an increasing sequence of simple functions. Show that the
above definition is independent of the choice of (ξn)n∈N, and so is well-defined.
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Solutions

Question 1

Part (a)

From lectures, since H and Y are independent and identical distributed random
variables, their joint density factorises as follows:

FH,Y (x,y) := P(H ≤ x,Y ≤ y) = P(H ≤ x) ·P(Y ≤ y) (5)

= FH (x) ·FY (y), x,y ∈R

where

FH (t) = FY (t) =
∫
{s≤t}

1[0,1](s)ds =


1, t ≥ 1
t, t ∈ (0,1)
0, t ≤ 0

= z ·1[0,1)(z) +1[1,∞)(z), z ∈R (6)

is the cumulative distribution function of a uniform random variable on [0,1]. Now,
from page 28 of the lecture notes, the distribution of

Z =H +Y

can be computed as follows:

FH+Y (z) = E[1{H+Y≤z}] =
∫
Ω

1{H+Y≤z}(ω)dP(ω) =
∫
R

∫
R

1{x+y≤z}(ω)dFH (x)dFY (y)

=
∫
R

FH (z − y)dFY (y) =
∫
R

FH (z − s)1[0,1](s)ds =
∫ 1

0
FH (z − s)ds

=
∫ 1

0
(z − s) ·1[0,1)(z − s) +1[1,∞)(z − s)ds

=
∫ 1

0
(z − s) ·1(z−1,z](s) +1(−∞,z−1](s)ds

=
∫
(−∞,z]

s ·1(0,1](s) + (2− s) ·1(1,2](s)ds, z ∈R

=


1, z ≥ 2
2z − 1

2z
2 − 1, z ∈ (1,2)

1
2z

2, z ∈ (0,1]
0, z ≤ 0

(7)

Thus, the density of Z =H +Y with respect to the Lebesgue measure is:

fZ(z) = z ·1(0,1](z) + (2− z) ·1(1,2](z), z ∈R
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Part (b)

Suppose that X,Y are independent random variables on the probability space (Ω,F ,P)
and furthermore that Y is uniformly distributed on [0,1]. By definition, the fractional
part

{X +Y } = X +Y − ⌊X +Y ⌋ ∈ [0,1) (8)

where ⌊x⌋ denotes the greatest integer less than or equal to x ∈R. By (8), to compute
the density, it suffices to restrict one’s attention to z ∈ [0,1) and compute:

F{X+Y }(z) = P({X +Y } ≤ z) =


1, z ∈ [1,∞)
g(z), z ∈ [0,1)
0, z ∈ (−∞,0)

(9)

for some g : [0,1)→R≥0 to be determined.

Now, for z ∈ [0,1),
g(z) = P({X +Y ∈ (−∞, z])})

=
∞∑

n=−∞
P(X +Y ∈ [n,n+ z])

by definition of (8). Additionally, from the independence of X and Y , the distribution
of their sum is as follows:

P(X +Y ≤ z) =
∫
R

FY (z − x)dFX(x), z ∈R (10)

One notices that (10) is continuous in z. this follows from the continuity of FY since
Y is uniformly distributed and is absolutely continuous with respect to the Lebesgue
measure. Thus, we obtain

P(X +Y ∈ [n,n+ z]) = P(X +Y ∈ (n,n+ z])

= P(X +Y ∈ (−∞,n+ z])−P(X +Y ∈ (−∞,n])

Now,

g(z) =
∞∑

n=−∞
P(X +Y ∈ (−∞,n+ z])−P(X +Y ∈ (−∞,n])

=
∞∑

n=−∞

∫
R

FY (n+ z − x)−FY (n− x)dFX(x)

Note that the double sums in what is to follow are defined as
∞∑

n=−∞
:= lim

N→∞

N∑
n=−N

(11)

and are shown to converge. I now claim that g(z) = z. To see this, first note that Y is
uniformly distributed on [0,1] giving:

FY (z) = z ·1[0,1)(z) +1[1,∞)(z), z ∈R
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Thus, we can re-express g(z) as:

g(z) =
∞∑

n=−∞

∫
R

(
(n+ z − x) ·1(n+z−1,n+z](x) +1(−∞,n+z−1](x)

−(n− x) ·1(n−1,n](x)−1(−∞,n−1](x)
)
dFX(x)

=
∞∑

n=−∞

∫
R

(
z ·1(n+z−1,n+z](x) +1(n−1,n+z−1](x)

)
dFX(x)

+
∞∑

n=−∞

∫
R

(
(n− x) ·1(n+z−1,n+z](x)− (n− x) ·1(n−1,n](x)

)
dFX(x) (12)

Note that the decomposition in equation (12) is valid since g(z) and the expression
on the third line are absolutely convergent series (with non-negative summands)
implying by the algebra of limits that the last expression converges in the sense of
(11). Incidentally, the last term in (12) is a limit of sum of uniformly bounded
functions on R, hence the integral and the summation can be exchanged, making
the limit well-defined. Now, exploiting the fact that z ∈ [0,1) and that

∞⊔
n=−∞

(n+ z − 1,n+ z] =
∞⊔

n=−∞
(n− 1,n+ z − 1] =R

we obtain:

g(z) = z+A+
∞∑

n=−∞

∫
R

(n− x) ·
(
1(n,n+z](x)−1(n−1,n−1+z](x)

)
dFX(x)

where

A =
∞∑

n=−∞

∫
R

1(n−1,n+z−1](x)dFX(x) =
∫
R

∞∑
n=−∞

1(n−1,n+z−1](x)dFX(x)

= z+A+ lim
N→∞

N∑
n=−N

∫
R

(n− x) ·
(
1(n,n+z](x)−1(n−1,n−1+z](x)

)
dFX(x)

by dominated convergence. Now, let us consider the series with terms:

N∑
n=−N

(n− x) ·
(
1(n,n+z](x)−1(n−1,n−1+z](x)

)

=
N∑

n=−N
(n− x) ·1(n,n+z](x)−

N∑
n=−N

(n− x) ·1(n−1,n−1+z](x)

=
N∑

n=−N
(n− x) ·1(n,n+z](x)−

N−1∑
n=−(N+1)

(n+1− x) ·1(n,n+z](x)
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= (N − x) ·1[N,N+z)(x)− (−N − 1− x) ·1(−N−1,−N−1+z](x)−
N−1∑

n=−(N+1)

1(n,n+z](x)

Now, g(z) becomes:

g(z) = z+A+ lim
N→∞

(αN −α−N−1)−
∫
R

∞∑
n=−∞

1(n,n+z](x)dFX(x)

where
αN =

∫
R

(N − x) ·1(N,N+z](x)dFX(x), N ∈Z

One can readily obtain estimates on αN giving:

|αN | ≤
∫
R

|(N − x)| ·1(N,N+z](x)dFX(x) ≤ z ·P(X ∈ (N,N + z])

Now, notice that

∞∑
n=−∞

P(X ∈ (n,n+ z]) = P

X ∈ ∞⊔
n=−∞

(n,n+ z]

 ≤ 1

since z ∈ [0,1). Thus, as |N | →∞, one has that P(X ∈ (n,n+ z])→ 0, bounded above
by the tail of a convergent series. Hence, lim|N |→∞αN = 0 finally yielding:

g(z) = z+A+0−
∫
R

∞∑
n=−∞

1(n,n+z](x)dFX(x)

= z+A+0−
∫
R

∞∑
n=−∞

1(n−1,n−1+z](x)dFX(x) = z+A−A = z

by relabelling the absolutely convergent sum in the above integral. This means that,
in light of the above and (9), {X +Y } ∼U [0,1], i.e. is uniformly distributed on [0,1].
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Question 2

Let ζ ∼ N (m1,σ
2
1 ) and η ∼ N (m2,σ

2
2 ) be independent normally distributed random

variables with densities

fζ(s) =
1
σ1
·φ

(
(s −m1)

σ1

)
and fη(s) =

1
σ2
·φ

(
(s −m2)

σ2

)
, σ ∈R

where

φ(x) =
1
√
2π

exp
(
−x

2

2

)
, x ∈R

From lectures, the density of ζ + η is

fζ+η(s) =
∫
R

fζ(s − t)fη(t)dt

=
1

2πσ1σ2

∫
R

exp
(
(s − t −m1)2

2σ2
1

)
· exp

(
(t −m2)2

2σ2
2

)
dt

=
1

2πσ1σ2
· exp

[
−(s −m1)2

2σ2
1

−
m2

2

2σ2
2

]
·
∫
R

exp
[
−1
2

(
1

σ2
1

+
1

σ2
2

)
t2 +

(
s −m1

σ2
1

+
m2

σ2
2

)
t

]
dt

=
1

2πσ1σ2
·exp

[
−(s −m1)2

2σ2
1

−
m2

2

σ2
2

]
·
∫
R

exp

−12
(
1

σ2
1

+
1

2σ2
2

)
·
(
t −

(s −m1)σ
2
2 +m2σ

2
1

σ2
1 + σ2

2

)2dt
×exp

[
(s −m1)2σ

2
2

2σ2
1 (σ

2
1 + σ2

2 )
+

m2σ
2
1

2σ2
2 (σ

2
1σ

2
2 )

+
(s −m1)m2

(σ2
1 + σ2

2 )

]

=
1

√
2π ·

√
σ2
1 + σ2

2

· exp
[
− (s −m1)2

2(σ2
1 + σ2

2 )
−

m2
2

2(σ2
1 + σ2

2 )
+
m2(s −m1)

σ2
1 + σ2

2

]

=
1

√
2π ·

√
σ2
1 + σ2

2

· exp
[
−(s −m1 −m2)2

2(σ2
1 + σ2

2 )

]
, s ∈R

Thus, ζ + η has the density of a

N (m1 +m2,σ
2
1 + σ2

2 )

random variable as required.
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Question 3

Consider H an integrable non-negative real-valued random variable on the proba-
bility space (Ω,F ,P), with distribution function F(x). Furthermore, let

G(x) =

 1
E[H]

∫ x

0
1−F(s)ds, x ∈ [0,∞)

0, otherwise
(13)

We now check that G is indeed a distribution function. First, we have

lim
x→−∞

G(H) = 0

since G(x) = 0 for x < 0. Now fix 0 ≤ x ≤ y. Since, 1[0,x] ≤ 1[0,y] and 1− F(s) ≥ 0, for
all S ∈R as F is a distribution function one computes

G(x) =
1

E[H]

∫
R

1[0,x](s) · (1−F(s))ds ≤
1

E[H]

∫
R

1[0,y](s) · (1−F(s))ds = G(y)

by the monotonicity of the Lebesgue integral. The other cases for x,y are easily dealt
with by the non-negativity of G. Hence, the limit

lim
x→∞

G(H)

exists and we now compute it. By monotone convergence,

lim
x→∞

G(H) =
1

E[H]

∫ ∞
0

(1−F(s))ds = 1
E[H]

∫ ∞
0

P(H > s)ds

=
1

E[H]

∫ ∞
0

∫
Ω

1{H>s}ds =
1

E[H]

∫
R

∫
Ω

1{H>s}(ω)dP(ω)ds

Now, by Tonelli’s Theorem -since the integrand is non-negative and jointly measurable-
we exchange the order of integration to obtain

1
E[H]

∫ ∞
0

P(H > s)ds =
1

E[H]

∫ ∞
0

∫
Ω

1{H>s}(ω)dP(ω)ds

=
1

E[H]

∫
Ω

∫
R

1{H(ω)>s}(s) ·1{0≤s<∞}(s)dsdP(ω)

=
1

E[H]

∫
Ω

∫ H(ω)

0
dsdP(ω) =

1
E[H]

∫
Ω

H(ω)dP(ω) =
E[H]
E[H]

= 1

We now show that G(x) is continuous. First, consider x ∈ (0,∞) and a sequence
xn→ x, n→∞. Without loss of generality, assume that xn > 0 for all n ∈N. This
means that

fn = 1[min{xn,x},max{xn,x}](s) ·
(1−F(s))
E[H]

→ 0
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almost everywhere as n→∞. Now,

|fn| ≤
(1−F(s))
|E[H]|

which is integrable by the above argument. Hence, by Lebesgue’s dominated con-
vergence theorem,

|G(xn)−G(x)| =
∣∣∣∣∣ 1
E[H]

∫ x

0
(1−F(s))ds − 1

E[H]

∫ xn

0
(1−F(s))ds

∣∣∣∣∣
=

∣∣∣∣∣∫
R

fn(s)ds
∣∣∣∣∣→ 0, n→∞

The same argument yields that from above

G(xn)→ G(0) = 0, xn ↓ 0

as n→ ∞. Finally note that for x ∈ (−∞,0], G(x) = 0, which is clearly continuous.
Thus, G(x) is continuous on R, which shows that it is a distribution function. In fact,
we have shown that it is a distribution function of a continuous random variable.
Integrability of G is equivalent to the condition∫

R

|x|dG(x) =
∫
[0,∞)
|x|dG(x) <∞ (14)

Note that for Borel measurable sets A ⊆R,∫
R

1AdG(x) = G(A) =
∫
R

1A ·
1

E[H]
· (1−F(s))ds

this equality extends to simple functions by linearity of the integrals, and can be ex-
tended once more to integrable (Borel-measurable) g : R→ R through an approxi-
mation by simple functions and an application of Lebesgue’s dominated convergence
theorem. Thus, in our case we obtain that | · |1[0,∞)(·) is integrable with respect to dG
if and only if

|s| ·1[0,∞)(s) ·
1

E[H]
· (1−F(s))

is integrable with respect to the Lebesgue measure denoted by dλ(s), or simply ds.
Thus, (14) holds iff ∫

R

1
E[H]

· |s| ·1[0,∞)(s) · (1−F(s))ds <∞ (15)

Now, we investigate (15):∫
R

1
E[H]

· |s| ·1[0,∞)(s) · (1−F(s))ds =
∫
R

1
E[H]

· |s| ·1[0,∞)(s)P(H > s)ds

=
∫
R

∫
Ω

1
E[H]

· |s| ·1[0,∞)(s) ·1{H>s}(ω)dP(ω)ds
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now since the integrand is non-negative, by Tonelli’s Theorem we exchange the order
of integration to obtain

=
∫
Ω

∫
R

1
E[H]

· |s| ·1[0,∞)(s) ·1{H(ω)>s}(s)dsdP(ω)

=
1

E[H]

∫
Ω

∫
R

|s| ·1{H(ω)>s}(s) ·1[0,∞)(s)dsdP(ω)

=
1

E[H]

∫
Ω

∫ H(ω)

0
sdsdP(ω) =

1
2 ·E[H]

∫
Ω

|H(ω)|2dP(ω) =
1

2E[H]
·E[H2]

Thus, (14) holds iff
E[H2] <∞

that is iff H has a finite second moment/variance.
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Question 4

For the non-negative random variable ξ on a probability space (Ω,F ,P), its expec-
tation is defined as:

E[ξ] = sup
n∈N

E[ξn], ξn ↑ ξ (16)

where the (ξn)n∈N are an increasing sequence of simple functions. One can take
them to be the simple functions ξn ↑ ξ as constructed in the lecture notes. Of course
this definition can depend on our choice of ξn. We show that this is indeed not the
case below.

Now, fix an arbitrary simple function s ≤ ξ. Since ξn ↑ ξ, and Ω = {s ≤ ξ} = {ω ∈
Ω|s(ω) ≤ ξ(ω)}, it follows that for all ϵ > 0:

Ω =
∞⋃

m=1

{ω ∈Ω|s(ω)− ξm(ω) < ϵ} =
∞⋃

m=1

Bm,ϵ

since s is a finite function. Also note that the Bm,ϵ form an increasing sequence as ξm
is an increasing sequence of functions. Now, fix an m ∈N and notice

s ·1Bm,ϵ
≤ (ξm + ϵ) ·1Bm,ϵ

≤ ξm + ϵ (17)

by the non-negativity of the ξm. By virtue of the fact that s is simple, choose a
representation

s =
∑
k

ak1Ak
, ak ∈R

where k ranges over a finite set and the Ak are F measurable. Taking expectations
(note there is no real ambiguity with the definition of expectation for simple func-
tions) of (17) one obtains:

E[s ·1Bm,ϵ
] =

∑
k

ak ·P(Ak ∩Bm,ϵ) ≤ E[ξm] + ϵ ≤ sup
m∈N

E[ξm] + ϵ

Now, using the continuity of P,

Ak ∩Bm,ϵ ↑ Ak =⇒ P(Ak ∩Bm,ϵ) ↑ P(Ak), m→∞

Thus, taking m→∞ yields that for all ϵ > 0:

E[s] =
∑
k

ak ·P(Ak) ≤ sup
m∈N

E[ξm] + ϵ

Thus,
E[s] ≤ sup

m∈N
E[ξm]

and taking suprema over s ≤ ξ simple yields:

sup
s≤ξ

E[s] ≤ sup
m∈N

E[ξm]
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Now the reverse inequality can easily be obtained since the sequence ξn of simple
functions satisfies ξn ≤ ξ. Hence,

sup
m∈N

E[ξm] ≤ sup
s≤ξ

E[s]

to finally give
sup
m∈N

E[ξm] = sup
s≤ξ

E[s]

as desired. Note we have just proved that the definition of expectation does not
depend on the choice of ξn, thus making the definition given at the beginning well-
defined.
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