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Though these notes are not endorsed by the lecturer, I have tried to keep them a faithful
representation of what was done in lectures. All errors are almost surely mine.

This course covers many of the major theorems of abstract Functional Analysis. It is intended to
provide a foundation for several areas of pure and applied mathematics. The following topics are
covered:

Hahn–Banach Theorems on the extension of linear functionals. Locally convex spaces.

Duals of the spaces Lp(µ) and C(K). The Radon–Nikodym Theorem and the Riesz Represen-
tation Theorem.

Weak and weak-* topologies. Theorems of Mazur, Goldstine, Banach–Alaoglu. Reflexivity and
local reflexivity.

Hahn–Banach Theorems on separation of convex sets. Extreme points and the Krein–Milman
theorem. Partial converse and the Banach–Stone Theorem.

Banach algebras, elementary spectral theory. Commutative Banach algebras and the Gelfand rep-
resentation theorem. Holomorphic functional calculus.

Hilbert space operators, C∗-algebras. The Gelfand–Naimark theorem. Spectral theorem for com-
mutative C∗-algebras. Spectral theorem and Borel functional calculus for normal operators.

Prerequisites

Thorough grounding in basic topology and analysis. Some knowledge of basic functional analysis
and basic measure theory (most of which was recalled either in lectures or via handouts). In Spec-
tral Theory we will make use of basic complex analysis. For example, Cauchy’s Theorem, Cauchy’s
Integral Formula and the Maximum Modulus Principle.
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1 HAHN-BANACH EXTENSION THEOREMS

1 Hahn-Banach Extension Theorems

Lecture 1 We start with setting up some notation.

1. Let X be a normed space. The dual space of X is denoted by X∗ and is the space of all
bounded linear functionals on X. Observe that X∗ is always a Banach space in the operator
norm

∥f∥ = sup{∣f(x)∣ ∶ x ∈ BX}, f ∈X∗.

Recall that BX = {x ∈ X ∶ ∥x∥ ≤ 1} (the unit ball in X), and SX = {x ∈ X ∶ ∥x∥ = 1} (the unit
sphere in X).

2. Let X,Y be normed spaces. We write X ∼ Y if X,Y are isomorphic, i.e. there exists a linear
bijection T ∶X → Y s.t. T,T −1 are continuous in the norm topologies.

3. Let X,Y be normed spaces. We write X ≅ Y if X,Y are isometrically isomorphic, i.e. there
exists a surjective linear map T ∶X → Y s.t. ∥Tx∥ = ∥x∥ for all x ∈X.

4. For x ∈X, we write ⟨x, f⟩ = f(x). Note that ⟨x, f⟩ = ∣f(x)∣ ≤ ∥f∥ ⋅ ∥x∥.

Examples:

1. For 1 < p, q <∞ with 1
p
+ 1

q
= 1, then ℓ∗p ≅ ℓq (isometrically isomorphic)

2. If H is a Hilbert space, then H∗ ≅H (conjugate linear in the complex case).

Definition 1.1. Let X be a real vector space. A functional p ∶X → R is:

(i) positive homogeneous if p(tx) = tp(x) for all x ∈X and t > 0

(ii) sub-additive if p(x + y) ≤ p(x) + p(y) for all x, y ∈X.

Theorem 1.1. Let X be a real vector space and p ∶ X → R be positive homogeneous and
sub-additive. Let Y ≤ X and g ∶ Y → R be a linear functional s.t. g(y) ≤ p(y) for all y ∈ Y .
Then, there exists linear f ∶X → R s.t. f↾Y = g and f(x) ≤ p(x) for all x ∈X.

Recall now Zorn’s lemma, which is needed to prove Theorem 1.1 in complete generality. Let
(P,≤) be a poset.

• If A ⊂ P, x ∈ P , then x is an upper bound for A if for all x ∈ A, a ≤ x.

• x is a maximal element if for all y ∈ P , y ≥ x implies y = x

• A collection of subsets C of P is called a chain if for any two subsets C,D ∈ C, either C ⊆ D
or vice versa.

Lemma 1.1 (Zorn). If P ≠ ∅ and every non-empty chain has an upper bound, then P has
a maximal element.

Proof of Theorem 1.1. Let P be the set of pairs (Z,h) where Z is a subspace of X with Y ⊆ Z,
h ∶ Z → R linear, h↾Y = g and for all z ∈ Z, h(z) ≤ p(z). Observe that P is partially ordered by

(Z1, h1) ≤ (Z2, h2) ⇐⇒ Z1 ⊆ Z2, h2↾Z1 = h1.

Also, we have P ≠ ∅ since (Y, g) is in P . If {(Zi, hi)}i∈I is a chain in P with I ≠ ∅, then setting
Z =⋃

i∈I
Zi and h ∶ Z → R by requiring that h↾Zi = hi, for i ∈ I, we have that (Z,h) is in P and it is

an upper bound for the chain. So by Zorn, P has a maximal element (Z,h).

It suffices to show that Z = X. Suppose not, and fix x ∈ X /Z . Let W = span(Z ∪ {x}) and
f ∶W → R, f(z +λx) = h(z)+λα, for z ∈ Z, λ ∈ R for some α ∈ R. We seek α ∈ R s.t. for all w ∈W ,
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1 HAHN-BANACH EXTENSION THEOREMS

f(w) ≤ p(w). Then, (W,f) ∈ P and (W,f) is strictly bigger than (Z,h), which would establish a
contradiction.

Need: h(z) + λα ≤ p(z + λα) for all z, λ ∈ R. Since p is positive homogeneous, this is equivalent
to:

{
h(z) + α ≤ p(z + x)
h(z) − α ≤ p(z − x)

} for all z in Z.

That is, h(y) − p(y − x) ≤ α ≤ p(z + x) − h(z) for all y, z ∈ Z. This holds since, for y, z ∈ Z:

h(y) + h(z) = h(y + z) ≤ p(y + z) = p(y − x + z + x) ≤ p(y − x) + p(z + x).

Definition 1.2. Let X be a real or complex vector space. A semi-norm on X is a functional
p ∶X → R s.t.:

• for all x ∈X, p(x) ≥ 0

• for all x ∈X and all λ ∈ R, p(λx) = ∣λ∣ ⋅ p(x)

• for all x, y ∈X, p(x + y) ≤ p(x) + p(y).

Note: Norm Ô⇒ seminorm Ô⇒ (sub − additive& positive homogeneous)

Theorem 1.2 (Hahn Banach). Let X be a real of complex vector space and p be a semi-
norm on X. Let Y be a subspace of X and g ∶ Y → C linear s.t. for all y ∈ Y ∣g(y)∣ ≤ p(y).
Then there exists linear functional f on X s.t. f↾Y = g and for all x ∈X ∣f(x)∣ ≤ p(x).

Proof.Lecture 2 Real case: for all y ∈ Y g(y) ≤ ∣g(y)∣ ≤ p(y). By Theorem 1.1 there exists linear func-
tional f ∶ X → R s.t. f↾Y = g and for all x ∈ X f(x) = p(x). For x ∈ X, we have also
−f(x) = f(−x) ≤ p(−x) = p(x), so ∣f(x)∣ ≤ p(x).

Complex case: Re(g) ∶ Y → R, (Re)(y) = Re(g(y)), is real linear. For all y ∈ Y ∣Re(g)(y)∣ ≤
∣g(y)∣ ≤ p(y). By the real case, there exists a real linear map h ∶ X → R s.t. h↾Y = Re(g) and for
all x ∈X ∣h(x)∣ ≤ p(x).

Claim: there exists unique complex linear map f ∶X → C s.t. h = Re(f).

Proof of claim: Uniqueness If we have such an f , then for any x ∈ X, f(x) = h(x) + Im(f) =
h(x) + Im(−if(ix)) = h(x) − ih(ix). Existence define f(x) = h(x) − ih(ix), for x ∈ X. Then f
is real linear and f(x) = if(x) for all x ∈X. Hence, f is complex linear and Re(f) = h, by definition.

We have f ∶ X → C linear s.t. Re(f) = h. Then Re(f)↾Y = h↾Y = Re(g), so by uniqueness
f↾Y = g. Given x ∈ X, write ∣f(x)∣ = λf(x) for some λ ∈ C, ∣λ∣ = 1; now, ∣f(x)∣ = λf(x) = f(λx) =
Re(f)(λx) 1 = h(λx) ≤ p(λx) = ∣λ∣p(x) = p(x).

Remark. For a complex vector space Y , let YR be Y viewed as a real vector space. The proof
above shows that for a normed space, X, the map f ↦ Re(f) ∶ (X∗) → (X∗R) is an isometric
isomorphism.

Corollary 1.2.1. Let X be a real or complex vector space, p a semi-norm on X and x0 ∈X.
Then there exists linear functional f on X s.t. f(x0) = p(x0) and for all x ∈X ∣f(x)∣ ≤ p(x).

Proof. Let Y = span{x0}, define g ∶ Y → (R,C) g(λx0) = λp(x0). Then g is linear and g(x0) =
p(x0), ∣g(λx0)∣ = ∣λ∣ ⋅ ∣p(x0)∣ = p(λx0). So for all y ∈ Y ∣g(y)∣ ≤ p(y). By Theorem 1.2, there exists
linear function f on X s.t. f↾Y = g and for all x ∈ X ∣f(x)∣ ≤ p(x). Note that f(x0) = g(x0) =
p(x0).

1∣f(x)∣ ∈ R.
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1 HAHN-BANACH EXTENSION THEOREMS

Theorem 1.3 (Hahn-Banach). Let X be a real or complex normed space.

• It Y is a subspace of X and g ∈ Y ∗ then there exists f ∈X∗ s.t. f↾Y = g and ∥f∥ = ∥g∥

• Given x0 ∈X /{0} , there exists f ∈ SX∗
a s.t. f(x0) = ∥x0∥.

aunit sphere.

Proof. (i) let p(x) = ∥g∥ ⋅ ∥x∥, for x ∈ X. Then p is a semi-norm on X and for all y ∈ Y ,
∣g(y)∣ ≤ ∥g∥ ⋅ ∥y∥. By Theorem 1.2 there exists linear functional f ∶ X → (R,C) s.t. f↾Y = g
and for all x ∈X ∣f(x)∣ ≤ p(x) = ∥g∥ ⋅∥x∥, which implies ∥f∥ ≤ ∥g∥; since f↾Y = g, we also have
∥f∥ ≥ ∥g∥, so we have the desired equality ∥f∥ = ∥g∥.

(ii) Apply Corollary 1.2.1 with p(x) = ∥x∥, to get a linear functional f on X s.t. for all x ∈ X
∣f(x)∣ ≤ ∥x∥ and f(x0) = ∥x0∥. It follows that ∥f∥ = 1.

Remark. 1. part (i) is a sort of linear version of Tietze’s extension theorem: given K compact,
Hausdorff, L ⊆ K closed, g ∶ K → (R,C) continuous, there exists continuous f ∶ K → (R,C)
s.t. f↾L = g and ∥f∥∞ = ∥g∥∞.

2. part (i) shows that for all x ≠ y ∈X there exists f ∈X∗ s.t. f(x) ≠ f(y) (use x0 = x− y). X
∗

separates points of X. (This is a sort of linear version of Uryshon’s lemma: C(K) separates
points of K, K compact, Hausdorff).

3. The f in part (ii) is called a norming functional for x0. It shows that ∥x0∥ = max{∣⟨x0, g⟩∣ ∶
g ∈ BX∗}. Another name for f : support functional at x0. Assume X is real, ∥x∥ = 1. Then,
BX ⊆ {x ∈X ∶ f(x) ≤ 1}.

Figure 1: Illustration of support a functional, see the remark above. The pre-image of 1 under f
is tangent to BX at x0.

Bidual Let X be a normed space. Then X∗∗ = (X∗)∗ is called the bidual or second dual of X.
For x ∈ X, we define x̂ ∶ X∗ → scalar, by x̂(f) = f(x), for all f ∈ X∗ (evaluation at x). Then x̂ is

linear, and ∣ ˆ(f)∣ = ∣f(x)∣ ≤ ∥f∥ ⋅ ∥x∥, so x̂ ∈ X∗∗ and ∥x̂∥ ≤ ∥x∥. The map x ↦ x̂ ∶ X → X∗∗ is called
the canonical embedding of X into X∗∗.

Theorem 1.4. The canonical embedding of X into X∗∗ is an isometric isomorphism into
X∗∗.

Proof. Linearty: (λ̂x + µy)(f) = f(λx + µy) = λf(x) + µf(y) = λx̂(f) + µŷ(f) for all x, y ∈ X, λ,µ
scalars and f ∈X∗
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1.1 Dual Operators 1 HAHN-BANACH EXTENSION THEOREMS

Isometry: if x ∈ X /{0} , then there exists norming functional f of x and so ∥x̂∥ ≥ ∣x̂(f)∣ =
∣f(x)∣ = ∥x∥.

Remark. 1. In bracket notation: ⟨f, x̂⟩ = ⟨x, f⟩ (for x ∈X and f ∈X∗).

2. Let X̂ = {x̂ ∶ x ∈ X}-the image of X ∈ X∗. Then, Theorem 1.4 says that X ≅ X̂ ⊆ X∗∗. We
often identify X̂ with X and think of X isometrically as a subspace of X∗∗. Note that X is
complete ⇐⇒ X̂ is closed in X∗∗.

3. More generally, X̂ is a Banach space (closed in X∗∗) containing an isometric copy of X as
a dense subspace. We thus proved that normed spaces have completions.

Definition 1.3 (Reflexivity). A normed space X is called reflexive if the canonical embed-
ding X ↪X∗∗ is surjective.

Examples: (Reflexivity)

1. ℓp,1 < p <∞
Hilbert spaces
finite-dimensional normed spaces
Lp(µ),1 < p <∞ (later!)

2. c0, ℓ1, ℓ∞, L1[0,1] are not reflexive.

Remark. If X is reflexive, then X∗∗. Note however that there exist Banach spaces X s.t. X∗∗

but X is not reflexive.

1.1 Dual Operators

Lecture 3 Let X,Y be normed spaces. Recall

B(X,Y) = {T ∶X → Y ∶ T is linear and bounded}.

This is a normed space in the operator norm:

∥T ∥X→Y = sup
∥x∥X≤1

∥Tx∥Y .

If Y is complete, then so is (B(X,Y), ∥⋅∥X→Y ). For T ∈ B(X,Y), the dual operator of T, is the

map T ∗ ∶X∗ → Y ∗, T ∗g = g ○ T for g ∈ Y ∗2. In the bracket notation;

⟨x,T ∗g⟩ = ⟨Tx, g⟩, for x ∈X, g ∈ Y ∗.

T ∗ is linear:

⟨x,T ∗(λg + µh)⟩ = ⟨Tx,λg + µh⟩
= λ⟨Tx, g⟩ + µ⟨Tx,h⟩
= λ⟨x,T ∗g⟩ + µ⟨x,T ∗h⟩
= (λT ∗g + µT ∗h)(x)
= ⟨x,λT ∗g + µT ∗h⟩.

T ∗ is bounded:

∥T ∗∥ = sup
∥g∥Y ∗≤1

∥T ∗g∥

= sup
∥g∥Y ∗≤1

sup
∥x∥X≤1

∥g ○ T (x)∥

= sup
∥x∥X≤1

sup
∥g∥Y ∗≤1

∥g ○ T (x)∥

= sup
∥x∥X≤1

∥Tx∥ = ∥T ∥ .

Remark. If X,Y are Hilbert spaces, and identify X,Y with X∗ and Y ∗ respectively, then T ∗ ∶
Y →X is the adjoint of T .

2well-defined.
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1.2 Quotient Spaces 1 HAHN-BANACH EXTENSION THEOREMS

Example:
1 < p, q < ∞, 1

p
+ 1

q
= 1, R ∶ ℓp → ℓq, the right shift R(x1, x2, . . . ) = (0, x1, x2, . . . ) then

R∗ ∶ ℓq → ℓp is the left shift.

Properties:

1. (IdX)
∗ = Id∗X .

2. (λS + µT )∗ = λS∗ + µT ∗ for S,T ∈ B(X,Y), and λ,µ scalars.

3. (ST )∗ = T ∗S∗ for T ∈ B(X,Y) and S ∈ B(Y,Z)
(ST )∗(h ∈ Z∗) = h ○ S ○ T = T ∗h ○ S = T ∗S∗(h)

4. T ↦ T ∗ ∶ B(X,Y)→ B(Y∗,X∗) is an into isometric isomorphism.

5. Let x ∈ X then ⟨g, T ∗x̂⟩ = ⟨T ∗g, x̂⟩ = ⟨x,T ∗g⟩ = ⟨Tx, g⟩ = ⟨g, T̂ x⟩ for all g ∈ Y ∗ Ô⇒ T ∗∗x̂ ≡
T̂ x. In other words, the following diagram

X Y

X∗∗ Y ∗∗

T

ιX ιY

T ∗∗

commutes (vertical arrows are canonical embeddings).

Remark. From the (above) properties, if X ∼ Y then X∗ ∼ Y ∗.

1.2 Quotient Spaces

Let X be a normed space and Y be a closed subspace. Then the quotient space X/Y becomes
a normed space in the quotient norm:

∥x + Y ∥X/Y = d(x,Y ) = inf
y∈Y
∥x + y∥ .

The quotient map : q ∶X →X/Y, q(x) = x+Y is linear and bounded with ∥q(x)∥X/Y ≤ ∥x∥X for all

x ∈X, so ∥q∥ ≤ 1. It maps the open unit ball BX = {x ∈X ∶ ∥x∥ < 1} onto DX/Y . Indeed, for x ∈DX ,
then ∥q(x)∥ ≤ ∥x∥ < 1. Conversely, if z ∈ BX/Y and z = q(x), then ∥z∥ < 1 Ô⇒ inf

y∈Y
∥x + Y ∥ < 1 Ô⇒

there exists y ∈ Y s.t. ∥x + y∥ < 1 Ô⇒ x + y ∈ DX and q(x + y) = q(x) = z. It follows that q is an
open map and ∥q∥ = 1 (provided Y ≠X).

If Z is another normed space, T ∈ B(X,Z) and Y ⊆ ker(T ), then there exists a unique map
T̃ ∶X/Y → Z such that

X Z

X/Y

T

q
T̃

commutes. Hence, T = T̃ ○ q; moreover, T̃ is linear and T̃ (DX/Y ) = T̃ (q(DX)) = T (DX) and so it

follows that ∥T̃ ∥ = ∥T ∥.
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1.2 Quotient Spaces 1 HAHN-BANACH EXTENSION THEOREMS

Theorem 1.5. Let X be a normed space. If X∗ is separable, then so is X.

Remark. The converse is false in general. For instance, X = ℓ1,X
∗ = ℓ∞.

Proof. Since X∗ is separable, then so is SX∗ . Let {fn ∶ n ∈ N} be a dense subset of SX∗ . For all n

there exists xn ∈ BX s.t. fn(xn) > 1/2. Let Y = span{xn ∶ n ∈ N}.

Claim: suffices to show Y =X.

Suppose not: Then, by Theorem 1.3 we can pick g ∈ (X/Y )∗ with ∥g∥ = 1, that is a norming
functional. Let f = g ○ q (q ∶X →X/Y is the quotient map). Then ∥f∥ = ∥g∥ = 1 Ô⇒ f ∈ SX∗ . By
density, we have that there exists n ∈ N s.t. ∥f − fn∥ <

1
10

(something small). So

∣(f − fn)(xn)∣ ≤ ∥f − fn∥ ⋅ ∥xn∥ <
1

10
,

but

∣(f − fn)(xn)∣ = ∣fn(xn)∣ >
1

2
, n→∞,

a contradiction.

Theorem 1.6. Let X be a separable normed space. Then X embeds isometrically into ℓ∞.

Proof. Let {xn ∶ n ∈ N} be dense in X and for all n ∈ N let fn ∈ SX∗ with fn(xn) = ∥xn∥
(wlog X ≠ {0}). Define T ∶X → ℓ∞, Tx = (fn(xn)). It is clear that T is linear.

Well-defined: ∣fn(x)∣ ≤ ∥fn∥ ⋅ ∥x∥ ≤ ∥x∥, for all n ∈ N which implies ∥Tx∥∞ ≤ ∥x∥ < ∞, hence
Tx ∈ ℓ∞.

T isometric: already ∥Tx∥∞ ≤ ∥x∥ for all x. Also, ∥Txn∥∞ = ∥xn∥ for all n. By density and
continuity, ∥Tx∥∞ = ∥x∥ for all x ∈X.

Remark.Lecture 4

1. The result says ℓ infty is isometrically universal for the class of separable Banach spaces,
SB.

2. Dual result: every separable Banach space is a quotient of ℓ1 (see the Example sheets).

Theorem 1.7 (Vector-valued Liouville). Let X be a complex Banach space and f ∶ C→X
be holomorphic and bounded, then f is constant.

Proof. We have that there exists M ≥ 0, s.t. for all z ∈ C, ∥f(z)∥ ≤ M . Also, for w ∈ C,

lim
z→w

f(z) − f(w)

z −w
exists in X and we denote this by f ′(z). Fix ϕ ∈ X∗ and consider ϕ ○ f ∶ C → C.

This is holomorphic and bounded.

Bounded: ∣ϕ(f(z))∣ ≤ ∥ϕ∥ ⋅ ∥f(z)∥ ≤ ∥ϕ∥ ⋅ ∥z∥ for all z ∈ C.

Holomorphic:

ϕ(f(z)) − ϕ(f(w))

z −w
= 3ϕ(

f(z) − f(w)

z −w
)→ ϕ(f ′(z)), as w → 4z.

Now, by scalar Liouville, ϕ ○ f is constant. Hence, ϕ ○ f(z) = ϕ(f(0)) for all z ∈ C. Fixz ∈ C,
ϕ(f(z)) = ϕ(f(0)), for all ϕ ∈X∗. Since X∗ separates points of X, f(z) = f(0) for all z ∈ C.

3linearity.
4ϕ is continuous.

8



1.3 Locally Convex Spaces 1 HAHN-BANACH EXTENSION THEOREMS

1.3 Locally Convex Spaces

Definition 1.4 (Locally convex space (LCS)). A locally convex space is a pair (X,P),
where X is a real/complex vector space and P is a family of semi-norms on X that separate
points of X in the sense that for all x ∈X ≠ {0} there exists semi-norm PX ∈ P s.t. PX ≠ 0.
The family P defines a topology on X:

U is open ⇐⇒ ∀x ∈ U ∃n ∈ N∃p1, . . . , pn ∈ P
∃ϵ > 0 s.t. {y ∈X ∶ pk(y − x) < ϵ,1 ≤ k ≤ n} ⊆ U .

Remark. 1. Vector addition and scalar multiplication are continuous.

2. This topology is Hausdorff.

3. xn → x ∈X ⇐⇒ for all p ∈ P, p(x − xn)→ 0.

4. Let Y be a subspace of X. Let PY = {p↾Y ∶ p ∈ P}. Then the pair (Y,PY ) is a LCS and its
topology is the subspace topology induced by (X,P).

5. Let P,Q be families of semi-norms on X both separating points of X. We say P,Q are
equivalent, write P ∼ Q if they define the same topology on X. Then (X,P) is metrisable iff
there exists countable family Q ∼ P.

Definition 1.5 (Fréchect space). AFréchet space is a complete metrisable locally convex
space.

Examples:

1. A normed space (X, ∥⋅∥) is a LCS (here P = {∥⋅∥}).

2. Let U ⊆ C be non-empty open. Let O(U) = {f ∶ U → C ∶ f holomorphic}.
For K ⊆ U define PK(f) = sup

z∈K
∣f(z)∣. Let P = {PK ∶ K ⊆ U ,K compact}. Then

(O(U),P) is a LCS. Note further that there exists Kn, n ∈ N, a sequence of compact
subsets of U s.t. U = ⋃

n∈N
Kn and for all n ∈ N Kn ⊂ (Kn+1)

○ (a compact exhaustion

of U). Montel’s Theorem from complex analysis gives that (O(U),P) is not normable:
there is no norm on O(U) that gives the same topology, that is the topology of local
uniform convergence. To see this, suppose for a contradiction that there exists norm
s.t. ∥⋅∥ ∼ P, then for all f ∈ BO(U), for all p ∈ P, p(f) ≤ Cp ⋅ ∥f∥ ∶= Cp < ∞ (since
τP = τO(U)) which implies that that unit ball is compact (by the above and Montel’s
Theorem), hence sequentially compact due to the metrisability of the norm topology on
O(U). So we conclude that O(U) is finite-dimensional, a contradition.

3. Fix d ∈ N and a non-empty open set Ω ⊆ Rd. Let C∞ = {f ∶ Ω → Rd ∶
f is infinitely differentiable}. Given a multi-index, namely, a d−tuple α ∈ Nd, it de-
fines a differential operator:

Dα = (
B

Bx1
)
α1

⋯(
B

Bxn
)
αn

.

For a compact set K ⊂ Ω, α ∈ Nd, define pk,α(f) = sup{∣Dαf(z)∣ ∶ z ∈ K}. Let P =
{pk,α ∶K ⊂ Ω,K compact, α ∈ Nd}. Then (C∞(Ω),P) is a LCS. It’s a Fréchet space and
non-normable.
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1.3 Locally Convex Spaces 1 HAHN-BANACH EXTENSION THEOREMS

Lemma 1.2. Let (X,P), (Y,Q) be LCS and T ∶X → Y be a linear map. Then the following
are equivalent (TFAE):

(i) T is continuous.

(ii) T is continuous at 0.

(iii) For all q ∈ Q there exists n ∈ N, p1, . . . , pn ∈ P, c > 0 s.t.

q(Tx) ≤ C ⋅ max
1≤k≤n

pk(x) for all x ∈X.

Proof. (i)⇐⇒ (ii): translation is continuous since vector addition is continuous.

(ii)⇐⇒ (iii): given q ∈ Q, let V = {y ∈ Y ∶ q(y) ≤ 1}. Then V is a neighbourhood of zero in

Y , so there exists a nbhd of zero in X s.t. T (X) ⊆ V. Then there exists n ∈ N, p1, . . . , pn ∈ P,
ϵ > 0 s.t. wlog U = {x ∈ X ∶ pk(x) ≤ ϵ,1 ≤ k ≤ n}. Let p(x) = max

1≤k≤n
pk(x), for x ∈ X. If p(x) = 1

then p(ϵx) = ϵ Ô⇒ ϵx is in U . So q(Tx) ≤ 1 Ô⇒ q(Tx) ≤ 1
ϵ
p(x) by homogeneity for any x s.t.

p(x) > 0. If p(x) = 0 Ô⇒ p(λx) = 0 for all λ scalars giving q(T (λx)) ≤ 1 for all λ scalars. Hence,
q(Tx) ≤ 1

ϵ
p(x), concluding the proof of this equivalence.

(iii)⇐⇒ (ii): Let V be a nbhd of zero in Y . Then, there exists n ∈ N, q1, . . . , qn ∈ Q and

ϵ > 0 s.t. wlog V = {y ∈ Y ∶ qj(y) ≤ ϵ for 1 ≤ j ≤ n}. For each 1 ≤ j ≤ n, there exists mj ∈ N,
pj1, . . . , pjmj ∈ P, Cj > 0 s.t. qj(Tx) ≤ Cj ⋅ max

1≤i≤mj

pji(x) for all x ∈X. Finally, let

U = {x ∈X ∶ pji(x) <
ϵ
Cj
,1 ≤ i ≤mj ,1 ≤ j ≤ n} so then T (U) ⊆ V.

Definition 1.6. Let (X,P) be a LCS. The dual space of X is the space X∗ of all linear
functionals which are continuous wrt the topology (X,P).

Lemma 1.3.Lecture 5 Let f be a linear functional on a LCS (X,P). Then f is in X∗ ⇐⇒ ker f
is closed.

Proof. ⇐Ô : ker f = f−1({0}) is closed if f is continuous.

Ô⇒ : If ker f =X, then f ≡ 0 is continuous.
Assume ker f ≠ X and fix x0 ∈ X ∖ ker f . Since X ∖ ker f is open, there exists n ∈ N,p1, . . . , pn ∈ P
and ϵ > 0 s.t. {x ∈ X ∶ pk(x − x0) < ϵ,1 ≤ k ≤ n} ⊆ X ∖ ker f . Let U = {x ∈ X ∶ pk(x) < ϵ,1 ≤ k ≤ n}.
Then U is a nbhd of zero in X, and (x0 + U) ∩ ker f = ∅.

Note that U is convex and, in the real case, symmetric (x ∈ U implies −x ∈ U). In the complex
case, balanced (x ∈ U , ∣λ∣ ≤ 1 implies λx ∈ U), and hence so is f(U) as f is linear. If f(U) is
not bounded, then f(U) is the whole scalar field, and hence so is f(x0 + U) = f(x0) + f(U), a
contradiction as zero is not in f(x0 + U). So there exists M > 0 s.t. ∣f(x)∣ < M for all x ∈ U . So
given δ > 0, δ

M
U is a nbhd of zero in X and f ( δ

M
U) ⊆ {λ scalar, λ < δ}. Thus, f is continuous at

zero, hence everywhere. Thus f is in X∗.

Theorem 1.8. Let (X,P) be a LCS.

(i) Given a subspace Y of X and g ∈ Y ∗, there exists f ∈X∗ s.t. f↾Y = g.

(ii) Given a closed subspace Y of X and x0 ∈ X ∖ Y , there exists f ∈ X∗ s.t. f↾Y = 0
and f(x0) ≠ 0.

Remark. So X∗ separates the points of X.
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1.3 Locally Convex Spaces 1 HAHN-BANACH EXTENSION THEOREMS

Proof. (i) by lemma 1.2, there exists n ∈ N, p1, . . . , pn ∈ P and C > 0 s.t. for all y ∈ Y
∣g(y)∣ ≤ C ⋅ max

1≤k≤n
pk(y). Let p(x) = C max

1≤k≤n
pk(x), for x ∈ X. Then, p is a semi-norm on X

and for all y ∈ Y ∣g(y)∣ ≤ p(y). By Theorem 1.2, there exists a linear functional f on X s.t.
f↾Y = g and for all x ∈X, ∣f(x)∣ ≤ p(x). Now, finally observe that by lemma 1.2, f is in X∗.

(ii) Let Z = span(Y ∪ {x0}) and define a linear functional g on Z by g(y + λx0) = λ, for y ∈ Y
and λ scalar. Then g↾Y = 0, g(x0) = 1 ≠ 0 and ker g = Y is closed, so g ∈ Z∗ by lemma 1.3. By
part (i), there exists f ∈X∗ s.t. f↾Z = g and this works.
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2 DUAL SPACES OF Lp(µ) AND C(K)

2 Dual Spaces of Lp(µ) and C(K)

Let (Ω,F , µ) be a measure space. For ≤< p <∞,

Lp(µ) = {f ∶ Ω→ scalar ∶ f is measurable and ∫
Ω
∣f ∣pdµ <∞}

This is a normed space in the LP norm ∥f∥p = (∫Ω ∣f ∣
pdµ)

1
p .

p =∞: A measurable function f ∶ Ω→ scalar is essentially bounded if there is N ∈ F , µ(N) = 0,
and f↾Ω∖N is bounded.

L∞(µ) = {f ∶ Ω → scalar ∶ f measurable and essentially bounded}. This is again a normed
space in the L∞− norm:

∥f∥∞ = essup ∣f ∣ = inf {sup
Ω∖N
∣f ∣ ∶ N ∈ F , µ(N) = 0} .

The inf is attained: there exists N ∈ F , µ(N) = 0, ∥f∥∞ = sup
Ω∖N
∣f ∣.

In all the cases, we identify functions f, g if f = g a.e.

Theorem 2.1. Lp(µ) is complete for 1 ≤ p ≤∞.

Proof. Can be found in any standard reference in measure theory, see the literature provided.

2.1 Complex Measures

Let Ω be a set, F a σ−field on Ω. A complex measure on F is a countably additive function
ν ∶ F → C. For A ∈ F , the total variation measure ∣ν∣ of ν is defined as follows:

∣ν(A)∣ = sup{
n

∑
k=1
∶ A = ∪nk=1Ak is a measurable partition of A} 5.

Then, ∣ν∣ ∶ F → [0,∞] is a positive measure. Later we see that ∣ν∣ is a finite measure. The total
variation of ν is ∥ν∥1 = ∣ν∣(Ω).

Continuity: if ν is a complex measure on F and (An) ⊆ F , then:

(i) if An ⊆ An+1, then ν(∪nAn) = lim
n→∞

ν(An)

(ii) if An+1 ⊆ An, then ν(∩n) = lim
n→∞

ν(An).

Signed measure: Ω a set, F a σ−algebra on Ω.
A signed measure on F is a countably additive set function ν ∶ F → R.

Theorem 2.2 (Hahn decomposition). Let Ω be a set, F a σ−algebra on Ω, ν a signed
measure on F . Then there exists a measurable partition P ∪ N of Ω s.t. for all A ∈ F ,
A ⊆ P implies ν(A) ≥ 0 and for all A ∈ F , A ⊆ N implies ν(A) ≤ 0.

Remark. 1. The decomposition Ω = P ∪N is called the Hahn decomposition of ν (or of Ω).

2. Lets us define ν+(A) = ν(A ∩ P ), ν−(A) = −ν(A ∩ N), for A ∈ F . Then ν+, ν− are finite
positive measures such that ν = ν+ − ν− and ∣ν∣ = ν+ + ν−. These determine ν+, ν− uniquely
and ν = ν+ − ν− is the Jordan decomposition of ν.

3. If ν is a complex measure on F then Re(ν), Im(ν) are signed measures with Jordan decom-
positions ν1 − ν2 + i(ν3 − ν4)-the Jordan decomposition of ν. Then νk ≤ ∣ν∣,1 ≤ k ≤ 4 and
∣ν∣ ≤ ν1 + ν2 + ν3 + ν4. So ∣ν∣ is a finite measure.

5Ak ∈ F ,Aj ∩Ak = ∅ ∀j ≠ k.
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2.1 Complex Measures 2 DUAL SPACES OF Lp(µ) AND C(K)

4. If ν is a signed measure on F with Jordan decomposition ν+ − ν−, then ν+(A) = sup{ν(B) ∶
B ∈ F ,B ⊆ A}, for A ∈ F .

Proof of Theorem 2.2. The strategy is to define ν+(A) = sup{ν(B) ∶ B ∈ F ,B ⊆ A} for A ∈ F .
Then ν+ ≥ 0 and ν+ is finitely additive.

Key step: ν+(Ω) ≥ 0.

By contradiction, assume not; construct sequences (An), (Bn) with A0 = Ω, ν+(An) = ∞,
Bn ⊂ An and ν(Bn) > n. Now by the finite additivity of ν+, pick An+1 = Bn or An ∖Bn, to ensure
the initial condition (ν+(An+1) =∞) is satisfied.

Claim: this will contradict σ−additivity.

To see this, note that (An) is by construction a decreasing sequence wrt inclusion. By
σ−additivity of ν, ν(∩nAn) = lim

n→∞
ν(An). Thus, it cannot be the case that An+1 = Bn infinitely

often, since ν(∩nAn) < ∞ (being a signed measure). Thus, there exists N ∈ N s.t. for all n ≥ N ,
An+1 = An ∖ Bn. Now, ν(Ak) = ν(Ak ∖ Bk) + ν(Bk) > ν(Ak+1) + k > ν(Ak+1) for k ≥ N and so
ν(Ak) < ν(Ak−1) − k < ν(AN) − k, k → −∞, a contradiction.

Claim: there exists P ∈ F s.t. ν+(Ω) = ν(P ).

By approximation, take (An) s.t. ν(An) > ν
+(Ω) − 2−n. We will see that the choice

P = ⋃
n
⋂
m≥n

Am works. Let N = Ω ∖ P . By σ−additivity of ν, have that ν(P ) = lim
n→∞

ν ( ⋂
m≥n

Am).

Now, for j ≥ n, consider ⋂
n≤m≤j

Am, we first see that

ν ( ⋂
n≤m≤n+1

Am) = −ν(An ∪An+1) + ν(An) + ν(An+1)

> −ν+(Ω) + 2ν+(Ω) − 2−n − 2−n−1 > ν+(Ω) − 2−n−1.

By inducting, we see that:

ν ( ⋂
n≤m≤n+p

Am) > ν
+(Ω) −

p

∑
m=0

2−n−m.

and so

ν ( ⋂
n≤m

Am) = lim
p→∞

ν ( ⋂
n≤m≤n+p

Am) > ν
+(Ω) −

∞
∑
m=0

2−n−m = ν+(Ω) − 2−n.

which allows us to conclude that ν(P ) = ν+(Ω) upon taking limits.

Now, with N = Ω ∖ P , define the set functions ν± ∶ F → R by ν+(E) = ν(E ∩ P ) and
ν−(E) = ν(E ∩N) for E ∈ F .

Observe first that ν− ≤ 0. Indeed, suppose there exists E ∈ F such that ν(E ∩N) > 0. Then,
we see that ν+(Ω) = ν+(P ) < ν(E ∩N) + ν(P ) = ν((E ∩N) ∪ P ) ≤ ν+(Ω), a contradiction. Thus,
ν− is a negative measure.

Claim: ν(N) = inf{ν(E) ∶ E ∈ F}.

Suppose otherwise, then there exists E ∈ F s.t. ν(E) < ν(N), which implies ν(Ω ∖ E) =
ν(Ω) − ν(E) > −ν(N) + ν(Ω) = ν(P ) and so ν(Ω ∖E) > ν(P ), a contradiction.

Now, we can prove ν+ ≥ 0. Indeed, suppose there exists E ∈ F such that ν(E ∩ P ) < 0. Then,
we see that ν(N) ≤ ν((E ∩ P ) ∪N) = ν(N) + ν(E ∩ P ) < ν(N), a contradiction. Thus, ν+ is a
positive measure.
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2.1 Complex Measures 2 DUAL SPACES OF Lp(µ) AND C(K)

Claim: ν−(E) = inf{ν(A) ∶ A ⊆ E,A ∈ F}.

Suppose otherwise, then there exists E ∈ F s.t. ν(A) < ν(E ∩N), which implies ν(A ∩N) <
ν(A ∩ P ) + ν(A ∩N) = ν(A) < ν(E ∩N) and so ν(A ∩N) < ν(E ∩N) and so ν((E ∖ A) ∩N) =
ν(E ∩N ∖A ∩N) > 0 a contradiction.

Finally, we observe that

Claim: ν+(E) = sup{ν(A) ∶ A ⊆ E,A ∈ F}.

Suppose otherwise, then there exists E ∈ F s.t. ν(A) > ν(E ∩ P ), which implies ν(E ∩ P ) <
ν(A) = ν(A ∩ P ) + ν(A ∩N) < ν(A ∩ P ) and so ν(E ∩ P ) < ν(A ∩ P ) and so ν((E ∖ A) ∩ P ) =
ν(E ∩ P ∖A∩)) < 0 a contradiction, and we finally obtain the desired decomposition.

Definition 2.1 (Absolute Continuity).Lecture 6 Let (Ω,F , µ) be a measure space, and let ν ∶ F → C
be a complex measure. ν is absolutely continuous wrt µ, written ν << µ if for all A ∈ F ,
µ(A) = 0 Ô⇒ ν(A) = 0.

Remark. 1. ν << µ Ô⇒ ∣ν∣ << µ. So if ν has Jordan decomposition ν = ν1 −ν2 + i(ν3 −ν4) and
ν << µ, then νk << µ,1 ≤ k ≤ 4.

2. If ν << µ, then for all ϵ > 0, there exists δ > 0 s.t. for all A ∈ F µ(A) < δ Ô⇒ ∣ν(A)∣ < ϵ.

Example:

For f in L1(µ) define ν(A) = ∫
A
fdµ, A ∈ F . By the Theorem of Dominated Convergence

(DCT), ν is a complex measure and µ(A) = 0 Ô⇒ ν(A) = 0, i.e. ν << µ.

Definition 2.2. A set in F is said to be a σ−finite set (wrt µ) if there is a sequence

(An)n∈N ∈ F s.t. A = ⋃
n∈N

An and for all n ∈ N, µ(An) <∞. We say µ is σ−finite if Ω is a

σ−finite set.

Theorem 2.3 (Radon-Nikodym). Let (Ω,F , µ) be a σ−finite emasure space and ν ∶ F → C
be a complex measure s.t. ν << µ. Then there exists a unique f ∈ L1(µ) s.t. ν(A) = ∫

A
fdµ

for all A ∈ F . Moreover, f takes values in C/R/R+ according to whether ν is a complex,
signed or positive measure respectively.

Proof. Uniqueness: standard.

Existence: wlog ν is a finite positive measure (Jordan decomposition) and wlog µ is a finite mea-
sure (σ−finiteness).

Let H = {h ∶ Ω → R+ ∶ h integrable and ∫A hdµ ≤ ν(A) ∀A ∈ F}. H ≠ ∅ (0 ∈ H) and h1, h2 ∈ H
implies h1 ∨ h2 = max{h1, h2} is in H. Also, if (hn) are in H s.t. hn ↑ h, then h is in H. Let

α = sup
h∈H
∫
Ω
fdµ,0 ≤ α ≤ ν(Ω).

Claim: there exists f ∈H s.t. α = ∫Ω fdµ.

We construct such an f ∈ H. Take fn ∈ H s.t. ∫A gndµ ≤ ν(A), for all A ∈ F and ∫Ω fndµ → α.
The same holds if we replace fn by f1 ∨ ⋅ ⋅ ⋅ ∨ fn, and so wlog we can assume the sequence is non-

decreasing. Now, by induction, there exists sets E1, . . . ,En ∈ F pairwise disjoint s.t.
n

⋃
k=1

Ek = Ω and

gn =
n

∑
k=1

fj1Ej and ∫
A
gndµ =

n

∑
j=1
∫
Ej∩A

fndµ ≤
n

∑
j=1

ν(Ej ∩ A) = ν(A). Since gn is non-decreasing,

take the pointwise supremum to obtain f0 ∶= supn gn, which is in H by the above, and is seen to
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work by inspection.

Now consider the signed measures ν1, ν2, (λn)n∈N ∶ F → R, s.t. ν1 = ν − ν2, ν2(A) = ∫A f0dµ and
λn(A) = ν1(A) −

1
n
µ(A) for all A ∈ F . Then there exist (Hahn decomposition) (Pn), (Nn) in F

s.t. Ω = Pn ∪Nn, Pn = Ω ∖Nn, s.t. λn(E) ≥ 0 for all E ∈ F s.t. E ⊆ Pn. Now, for such E, we have
λn(E) = ν1(E)−

1
n
µ(E) ≥ 0 and so ν(E) = ν1(E)+ν2(E) ≥ ∫E f0dµ+

1
n ∫E dµ. Let f̃n = f0+

1
n
1(Pn).

Observe that for all E ∈ F , ∫E f̃ndµ = ∫E f0dµ +
1
n ∫E∩Pn

dµ ≤ ν(E) by the above and the fact that

µ is a positive measure. We have by the above that f̃n is in H for all n ∈ N and α ≤ ∫Ω f̃ndµ ≤ α
and so µ(Pn) = 0 for all n ∈ N. Thus, by σ−additivity, µ (∪nPn) = 0.

Let N = Ω ∖⋃
n

Pn, then for all E ∈ F s.t. E ⊆ N , λn(E) = ν1(E) −
1
n
µ(E) ≤ 0 for all n ∈ N

and so ν1(E) ≤ 0, i.e. ν(E) ≤ ν2(E). The reverse inequality is obtained by observing that f0
is in H and so we see that ν(E) = ν2(E) for such E. Finally, since ν << µ, for all E ∈ F ,
ν(E) = ν(E ∩N) = ν2(E ∩N) = ν2(E) = ∫E f0dµ, which concludes the proof.

Remark. 1. Without assuming ν << µ, the proof shows that there exists a decomposition
(Lebesgue decomposition) ν = ν1 + ν2, where ν2(A) = ∫A fdµ, and ν2 ⊥ µ (orthogonal), i.e.
there exists a measurable partition Ω = P ∪ N , s.t. µ(P ) = 0 (µ(A) = 0, for all A ⊆ P ),
∣ν2(P )∣ = 0 (ν2(A) = 0, for all A ⊆ N).

2. The unique f in Theorem 2.3 is the Radon-Nikodym derivative of ν wrt µ, denoted dν
dµ

. The

result says that ν(A) = ∫Ω 1Adν = ∫A fdµ = ∫Ω 1A
dν
dµ
dν. Hence a measurable function g is

ν−integrable iff g dν
dµ

is µ−integrable and then ∫Ω gdν = ∫Ω g
dν
dµ
dν.

2.2 The dual space of Lp

Let (Ω,F , µ) be a measure space. Let 1 ≤ p <∞ and 1 < q ≤∞ s.t. 1
p
+ 1

q
= 1. For g ∈ Lq = Lq(µ),

define ϕg ∶ Lp → scalars by ϕg(f) = ∫Ω fgdµ, for f ∈ Lp. By Hölder, the product fg is in L1(µ) and
∣ϕg(f)∣ ≤ ∥f∥p ⋅ ∥g∥q. So ϕg is well-defined and clearly linear, also bounded with ∥ϕg∥ ≤ ∥g∥q and so
ϕg is an element of L∗p. So we have the map

ϕ ∶ Lq → L∗p
g ↦ ϕg.

This map is linear and bounded with ∥ϕ∥ ≤ 1.

Theorem 2.4. Let (Ω,F , µ), p, q, ϕ be as above.

(i) If 1 < p <∞, then ϕ is an isometric isomorphism. So L∗p ≅ Lq.

(ii) If p = 1 and µ is a σ−finite, then L∗1 ≅ L∞.

Proof. Proof of (i): ϕ is isometric. Fix g ∈ Lq. We know ∥ϕg∥ ≤ ∥g∥q. Let λ be a measur-

able function s.t. ∣λ∣ = 1 and λg = ∣g∣. Let f = λ∣g∣q−1. Then, ∥f∥
p
p = ∫Ω ∣f ∣

pdµ = ∫Ω ∣g∣
p(q−1)dµ

= ∫Ω ∣g∣
qdµ = ∥g∥

q
q. Hence, ∥g∥

q
p
q ⋅ ∥ϕg∥ ≥ ∣ϕg(f)∣ = ∫Ω ∣g∣

qdµ = ∥g∥
q
q, so ∥ϕg∥ ≥ ∥g∥

q− q
p

q = ∥g∥q.

ϕ is onto: Fix ψ ∈ L∗p. We seek g ∈ Lq s.t. ψ = ϕg (Idea: ψ(1A) = ∫A gdµ).

Case 1: µ is finite.

Then for A ∈ F and 1A ∈ Lp so can define ν(a) = ψ(1A). It is an easy check using the DCT
that ν ∶ F → C is indeed a complex measure and ν << µ. If A ∈ F , µ(A) = 0, then 1A = 0 almost
everywhere (a.e.) in Lp(µ), so ν(A) = ψ(1A) = 0. Then ν << µ. By Theorem 2.3, there exists
g ∈ L1(µ) s.t. ν(A) = ∫A gdµ for all A ∈ F . So ψ(1A) = ∫Ω 1Agdµ, for A ∈ F . Hence, ψ(f) = ∫Ω fgdµ
for all simple functions f . Now given f ∈ L∞(µ), there exists simple fn → f ∈ L∞(µ) (hence in
Lp(µ) since µ is finite). So ψ(fn) → ψ(f) and fng → fg ∈ L1(µ), using Hölder for p = 1,∞. So
ψ(f) = ∫Ω fgdµ for all f ∈ L∞(µ). For n ∈ N, let An = {∣g∣ ≤ n} and fn = λ ⋅ 1An ∣g∣

q−1, where
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∣λ∣ = 1, λg = ∣g∣.

Now, ∫Ω fngdµ = ∫An
∣g∣qdµ = ψ(fn) (as fn is in L∞). ψ(fn) ≤ ∥ψ∥ ⋅ ∥fn∥p = ∥ψ∥ (∫An

∣g∣q)
1
p . By

monotone convergence, we deduce that (∫An
∣g∣q)

1
q ≤ ∥ψ∥ and hence that g is in Lq. Given f ∈ Lp,

there exists fn → f simple in Lp. So ψ(fn)→ ψ(f) and fng → fg ∈ L1 (Hölder for the pair (p, q)).
Hence, ψ(f) = ∫Ω fgdµ, concluding the case where µ is finite.

Before we treat the more general case, observe that for A ∈ F , let FA = {B ∈ F ∶ B ⊆ A} and
µA = µ↾FA

, (A,FA, µA) is a measure space. Then Lp(µA) ⊆ Lp(µ) (where we identify f ∈ Lp(µA)
with f ⋅ 1A ∈ Lp(µ); this is an isometric embedding). Let ψ∗ = ψ↾Lp(µA).

Claim: If A,B are in F s.t. A ∩B is empty, then ∥ψA∪B∥ = (∥ψA∥
q
+ ∥ψA∥

q
)

1
q .

Lecture 7 Observe that 6

(∥ψA∥
q
+ ∥ψA∥

q
)

1
q = sup{a ∥ψA∥ + b ∥ψB∥ ∶ a, b,≥ 0, a

p + bp ≤ 1}
= sup{a∣ψA(f)∣ + b∣ψB(g)∣ ∶ a, b,≥ 0, a

p + bp ≤ 1, f ∈ BLp(µA), g ∈ BLp(µB)}
= sup{∣aψA(f) + bψB(g)∣ ∶ a, b,≥ 0, a

p + bp ≤ 1, f ∈ BLp(µA), g ∈ BLp(µB)}.

Now, aψA(f) + bψB(g) = ψA∪B(af + bg) (embed f, g ∈ Lp(µ) be extending f, g to zero outside
A,B respectively). Now, continuing the above we obtain

= sup{∣ψA∪B(h)∣ ∶ h ∈ BLp(µA∪B)} = ∥ψA∪B∥

as required, concluding the proof of the finite case.

Case 2: µ is σ−finite.

There exists a measurable partition Ω = ⋃
n∈N

An, of Ω, s.t. µ(An) <∞ for all n. By Case 1, for

all n ∈ N, there exists gn ∈ Lq(µA) s.t. ψAn = ψgn , i.e. ψ(f) = ∫An
fgndµ, for all f ∈ Lp(µAn).

By Claim 2,
n

∑
k=1
∥gk∥

q
q =

n

∑
k=1
∥ψAn∥

q
= ∥ψ∪n

k=1Ak
∥
q
≤ ∥ψ∥

q
. If we define g on Ω by setting g = gn on

An, then g is in Lq. Thus, ψ(f) = ψg(f) for all f ∈ Lp(µn), for all n. Hence, ψ(f) = ϕg(f) on

span{∪n∈NLp(µn)} = Lp(µ).

Case 3: general µ.

First assume that for f ∈ Lp(µ), {f ≠ 0} is σ− finite. Indeed, {f ≠ 0} = ∪n∈N{∣f ∣ >
1
n
} and

µ({∣f ∣ > 1
n
}) ≤ np ⋅ ∥f∥

p
p <∞ by Markov’s inequality.

Chose (fn) ∈ BLp s.t. ψ(fn) → ∥ψ∥. Then A = ∪n∈N{fn ≠ 0} is σ−finite and ∥ψA∥ = ∥ψ∥. By the

claim previously established, ∥ψ∥ = (∥ψA∥
q
+ ∥ψΩ∖A∥

q
)

1
q . By case 2, there exists a g ∈ Lq(µA) ⊆

Lq(µ) s.t. ϕA = ϕg. So for all f ∈ Lp(µ), ψ(f) = ψA(f↾A) + ψΩ∖A(f↾Ω∖A) = ∫A f↾Agdµ = ∫Ω fgdµ
(extend g in the usual sense.).

Proof of (ii) (µ is σ− finite).

ϕ is isometric: Let g ∈ L∞. We know already that ∥ϕg∥ ≤ ∥g∥∞ (Hölder). Fix s < ∥g∥∞. Then
µ({∣g∣ > s}) > 0. Since µ is σ−finite, there exists A ⊆ {∣g∣ > s} s.t. 0 < µ(A) < ∞. Choose
a measurable function λ s.t. ∣λ∣ = 1 and λg = ∣g∣. Then λg is in L1(µ), ∥λg∥1 = µ(A). Now,
µ(A)⋅∥ϕg∥ ≥ ∣ϕg(λ1A)∣ = ∫A ∣g∣ ≥ sµ(A). We deduce ∥ϕg∥ > s and so ∥ϕg∥ ≥ s and hence ∥ϕg∥ ≥ ∥g∥∞.

ϕ is onto: Fix ψ ∈ L∗1. Seek g ∈ L∞ s.t. ψ = ϕg.

Case 1: µ is finite. Define ν(A) = ψ(1A) for all A ∈ F and proceed in the same way as for p > 1.

6using the fact that (ℓ2q)
∗ ≡ ℓ2p.
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2.3 C(K) spaces 2 DUAL SPACES OF Lp(µ) AND C(K)

Case 2: µ is σ−finite. This time we prove

Claim: If A,B are in F s.t. A ∩B is empty, then ∥ψA∪B∥ =max{∥ψA∥ , ∥ψB∥}.
Observe like before that 7

max{∥ψA∥ , ∥ψB∥} = sup{a ∥ψA∥ + b ∥ψB∥ ∶ a, b,≥ 0, a
p + bp ≤ 1}

= sup{a∣ψA(f)∣ + b∣ψB(g)∣ ∶ a, b,≥ 0, a + b ≤ 1, f ∈ BL1(µA), g ∈ BL1(µB)}
= sup{∣aψA(f) + bψB(g)∣ ∶ a, b,≥ 0, a + b ≤ 1, f ∈ BL1(µA), g ∈ BL1(µB)}
= sup{∣ψA∪B(h)∣ ∶ h ∈ BL1(µA∪B)}
= ∥ψA∪B∥

as required.

To conclude, proceed in an entirely analogous way using a measurable partition of Ω = ⋃
n∈N

An,

s.t. µAn is a finite measure for all n ∈ N. By Case 1, for all n ∈ N, there exists gn ∈ L∞(µAn) s.t.
ψAn = ψgn , i.e. ψ(f) = ∫An

fgndµ, for all f ∈ L1(µAn). Now, by the previous claim,

∥
n

∑
k=1

gk1Ak
∥
∞
= ∥ψ∪n

k=1Ak
∥ = max

1≤k≤n
∥ψAk

∥ ≤ ∥ψ∥ .

If we define g on Ω by setting g = gn on An, then g is in L∞ with ∥g∥∞ ≤ ∥ψ∥. Thus, ψ(f) = ψg(f)

for all f ∈ L1(µAn), for all n. Hence, ψ(f) = ϕg(f) on span{∪n∈NL1(µn)} = L1(µ).

Corollary 2.4.1. For 1 < p <∞, for a measure space (Ω,F , µ) Lp(µ) is reflexive.

Proof. Let ψ be in L∗∗p . then g ↦ ψ(ϕg) ∶ Lq → scalars is in L∗q ( 1
p
+ 1

q
= 1). By Theorem 2.4(i),

there exists f ∈ Lp s.t. ⟨ϕg, ψ⟩ = ∫Ω fgdµ = ⟨f, ϕg⟩ = ⟨ϕg, f̂⟩ for all g ∈ Lq. Then ψ = f̂ , since
L∗p = {ϕg ∶ g ∈ Lq}.

2.3 C(K) spaces

Throughout, K is a compact, Hausdorff topological space. Define

C(K) = {f ∶K → C ∶ f continuous},

a complex Banach space in the sup-norm: ∥f∥∞ = sup
K
∣f ∣.

CR(K) = {f ∶K → R ∶ f continuous,}

is a real Banach space with norm ∥f∥∞ = supK ∣f ∣.

C+(K) = {f ∈ C(K) ∶ f ≥ 0}.

Moreover,
M(K) = C(K)∗,

is a complex Banach space in the operator norm.

MR(K) = {ϕ ∈M(K) ∶ ϕ(f) ∈ R,∀f ∈ CR(K)},

is a closed, real-linear subspace ofM(K).

M+(K) = {ϕ ∶ C(K)→ C ∶ ϕ is linearϕ(f) ≥ 0,∀f ∈ C+(K)}.

Elements ofM+(K) are called positive linear functionals.

Aim: identifyM(K),MR(K).

7using the fact that (ℓ21)
∗ ≡ ℓ2∞.
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2.3 C(K) spaces 2 DUAL SPACES OF Lp(µ) AND C(K)

Lemma 2.1. (i) For all ϕ ∈M(K), there exist unique ϕ1, ϕ2 ∈M
R(K), ϕ = ϕ1 + iϕ2

(ii) ϕ↦ ϕ↾CR(K) ∶MR(K)→ (CR(K))∗ is an isometric isomorphism.

(iii) M+(K) ⊂M(K) andM+(K) = {ϕ ∈M(K) ∶ ∥ϕ∥ = ϕ(1K)}.

(iv) For all ϕ ∈ MR(K), there exist unique ϕ+, ϕ− ∈ M+(K) s.t. ϕ = ϕ+ − ϕ− and
∥ϕ∥ = ∥ϕ+∥ + ∥ϕ−∥.

Proof. (i) Let ϕ be in M(K). Define ϕ ∶ C(K) → C, by ϕ(f) = ϕ(f). Then, ϕ is in M(K)
and ϕ is inMR(K) ⇐⇒ ϕ = ϕ8.

Uniqueness: assume ϕ = ϕ1 + iϕ2 where ϕ1, ϕ2 ∈M
R(K). Then ϕ = ϕ1 − iϕ2 so ϕ1 =

ϕ+ϕ
2
, ϕ2 =

ϕ−ϕ
2

.

Existence: check that the above works.

(ii) Let ϕ be in MR(K). The fact that ∥ϕ↾CR(K)∥ ≤ ∥ϕ∥C(K) is clear. Let f be in BC(K).

Choose λ ∈ C, ∣λ∣ = 1 and λϕ(f) = ∣ϕ(f)∣. So ∣ϕ(f)∣ = ϕ(λf) = ϕ(Re(λf)) + iϕ(Im(λf)) =
ϕ(Re(λf)) ≤ ∥ϕ↾CR(K)∥ ⋅ ∥Re(λf)∥∞ ≤ ∥ϕ↾CR(K)∥.
Hence, ∥ϕ↾CR(K)∥ ≥ ∥ϕ∥. Finally, given ψ ∈ (CR(K))∗, define ϕ(f) = ψ(Re(f)) + iψ(Im(f)),

for f ∈ C(k). Then ϕ is inM(K) and ϕ↾CR(K) = ψ.

(iii)Lecture 8 M+(K) ⊂M(K): let ϕ be inM+(K).

For f ∈ CR(K), ∥f∥∞ ≤ 1 we have 1K ± f ≥ 0, so ϕ(1K ± f) ≥ 0. So ϕ(f) is in R and
∣ϕ(f)∣ ≤ ϕ(1K). So ϕ↾CR(K) is in (C

R(K))∗ and ∥ϕ↾CR(K)∥ = ϕ(1K). By (ii), ϕ is inM(K),
∥ϕ∥ = ϕ(1K).

M+(K) = {ϕ ∈M(K) ∶ ∥ϕ∥ = ϕ(1K)} (”⊇”): let ϕ be in M(K) with ∥ϕ∥ = ϕ(1K). Wlog,

∥ϕ∥ = ϕ(1K) = 1. Fix f ∈ BCR(K), let ϕ(f) = α + iβ, with α,β ∈ R.

Need: β = 0. For t ∈ R, ∣ϕ(f + it1K)∣
2 = α2 + (β + t)2 = α2 + β2 + 2βt ≤ ∥f + it1K∥

2
∞ ≤ 1+ t

2, so
β = 0. Given f ∈ C+(K), with 0 ≤ f ≤ 1 on K it follows that ∣2f − 1K ∣ ≤ 1, so ∥2f − 1K∥∞ ≤ 1.
So ∣ϕ(2f − 1K)∣ ≤ 1, i.e. −1 ≤ 2ϕ(f) ≤ 1, which implies ϕ(f) ≥ 0.

(iv) Let ϕ be inMR(K). Assume ϕ = ψ1 −ψ2, where ψ1, ψ2 ∈M
+(K). For f, g ∈ C+(K) with

0 ≤ g ≤ f , ψ1(f) ≥ ψ1(g) = ϕ(g) + ψ2(g) ≥ ϕ(g). So ψ1(f) ≥ sup{ϕ(g) ∶ 0 ≤ g ≤ f}. Define for
f in C(K)

ϕ+(K) = sup{ϕ(g) ∶ 0 ≤ g ≤ f}

Note that ϕ+(f) ≥ 0, ϕ+(f) ≤ ∥ϕ∥ ⋅ ∥f∥∞, ϕ
+(f) ≥ ϕ(f). Furthermore, it is easy to check that

ϕ+(t1f1 + t2f2) = t1ϕ
+(f1) + t2ϕ

+(f2) for all f1, f2 ∈ C
+(K), t1, t2 ∈ R+. Next, for f ∈ CR(K),

write f = f1 − f2, both in C+(K)9 and define ϕ+(f) = ϕ+(f1) − ϕ
+(f2). This is well-defined

and R−linear (check). Finally, for f in C(K), let ϕ+(f) = ϕ+(Re f) + iϕ+(Im f). Then
ϕ+ is C−linear and since ϕ+(f) ≥ 0 for all f ∈ C+(K), we have ϕ+ is in M+(K). Define
ϕ− = ϕ+ − ϕ. For f ∈ C+(K), ϕ+(f) ≥ ϕ(f) implies that ϕ− is in M+(K) and ϕ = ϕ+ − ϕ−.
∥ϕ∥ ≤ ∥ϕ+∥ + ∥ϕ−∥ = ϕ+(1K) + ϕ

−(1K) = 2ϕ
+(1K) − ϕ(1K). Given f ∈ C+(K) with 0 ≤ f ≤ 1,

−1 ≤ 2f − 1 ≤ 1, so 2ϕ(f) − ϕ(1K) = ϕ(2f − 1K) ≤ ∥ϕ∥. Taking the supremum over f , we
deduce that 2ϕ+(1K) − ϕ(1K) = ϕ(2f − 1K). So ∥ϕ∥ = ∥ϕ

+∥ + ∥ϕ−∥.

Uniqueness: Assume ϕ = ψ1 − ψ2, where ψ1, ψ2 are inM+(K) and ∥ϕ∥ = ∥ψ1∥ + ∥ψ2∥. From
initial observation, ψ1 ≥ ϕ

+ on C+(K) and so ψ2 = ψ1 − ϕ ≥ ϕ
+ − ϕ = ϕ− on C+(K). Hence,

ψ1−ψ
+ = ψ2−ϕ

− is inM+(K). By (iii), ∥ψ1 − ψ
+∥+∥ψ2 − ψ

−∥ = ψ1(1K)−ϕ
+(1K)+ψ2(1K)−

ϕ−(1K) = ∥ψ1∥ + ∥ψ2∥ − ∥ϕ
+∥ − ∥ϕ−∥ = ∥ϕ∥ − ∥ϕ∥ = 0. Thus, ψ1 = ϕ

+, ψ2 = ϕ
−.

8check!
9e.g. f1 = f ∨ 0, f2 = (−f) ∨ 0.
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2.4 Topological Preliminaries 2 DUAL SPACES OF Lp(µ) AND C(K)

2.4 Topological Preliminaries

We begin with some definitions and key topological results that will be useful in obtaining the
characterisation of the dual spaces (C(K))∗.

1. K being compact, Hausdorff is normal: given disjoint closed sets E,F there exists disjoint
open sets U ,V ∈K s.t. E ⊂ U , F ⊂ V. Equivalently, given E ⊂ U ⊆K, E closed, U open, there
exists V open s.t. E ⊂ V ⊆ U (use normality in E,K ∖ U).

2. Urysohn Lemma: given disjoint closed sets E,F ∈ K, there exists a continuous function
f ∶K → [0,1] s.t. f↾E = 0 and f↾F = 1.

3. Notation: f ≺ U means U ⊆ K open f ∶ K → [0,1] is continuous and the support of f
supp(f) = {x ∈ K ∶ f(x) ≠ 0} ⊆ U . E ≺ U means E is a closed subset of K, f ∶ K → [0,1]
continuous and f↾E = 1.
Urysohn says: E ⊆ U ⊆ K, E closed, U open, then there exists a continuous function f s.t.

E ≺ f ≺ U (E ⊆ V ⊆ V ⊆ U , V open and apply Urysohn to E,F =K ∖ V).

Lemma 2.2. Let E,U1 . . .Un be subsets of K (n ∈ N), E closed, Uj open for 1 ≤ j ≤ n s.t.

E ⊆
n

⋃
j=1
Uj. Then

(i) there exist open sets Vj ,1 ≤ j ≤ n, s.t. Vj ⊆ Uj for all j and E ⊆
n

⋃
j=1
Vj.

(ii) there exist fj ≺ Uj ,1 ≤ j ≤ n, s.t. 0 ≤
n

∑
j=1

fj ≤ 1 on K and ∑
n
j=1 fj = 1 on E.

Proof. (i) We proceed by induction on n.

n = 1: is just a restatement of normality of K.

n > 1: E ∖ U ⊆ ⋃
j<n
Uj , so by induction there exist open sets Vj , j < n, s.t. Vj ⊆ Uj and

E ∖Un ⊆ ⋃
j<n
Vj . So E ∖ ⋃

j<n
Vj ⊆ Un and so by normality, there exists open Vn s.t. E ∖ ⋃

j<n
Vj ⊆

Vn ⊆ Vn ⊆ Un.

(ii) Let Vj be as in part (i). By Urysohn, there exists hj s.t. Vj ≺ hj ≺ Uj for 1 ≤ j ≤ n, and

there exists h0 s.t. K ∖
n

⋃
j=1
Vj ≺ h0 ≺K ∖E.

Let h = h0 +
n

∑
j=1

hj . Then h ≥ 1 on K. Let fj =
hj

h
for all j. Then 0 ≤

n

∑
j=1

fj ≤ 1 on K and

n

∑
j=1

fj = 1 on E where fj ≺ Uj for all j.

2.5 Borel Measures

Let X be a Hausdorff space. Let G be the family of open sets in X. The Borel σ−algebra of X
is B = σ(G), the σ−algebra generated by G. members of B are called Borel sets. A Borel measure
on X is a (positive) measure µ on B. we say µ is regular if

(i) µ(E) <∞ for all E ⊆X, E compact.

(ii) µ(A) = inf{µ(U) ∶ A ⊆ U ∈ G} for all A ∈ B.

(iii) µ(U) = sup{µ(E) ∶ E ⊆ U ,E compact}.
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2.6 Integration with respect to complex measures 2 DUAL SPACES OF Lp(µ) AND C(K)

A complex Borel measure ν is regular if ∣ν∣ is regular. If X is compact, Hausdorff, then a Borel
measure µ on X is regular

⇐⇒ µ(X) <∞ and µ(A) = inf{µ(U) ∶ A ⊆ U ∈ G} for all A ∈ B.
⇐⇒ µ(X) <∞ and µ(A) = sup{µ(E) ∶ E ⊆ A,E closed} for all A ∈ B.

2.6 Integration with respect to complex measures

Let Ω be a set, F a σ−algebra on Ω and ν a complex measure on F . Then ν has Jordan
decomposition ν = ν1 − ν2 + i(ν3 − ν4). Say a measurable function f ∶ Ω → C is ν−integrable if f is

∣ν∣−integrable (i.e. ∫Ω ∣f ∣d∣ν∣ <∞) iff f is νk−integrable for all k. So we define

∫
Ω
fdν = ∫

Ω
fdν1 − ∫

Ω
fdν2 + i∫

Ω
fdν3 − i∫

Ω
fdν4.

Lecture 9 Properties:

1. ∫Ω 1Adν = ν(A), for all A ∈ F .

2. Linearity: if f, g ∶ Ω→ C are ν−integrable, a, b ∈ C, then af + bg is ν−integrable and ∫Ω(af +
bg)dν = a ∫Ω fdν + b ∫Ω gdν.

3. Dominated Convergence (DC): let (fn)n∈N, f, g, be emasurable functions s.t. fn → f a.e.

(wrt ∣ν∣) and g is in L1(∣ν∣) and for all n ∣fn∣ ≤ g then f is ν−integrable and ∫Ω fndν → ∫Ω fdν
(True for νk for all k, so true for ν).

4. ∣∫Ω fdν∣ ≤ ∫Ω ∣f ∣d∣ν∣ for all f ∈ L1(ν) (True for simple functions by 1&2 and for general f , use
DCT).

Let ν be a complex Borel measure on K (compact, hausdorff). Then for f continuous, then

∫
K
∣f ∣d∣ν∣ ≤ ∥f∥ ⋅ ∣ν∣(K).

So, f is ν−integrable. Define ϕ ∶ C(K) → C by ϕ(f) = ∫K fdν. Then ϕ is in M(K) and ∥ϕ∥ ≤
∣ν∣(K) = ∥ν∥1 (TV norm). If ν is a signed measure, then ϕ is a member of MR(K). If ν is a
positive measure, then ϕ is inM+(K).

Theorem 2.5 (Riesz Representation Theorem). For every ϕ ∈ M+(K), there exists a
unique regular Borel measure µ on K that represents ϕ, i.e. ϕ(f) = ∫K fdµ for all continuous
f . Moreover,

∥ϕ∥ = µ(K) = ∥µ∥1 TV norm of µ.

Proof. Uniqueness: Assume µ1, µ2 both represent ϕ. Let E ⊆ U ⊆ K, where E is closed and U is

open, then by Urysohn, there exists f continuous s.t. E ≺ f ≺ U . Now, µ1(E) ≤ ∫K fdµ1 = ϕ(f) =

∫K fdµ2 ≤ µ2(U). Take infemum over U open and use regularity to deduce that µ1(E) ≤ µ2(E),
and by symmetry µ1(E) = µ2(E) agree on closed sets, and we conclude that µ1 = µ2 for all A ∈ F
by regularity from below.

Existence: Define for U ∈ G (i.e. U open), µ∗(U) = sup{ϕ(f) ∶ f ≺ U}. Note that µ∗(U) ≥ 0,
and for V ⊇ U , U ,V ∈ G, then µ∗(V) ≥ µ∗(U) and hence µ∗(U) ≤ µ∗(K) but µ∗(K) = ϕ(1K) (f ≺K
implies f ≤ 1K and ϕ is in M+(K)). It follows that for U ∈ G, µ∗(U) = inf{µ∗(U) ∶ A ⊆ U ∈ G}.
Extend the definition of µ∗: for A ⊆K let µ∗(A) = inf{µ∗(U) ∶ A ⊆ U ∈ G}.

Claim:µ∗ is an outer measure.

We easily have that µ∗(∅) = 0 and for all A ⊆ B ⊆ K µ∗(A) ≤ µ∗(B). It remains to show that
if for all n in N

(An) ⊆K, then µ
∗ (⋃

n∈N
An) ≤∑

n

µ∗(An).
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To see this, first fix Un ∈ G for n ∈ N and let U = ⋃
n∈N
Un. Fix f ≺ U and let E = supp f .

Then E ⊆ ⋃
n∈N
Un, by compactness, E ⊆

n

⋃
k=1
Uk for some n ∈ N. By lemma 2.2, there exist

hj ≺ Uj , 1 ≤ j ≤ n,
n

∑
j=1

hj ≤ 1 on K and is equal to 1 on E. So f =
n

∑
j=1

fhj and hence

ϕ(f) =
n

∑
j=1

ϕ(fhj) ≤
n

∑
j=1

µ∗(Uj) ≤
∞
∑
j=1

µ∗(Uj) as fhj ≺ µ
∗(Uj) for all j.

Taking the supremum of f , we deduce µ∗(U) ≤
∞
∑
j=1

µ∗(Uj). It follows easily that µ∗ (⋃
n∈N

An) ≤

∑n µ
∗(An) for arbitrary sets (just approximate using an ϵ

2n
argument). We now letM be the set

of µ∗−measurable subsets of K, thenM is a σ−algebra and µ∗↾M is a measure onM.
Next we show that B ⊆ U . Enough to show that G ⊆ M. Let U be in G. We need to show:
µ∗(A) ≥ µ∗(A∩U)+µ∗(A∖U) for all A ⊆K. First let A = V ∈ G. Fix f ≺ V ∩U , fix g ≺ V ∖ supp f .
Then f + g ≺ V, and thus µ∗(V) ≥ ϕ(f + g) = ϕ(f) + ϕ(g). Taking the supremum over g, we get
µ∗(V) ≥ ϕ(f) + µ∗(V ∖ supp f) ≥ ϕ(f) + µ∗(V ∩ U). Now let A ⊂ K be arbitrary. Fix V ∈ G s.t.
A ⊆ V, then µ∗(V) ≥ µ∗(V ∩ U) + µ∗(V ∩ U) ≥ µ∗(A ∩ U) + µ∗(A ∖ U). Taking the infinum over all
such V, we have that µ∗(A) ≥ µ∗(A ∩ U) + µ∗(A ∖ U).

Now, µ ∶= µ∗↾B is a Borel measure on K. We have that µ(K) = ϕ(1K) = ∥ϕ∥ < ∞ and by
definition, µ is regular. It remains to show that

ϕ(f) = ∫
K
fdµ

for all continuous f . It is enough to check that for all f ∈ CR(K) and then to show that
ϕ(f) ≤ ∫K fdµ (by applying the it to −f).

Fix a < b ∈ R s.t. f(K) ⊆ [a, b]. Wlog, a > 0, since ϕ(1K) = ∫K 1Kdµ. Let ϵ > 0; choose
0 ≤ y0 < a ≤ y1 < ⋅ ⋅ ⋅ < yn = b s.t. yj < yj+1 + ϵ for all 1 ≤ j ≤ n. Let Aj = f

−1((yj−1, yj]).

Then, K =
n

⋃
j=1

Aj and this is a measurable partition. Choose closed sets Ej and open sets Uj s.t.

Ej ⊆ Aj ⊆ Uj and µ(Uj ∖ Ej) <
ϵ
n
(by regularity) and f(Uj) ⊆ (yj−1, yj + ϵ). By lemma 2.2 there

exist hj ≺ Uj , 1 ≤ j ≤ n,
n

∑
j=1

hj ≤ 1 on K. Now 10

ϕ(f) =
n

∑
j=1

ϕ(fhj) ≤
n

∑
j=1
(yj + ϵ)ϕ(hj)

≤
n

∑
j=1
(yj + ϵ)µ(Uj) ≤

n

∑
j=1
(yj−1 + 2ϵ) (µ(Uj) +

ϵ

n
)

≤
n

∑
j=1

yj−1µ(Uj) + ϵ(b + ϵ) + 2ϵµ(K) + 2ϵ
2

= ∫
K

n

∑
j=1

yj−11Ejdµ +O(ϵ)

≤ ∫K fdµ +O(ϵ).

Hence, ϕ(f) ≤ ∫K fdµ, since ϵ > 0 was arbitrary.

Corollary 2.5.1. For every ϕ ∈M(K), there exists a unique regular complex Borel measure
ν on K that represents ϕ, namely, ϕ(f) = ∫K fdν for all continuous f . Moreover, ∥ϕ∥ = ∥ν∥1
and if ϕ is inMR(K), then ν is a signed measure.

Proof. Existence: Apply lemma 2.1 and theorem 2.5 to obtain a regular complex Borel measure ν
that represents ϕ.

10using that f ≤ yj ≤ ϵ and hj ≺ Uj and ϕ ∈M+(K).
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Need: ∥ν∥1 = ∥ϕ∥.

Lecture 10 This will give uniqueness, if ν1, ν2 represent ϕ, then ν1−ν2 represents ϕ−ϕ = 0, then ∥ν1 − ν2∥1 =
0, hence ν1 = ν2. ∥ϕ∥ ≤ ∥ν∥1, was already done before Theorem 2.5. Take a measurable partition

K =
n

⋃
j=1

Aj . Fix ϵ > 0 and closed sets Ej , open sets Uj s.t. Ej ⊆ Aj ⊆ Uj , ∣ν∣(Uj ∖ Ej) <
ϵ
n

(∣ν∣

is regular). Can also assume that Uj ⊆ K ∖ ⋃
i≠j
Ei, for all 1 ≤ j ≤ n. Fix λj ∈ C s.t. ∣λj ∣ = 1,

λjν(Ej) = ∣ν(Ej)∣, 1 ≤ j ≤ n. By lemma 2.2, there exist hj ≺ Uj , 1 ≤ j ≤ n,
n

∑
j=1

hj ≤ 1 on K. then for

all j Ej ≺ hj . Hence,

RRRRRRRRRRR
∫
K

⎛

⎝

n

∑
j=1

λj1Ej −
n

∑
j=1

λjhj
⎞

⎠
dν
RRRRRRRRRRR

≤
n

∑
j=1
∫
K
∣1Ej −

n

∑
j=1

hj ∣d∣ν∣

≤
n

∑
j=1
∣ν∣(Uj ∖Ej) < ϵ.

Now,

n

∑
j=1
∣ν(Aj)∣ ≤

n

∑
j=1
∣ν(Ej)∣ + ϵ =

n

∑
j=1

λjν(Ej) + ϵ

= ∫
K

n

∑
j=1

λj1Ejdν + ϵ ≤
RRRRRRRRRRR
∫
K

⎛

⎝

n

∑
j=1

λjhj
⎞

⎠
dν
RRRRRRRRRRR

+ 2ϵ

=

RRRRRRRRRRR

ϕ
⎛

⎝

n

∑
j=1

λjhj
⎞

⎠

RRRRRRRRRRR

+ 2ϵ

= ∥ϕ∥ ⋅ ∥∑
n
j=1 λjhj∥∞ + 2ϵ ≤ ∥ϕ∥ + 2ϵ

using the fact the the expression in the second to last line is a convex combination of function with
sup norm equal to one. Hence, it follows that ∥ν∥1 ≤ ∥ϕ∥.

Corollary 2.5.2. The space of regular complex Borel measures is a complex Banach space
in the ∥ν∥1 (total variation norm) and is isometrically isomorphicM(K).
The space of regular real Borel measures is a real Banach space in the ∥ν∥1 (total variation
norm) and is isometrically isomorphicMR(K).
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3 WEAK TOPOLOGIES

3 Weak Topologies

Let X be a set and F be a family of function s.t. each f ∈ F is a function f ∶ X → Yf , where
Yf is a topological space.

The weak topology σ(X,F) on X generated by F is the smallest topology onX s.t. each f ∈ F

is continuous (is easily see to exist).

Remark. 1. S = {f−1(U) ∶ f ∈ F ,U ⊆ Yfopen} is a sub-base of σ(X,F). So V ⊆ X is open,
i.e. it is in σ(X,F) iff for all x ∈ V, there exist n ∈ N, f1, . . . , fn ∈ F and open sets Uj ⊆ Yfj

(open nbhds of fj(x)) for 1 ≤ j ≤ n s.t. x is in
n

⋂
j=1

f−1(Uj) ⊆ V.

2. If Sf is a sub-base in Yf , then {f
−1(U) ∶ f ∈ F ,U ∈ Sf}, is a sub-base for σ(X,F).

3. If Yf is Hausdorff for all f ∈ F and F separates points in X (i.e., for all x ≠ y, there exists
f ∈ F s.t. f(x) ≠ f(y)). Then σ(X,F) is Hausdorff (easy to check).

4. Y ⊆X, let FY = {f↾Y ∶ f ∈ F}. Then σ(Y,FY ) = σ(X,F)↾Y (check!).

5. Universal property: let Z be a topological space and q ∶ Z → X be a function. Then g is
continuous iff f ○ g ∶ Z → Yf is continuous for all f ∈ F .

Examples:

1. Let X be a topological space, let Y ⊆ X and ι ∶ Y → X be the inclusion map. Then,
σ(Y,{ι}) is the subspace topology of Y .

2. let Γ be a set, Xγ a topological space for all γ ∈ Γ and X = ∏
γ∈Γ

Xγ = {X ∶

X is a function on Γ s.t. ∀γ ∈ Γ, x(γ) ∈ Xγ}. For x ∈ X, γ ∈ Γ we often write xγ for
x(γ). We think of x as the ”Γ−tuple”, (xγ)γ∈Γ. For each γ we have πγ ∶X →Xγ , x↦ xγ
((xδ)δ∈Γ) the evaluation at γ, or projection onto Xγ . The weak topology σ(X,{πγ ∶
γ ∈ Γ}) is called the product topology on X. V is open iff for all x = (xγ)γ∈Γ ∈ V, there
exist n ∈ N, γ1, . . . , γn ∈ Γ and open neighbourhoods Uj of xγj inXγj s.t.

{y = (yγ)γ∈Γ ∈X ∶ yγj ∈ Uj ,1 ≤ j ≤ n} ⊆ V

.

Proposition 3.1. Let X be a set. For each n ∈ N, let (Yn, dW ) be a metric space and
fn ∶ X → Yn be a function s.t. F = {fn ∶ n ∈ N} separates points of X. Then σ(X,F) is
metrisable.

Proof. Define

d(x, y) =
∞
∑
n=1

min(∣fn(x) − fn(y)∣,1) ⋅ 2
−n, for x, y in X.

This is a metric on X (easy to check) (F separating points implies that for x ≠ y, d(x, y) > 0).
Fiven ϵ ∈ (0,1) and d(x, y) < ϵ

2n
, then ∣fn(x) − fn(y)∣ < ϵ. So each fn is continuous wrt the

topology τ induced by d. So σ = σ(X,F) ⊆ τ . Fix x ∈ X, then y ↦ min(∣fn(x) − fn(y)∣,1) ⋅ 2
−n is

σ−continuous. By the Weierstrass M-test,
∞
∑
n=1

min(∣fn(x)−fn(y)∣,1) ⋅2
−n is univormly convergent,

hence σ−continuous. So, {y ∈X ∶ d(y, x) < ϵ} is σ−open. Hence, τ ⊆ σ and τ = σ.

Theorem 3.1 (Tychonov). The product of compact topological spaces is compact in the
product topology.

23



3.1 Weak topologies on vector spaces 3 WEAK TOPOLOGIES

Proof. We have X = ∏
γ∈Γ

Xγ as in examples 3. Assume each Xγ is compact. Let F be a family of

closed subsets of X with the finite intersection property (FIP). We need to show that ⋂
F ∈F

F ≠ ∅

(equivalent to compactness).
By Zorn, there exists a maximal family A of subsets of X s.t. F ⊆ A and A has the FIP
(M = {A ⊆ P(X) ∶ A ⊇ F & A has the FIP}, and every chain has a maximal element. Check!).
We will show that ⋂

A∈A
A ≠ ∅.

Note:

1. A1, . . . ,An ∈ A implies that A =
n

⋂
i=1
Ai is in A.

Indeed, for all B1, . . . ,Bm ∈ A, s.t. A ∩B1 ∩ ⋅ ⋅ ⋅ ∩Bm ≠ ∅ so A ∪ {A} has the FIP. Hence, A
is in A.

2. B ⊆ X, B ∩A ≠ ∅ for all A ∈ A implies B is in A. Indeed, for A1, . . . ,An ∈ A s.t.
n

⋃
i=1
Ai ≠ ∅

and B ∩
n

⋃
i=1
Ai ≠ ∅, then A ∪ {B} has the FIP and using maximality, we conclude that B is

in A.

Let γ ∈ Γ. Then {πγ(A) ∶ A ∈ A} has the FIP. Since Xγ is compact, ⋂
A∈A

πγ(A) ≠ ∅. Fix

xγ ∈ ⋂
A∈A

πγ(A) ≠. Let x = (xγ)γ∈Γ and U be an open neighbourhood of x. We show that U∩A ≠ ∅

for all A ∈ A. Then x ∈ A, for all A ∈ A. Wlog, U =
n

⋃
j=1

π−1γj
(Uj) for n ∈ N, γ1, . . . , γn ∈ F , Uj is an

open neighbourhood of xγj ∈ Xγj . So Uj ∩
n

⋃
j=1

π−1γj
(Aj) ≠ ∅ for all A ∈ A, so π−1γj

(Uj) ∈ A by note 2

above. By 1 above, U ∈ A and hence, U ∩A ≠ ∅ for all A ∈ A. We have thus demonstrated that for
all A ∈ A, x ∈ A, which concludes the proof.

Lecture 11

3.1 Weak topologies on vector spaces

Let E be a real or complex vector space. Let F be a subspace of the space of all linear function-
als on E that separates points, i.e. for all x ∈ E,x ≠ 0, then there exists f ∈ F, f(x) ≠ 0. Consider
the weak topology σ(E,F ). So U ⊆ E is open iff for all x ∈ U , there exists n ∈ N, f1, . . . , fn ∈ F, ϵ > 0
s.t. {y ∈ E ∶ ∣fj(y − x)∣ < ϵ,1 ≤ j ≤ n} ⊆ U . For f ∈ F,x ∈ E,pf(x) = ∣f(x)∣. Let P = {pf ∶ f ∈ F}.
Then (E,P) is a locally convex space (LCS) whose topology is σ(E,F ). So σ(E,F ) is Hausdorff
and vector addition and scalar multiplication are continuous.

Lemma 3.1. Let E be as above, ler f, g1, . . . , gn be linear functionals on E s.t.
n

⋃
j=1

ker gj ⊆

ker f . Then f ∈ span{g1, . . . , gn}.

Proof. Let K be the scalar field. Define T ∶ E → Kn by Tx = (gj(x))
n
j=1. Then ker(T ) =

n

⋃
j=1

ker gj ⊆

ker f and hence we have a factorisation

E K

Kn

f

T
h
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3.1 Weak topologies on vector spaces 3 WEAK TOPOLOGIES

with h linear, f = h ○ T . Then there exists (aj(x))
n
j=1 ∈ Kn s.t. h(y) =

n

∑
j=1

ajyj for all y ∈ Kn. So

for all x ∈ E,f(x) = h(Tx) =
n

∑
j=1

ajgj(x). So f =
n

∑
j=1

ajgj as required.

Proposition 3.2. Let E,F be as above, let f be a linear function on E. Then f is σ(E,F )−
continuous iff f ∈ F . So, (E,σ(E,F ))∗ = F .

Proof. ⇐Ô : holds by definition.

Ô⇒ : there exists an open neighbourhood U of 0 in E s.t. for all x ∈ U , ∣f(x)∣ < 1. Wlog,
(shrink U if necessary) U = {x ∈ E ∶ ∣gj(x)∣ < ϵ,1 ≤ j ≤ n} for some n ∈ N, g1, . . . , gn ∈ F, ϵ > 0. If

x ∈
n

⋃
j=1

ker gj , then ambx ∈ U for all scalars λ and hence ∣f(x)∣ = ∣λ∣ ⋅ ∣f(x)∣ < 1 for all λ. So f(x) = 0.

By lemma 3.1, f ∈ span{g1, . . . , gn}.

Examples:

1. Let X be a normed space. The weak topology on X is the topology σ(X,X∗) on
X. (X∗ annihilates points of X by Hahn-Banach). We sometimes write, (X,w) for
(X,σ(X,X∗)). Open sets in σ(X,X∗) are called weak open, or w−open. U ⊆ X
is w−open ⇐⇒ for all x ∈ U , there exists n ∈ N, f1, . . . , fn ∈ X∗, ϵ > 0 s.t.
{y ∈X ∶ ∣fj(y − x)∣ < ϵ,1 ≤ j ≤ n}.

2. LetX be a normed space. The weak star topology or w∗−topology onX∗ is the topology
σ(X∗,X) on X∗. Here, we are identifying X with its image in X∗∗ under the canonical
embedding. Open sets in σ(X∗,X) are called w∗−open and U ⊆ X∗ is weak-* open iff
for all f ∈ U , there exist n ∈ N, x1, . . . , xn ∈ X, ϵ > 0 s.t. {y ∈ X∗ ∶ ∣g(xj) − f(xj)∣ < ϵ,1 ≤
j ≤ n} ⊆ U .

Properties:

1. (W,w) and (X∗,w∗) (this is (X∗, σ(X∗,X))) are LCS and hence Hausdorff with continuous
vector space operations.

2. σ(X,X∗) ⊆ ∥⋅∥−topology with equality iff dimX <∞.

3. σ(X,X∗) ⊆ σ(X∗,X) ⊆ ∥⋅∥, where equality in the first inclusion is achieved iff X is reflexive,
and for the latter iff dimX∗ = dimX <∞.

4. Let Y be a subspace of X. Then, σ(X,X∗)↾Y = σ(Y,{f ∈X∗}) = σ(Y,Y ∗) by Hahn-Banach.
Similarly, σ(X∗∗,X∗)↾X = σ(X,X∗). So in other words, the canonical embedding X →X∗∗

is also a weak-to-weak-* homeomorphism between X and X̂.

Proposition 3.3. Let X be a normed space.

(i) A linear functional f on X is continuous in the weak topology iff f ∈ X∗. So
(X,w)∗ =X∗.

(ii) A linear functional f on X∗ is w∗− continuous iff f ∈ X, i.e. f = x̂ for some
x ∈X. So (X∗,w∗)∗ =X. It follows that σ(X∗,X) = σ(X∗,X∗∗) iff X is reflexive.

Definition 3.1 (Weak Boundedness). Let X be a normed space, then a subset A is
weakly bounded if {f(x) ∶ x ∈ A} is bounded for all f ∈ X∗ (iff for all w-neighbourhood
of 0 in X, there exists λ > 0 s.t. A ⊆ λU).
A subset B∗ is weak-* bounded if {f(x) ∶ x ∈ B} is bounded for all x ∈ X (iff iff for all
w∗-neighbourhood of 0 in X∗, there exists λ > 0 s.t. B ⊆ λU).
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3.2 Principle of Uniform Boundedness (PUB) 3 WEAK TOPOLOGIES

3.2 Principle of Uniform Boundedness (PUB)

Let X be a Banach space, Y be a normed space and T ⊆ B(,Y). If T is pointwise bounded

(sup
T ∈T
∥Tx∥ for all x ∈X), then T is uniformly bounded (sup

T ∈T
∥T ∥ <∞).

Proposition 3.4. (i) A is weakly bounded implies that A is ∥⋅∥−bounded.

(ii) B∗ is weak-* bounded and X is complete implies that B is ∥⋅∥−bounded.

Proof. (ii) B∗ = B(X, scalars), B weak-* bounded says B is pointwise bounded. So done by PUB.
(i) Â = {x̂ ∶ x ∈ A}∗∗ = B(X∗, scalars). A weakly bounded iff Â is pointwise bounded and so can
conclude again by PUB.

Notation: We write xn
w
Ð→ x if (xn)n∈N converges to x in the weak topology (in some normed

space). Note that xn
w
Ð→ x in X iff ⟨xn, f⟩ → ⟨x, f⟩ for all f ∈ X∗. We write fn

w∗
Ð→ f in X∗ if

(fn)n∈N converges to f in the weak-* topology (in some dual space) iff ⟨x, fn⟩→ ⟨x, f⟩ for all x ∈X.

Consequences of PUB: Let X be a Banach space, Y a normed space, (Tn) a sequence in
B(X,Y ). If T ∶ X → Y is a function s.t. Tn → T pointwise on X (i.e. Tnx → Tx for all x ∈ X),
then T ∈ B(X,X), sup

n∈N
∥Tn∥ <∞ and ∥T ∥ ≤ lim inf

n
∥Tn∥.

Proposition 3.5. Let X be a normed space.

(i) If xn
w
Ð→ x in X, then sup

n
∥xn∥ <∞ and ∥x∥ ≤ lim inf

n
∥xn∥.

(ii) If fn
w∗
Ð→ f in X∗ and X is complete, then sup

n
∥fn∥ <∞ and ∥f∥ ≤ lim inf

n
∥fn∥.

Proof. (ii) We have that fn → f pointwise in X∗ = B(X, scalars). Result follows by PUB.

(i) Since xn
w
Ð→ x, x̂n → x̂ pointwise in X∗∗ = B(X∗, scalars) and we conclude by PUB again.

Lecture 12 For the above, the converse is not true. We can find a sequence that converges weakly but not
in the norm topology. For instance,

Example:

In ℓp,1 < p <∞, en = (0, . . . ,0,1,0, . . . ,0),

nth-entry

en
w
Ð→ 0, but clearly en

∥⋅∥
↛ 0.

3.3 Hahn-Banach Separation Theorems

Let (X,P) be a LCS. Let C be a convex subspace of X, s.t. 0 ∈ intC. Then define µC ∶ X →
R, µC = inf{t > 0 ∶ x ∈ tC.

Well-defined: 1
n
x → 0 as n → ∞, so there exists n ∈ N s.t. 1

n
x ∈ C. µC is the Minkowski

functional (gauge functional) of C.

Example:
If X is a normed space and C = BX , then µC = ∥⋅∥.

Lemma 3.2. µC is positive homogeneous and sub-additive. Moreover, {x ∶ µC < 1} ⊂ C ⊂
{x ∶ µC ≤ 1}. The first inclusion is an equality if C open.

Proof. Positive homogeneous: for x ∈ X,s, t,> 0 we have sx ∈ stC ⇐⇒ x ∈ tC. Hence, µC(sx) =
sµC(x). A;so holds for s = 0, since µC(0) = 0.
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Subadditivity: First an observation: µC < t implies x ∈ tC. Indeed, there exists t′ < t s.t. x ∈ t′C.

Then, x
t
= (1 − t′

t
) ⋅ 0 + t′

t
⋅ x
t′ ∈ C by the convexity of C.

Now, let x, y ∈X. Fix s > µC(x), t > µC(y). Then x ∈ sC, y ∈ tC. So, x+y = (
s

s+t ⋅
x
s
+ t

s+t ⋅
x
t
) (s+

t) ∈ (s + t)C by convexity. So µC(x + y) ≤ s + t, and hence µC(x + y) ≤ µC(x) + µC(y).

Next, if µC(x) < 1, then x ∈ C by above. If C is open and x ∈ C, then there exists n ∈ N s.t.

(1 + 1
n
)x ∈ C, since (1 + 1

n
)x

n→∞
ÐÐÐ→ x and C open. Hence, µC(x) ≤

1
1+ 1

n

< 1.

Finally, x ∈ C implies that µC(x) ≤ 1. Then, by homogeneity, µC((1 −
1
n
)x) < 1 for all n, so

(1 − 1
n
)x ∈ C for all n, since (1 − 1

n
)x→ x, the in case C is closed x ∈ C.

Remark. If C is symmetric (in real case) or balanced (in complex case)m then µC is a semi-norm.
If, in addition C is bounded, then µC is a norm.

Theorem 3.2. Hahn-Banach Separation Theorem Let (X,P) be a LCS and C be an open
convex subset of X with 0 ∈ intC. let x0 ∈X ∖C. Then there exists f ∈X∗ s.t. f(x0) > f(x)
for all x ∈ C.(In complex case: Re(f(x0))) > Re(f(x)) for all x ∈ C).

Remark. From now on we work with real scalars and the complex case will follow, since

f ↦ Re f ∶X∗ →X∗R

is a real linear injection.

Proof. Consider µC . By lemma 3.2, C = {s ∶ µC(x) < 1} and so µC(x0) ≥ 1. Let Y = span{x0} and
g ∶ Y → R, g(λx0) = 1 ≤ µC(x0). Hence, g ≤ µC on Y .
By Theorem 1.1, there exists linear f ∶ X → R s.t. f↾Y = g and f ≤ µC on X. For all x ∈ C,
f(x) ≤ µC(x) < 1 = f(x0). We also gave f(x) < 1 on C and so ∣f(x)∣ < 1 on C ∩ (−C). Since C ∩ (−C)
is an open neighbourhood of 0, we have that f ∈X∗.

Theorem 3.3. Let (X,P) be a LCS. Let A,B ≠ ∅, disjoint convex subsets of X.

(i) If A is open, there exists f ∈X∗ and α ∈ R s.t. f(x) < α ≤ f(y) for all x ∈ A,y ∈ B.

(ii) If A is compact, and B is closed, then there exists f ∈X∗ s.t. sup
A
f < inf

B
f .

Proof. (i) Fix α ∈ A, b ∈ B. Let C = A−B + b−α and x0 = b−α. Then C is open, convex, 0 ∈ C
and x0 /∈ C (A ∩B = ∅). By Theorem 3.2, there exists f ∈ X∗ s.t. f(z) < f(x0) for all z ∈ C.
So for all x ∈ A,y ∈ B f(x−y+x0) < f(x0), i.e f(x) < f(y). In particular, f ≠ 0. Let α = inf f .
Then α ≤ f(y) for all y ∈ B. Since f ≠ 0, there exists u ∈ X s.t. f(u) > 0.Now, given x ∈ A,
x+ 1

n
u→ x and since A is open, there exists n ∈ N s.t. x+ 1

n
u ∈ A. Then f(x) < f(x+ 1

n
u) ≤ α.

(ii) Claim: there exists open, convex neighbourhood of 0 in X,U s.t. (A + U) ∩B = ∅

Indeed, for x ∈ A, there exists open neighbourhood Ux of 0 s.t. (x + Ux) ∩ B = ∅ (B is
closed). Since 0 + 0 = 0 and ”+” is continuous, there exists open neighbourhood Vx of 0 s.t.
Vx +Vx ⊆ Ux. Wlog, Vx is convex and symmetric. By compactness, there exist x1, . . . , xn ∈ A

s.t. A ⊆
n

⋃
i=1
(xi + Vxi). Let U =

n

⋂
i=1
Vxi . Given x ∈ A, there exists i s.t. x ∈ xi + Vxi . So,

x + U ⊆ x ∈ xi + Vxi + U ⊆ x ∈ xi + Vxi + Vxi ⊆ xi + Uxi is disjoint from B. So, A + U is disjoint
from B.

Now, apply part (i) with A+U ,B to show that there exists f ∈X∗ s.t. f(x+u) < f(y) for all

x ∈ A,y ∈ B,u ∈ U . In particular, f ≠ 0 so there exists z ∈ X s.t. f(z) > 0. Also, 1
n
z

n→∞
ÐÐÐ→ 0,

so there exists n ∈ N s.t. 1
n
z ∈ U . So f(x) + 1

n
f(z) < f(y) for all x ∈ A,y ∈ B. It follows that

sup
A
f < inf

B
f .
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Theorem 3.4 (Mazur). Let C be a convex subset of a normed space X. Then C
∥⋅∥
= C

w
.

In particular, C is ∥⋅∥−closed iff C is weakly closed.

Proof. Wlog, C ≠ ∅.

”C
∥⋅∥
⊆ C

w
”: is true since the weak topology is weaker than the ∥⋅∥−topology.

”C
∥⋅∥
⊇ C

w
”: If x /∈ C

∥⋅∥
, then apply Theorem 3.2 (ii) to A = {x}, B = C

∥⋅∥
to obtain f ∈ X∗ s.t.

f(x) < inf
B
f ∶= α. Then, {y ∶ f(y) < α} is a weakly open neighbourhood of X, disjoint from B (and

hence from C). So x /∈ C.

Corollary 3.4.1 (Mazur). If xn
w
Ð→ 0 in a normed space X, then for all ϵ > 0, there exists

x ∈ conv{xn ∶ n ∈ N} s.t. ∥x∥ ≤ ϵ.

Proof. 0 ∈ conv{xn ∶ n ∈ N}
w
= conv{xn ∶ n ∈ N}

∥⋅∥
by Mazur.

Remark. It follows from this that there exist p1 < q1 < p2 < q2 . . . and convex combinations

zn =
qn

∑
i=pn

tixi s.t. zn → 0 in ∥⋅∥.

Theorem 3.5 (Banach-Alaoglu).Lecture 13 For any normed space X, (BX∗ ,w
∗) is compact.

Proof. For x ∈ X, let Kx = {λ ∶ λ scalar , ∣λ∣ ≤ ∥x∥}. Let K = ∏
x∈X

Kx in he product topology. Let

πx ∶K →Kx be the projection (λy)y∈X ↦ λx.

Note K = {λ ∶X → scalars ∶ ∣λ(x)∣ ≤ ∥x∥}, so BX∗ ⊆K.

The subspace topology on BX∗ is σ(K,{πx ∶ x ∈ X})↾BX∗ = σ(BX∗ ,{πx↾BX∗ ∶ x ∈ X}) =
σ(BX∗ ,{x̂↾BX∗ ∶ x ∈ X}) = σ(X

∗,X)↾BX∗ , the weak-* topology. By Theorem 3.1, K is compact.
So all we need to show is that BX∗ is closed in K. Now,

BX∗ = {λ ∈K ∶ λax+by = aλx + bλy∀x, y ∈X,∀a, b ∈ scalars}
= ⋂

x,y,a,b

{λ ∈K ∶ πax+by(λ) = aπx(λ) + bπy(λ)}

= ⋂
x,y,a,b

{λ ∈K ∶ πax+by(λ) − aπx(λ) − bπy(λ)
−1({0})}

closed in K as each πx is continuous.

Proposition 3.6. Let X be a normed space and K be a compact, Hausdorff space.

(i) X is separable (in the ∥⋅∥−top) iff (BX∗ ,w
∗) is metrisable.

(ii) C(K) is separable iff K is metrisable.

Proof. (i)”Ô⇒ ”: Fix a dense sequence (xn) in X. Let F = {x̂n↾BX∗ ∶ n ∈ N}. Then F separates
the points of X, so σ(BX∗ ,F) is Hausdorff and is contained in the weak-* topology. So

Id ∶ (BX∗ ,w
∗)→ (BX∗ , σ(BX∗ ,F))

is a continuous bijection from a compact space to a Hausdorff space, and hence a homeomorphism.
So σ(BX∗ ,F) is the weak-* topology on BX∗ . This is metrisable by proposition 3.1.
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3.3 Hahn-Banach Separation Theorems 3 WEAK TOPOLOGIES

(i)”Ô⇒ ”: By above, (BC(K)∗ ,w
∗) is metrisable. For k ∈ K, define δk ∶→ scalars by δk(f) =

f(k) for all f ∈ C(K). Then δk ∈ BC(K)∗ . Hence

δ ∶→ (BC(K)∗ ,w
∗)

k ↦ δk

δ is continuous: let f ∈ C(K). Is f̂ ○ δ continuous? For k ∈K, (f̂ ○ δ)(k) = δk(f) = f(k). Then,

f̂ ○δ = f . This is continuous on K. By the universal property of the weak topology, δ is continuous.

δ is injective: C(K) separates points of K by Urysohn.

Now, δ ∶ K → (δ(K),w∗) is a continuous bijection from compact to Hausdorff, and hence a
homeomorphism. Hence K is metrisable.

(ii)”⇐Ô ”: K compact metrisable, so K is separable. Fix a dense sequence (xn) in K. Let
(fn) = d(x,xn) (d is a metric inducing the topology of K). Let A be the sub-algebra of C(K) gen-
erated by fn, n ∈ N and ⊮K . The A is separable, A separates points of K, ⊮K ∈ A and in complex
case, closed under complex conjugate. By Stone Weierstrass, A = C(K), so C(K) is separable.

(i)”⇐Ô ”: let K = (BX∗ ,w
∗). This is compact, by Theorem 3.5. Since K is metrisable,

C(K) is separable. We prove that X ↪ C(K) isometrically. Then done. Let T ∶ X → C(K) be
Tx = x̂↾BX∗ . then T is linear and ∥Tx∥∞ = ∥x̂∥ = ∥x∥.

Remark. 1. If X is separable, then (BX∗ ,w
∗) is compact, metrisable and hence weak-* se-

quentially compact(+separable).

2. X is separable implies that X∗ is weak-* separable (X∗ = ⋃
n∈N

nBX∗).

By mazur, X is separable iff X is weakly separable (weak closure of span of some (xn) weakly
dense in X is ∥⋅∥−closure by Mazur, since it is convex).
So X weakly separable implies X∗ is weak-* separable. The converse is not true in general
(e.g. ℓ∞).

3. The proof shows (BC(K)∗ ,w
∗) contains a homeomorphic copy of K.

4. Proof also shows that for every normed space X there exists compact, hausdorff K s.t. X ↪
C(K) isometically (K = (BX∗ ,w

∗)).

Proposition 3.7. Let X be a normed space. Then X∗ is separable iff (BX ,w) is metrisable.

Proof. ”Ô⇒ ”: By proposition 3.6 (i), (BX∗∗ ,w
∗) is metrisable. Hence, (BX ,w) = (BX∗∗ ,w

∗)↾BX

is metrisable.

”⇐Ô ”: let d metrise (BX ,w). Then for all n ∈ N, there exists finite Fn ⊆ X
∗ and ϵn > 0 s.t.

Un = {x ∈ BX ∶ ∣f(x)∣ < ϵn∀f ∈ Fn} ⊆ {x ∶ d(x,0) <
1
n
}. Let Z = span ⋃

n∈N
Fn.

Claim: Z =X∗, then done.

Indeed, let g ∈X∗ and fix ϵ > 0. Then {x ∈ BX ∶ ∣g(x)∣ < ϵ} is a weak neighbourhood of 0 in BX

and hence contains Un for some n ∈ N. Let Y = ⋂
f∈Fn

ker f , then for x ∈ BY , x ∈ Un, so, g(x) < ϵ. So

∥g↾Y ∗∥ ≤ ϵ. Now Y = ⋂
f∈Fn

ker f ⊆ ker(g − h), so by lemma 3.1 g − h ∈ spanFn ⊆ Z implies d(g, z) ≤ ϵ

which gives g ∈ Z.

Theorem 3.6 (Goldstine). For any normed space X, BX
w∗
= BX∗∗ (BX

w∗
is the closure

in (X∗∗,w∗) of BX).
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3.3 Hahn-Banach Separation Theorems 3 WEAK TOPOLOGIES

Proof. BX∗∗ is weak-* closed (follows from Theorem 3.5) and BX ⊆ BX∗∗ so BX
w∗
⊆ BX∗∗ . Now let

ϕ ∈ X∗∗ ∖BX
w∗

. Apply Theorem 3.3 (ii) to (X∗∗,w∗), A = {ϕ},B = BX
w∗

(show weak-* closure

of convex set is closed). Now, there exists f ∈ X∗ s.t. ϕ(f) > sup
B
f̂ (real case), [Re(ϕ(f))] >

sup
B

Re(f̂), ∥ϕ∥ ⋅ ∥f∥ > sup
BX

f . So ∥ϕ∥ > 1.

Example:

Note that X
w∗
=X∗∗. So X separable implies X∗ is weak-* separable. For instance, ℓ∗∞ = ℓ

∗∗
1

is weak-* separable, but ℓ∞ is NOT separable.

Indeed, we have that the map

ψ ∶ ℓ∞ → ℓ∗1

x↦ (fx ∶ ℓ1 → scalars ∶ y ↦ ∑
n∈N

xnyn)

is an isometric isomorphism (in the norm topologies). It suffices to show that

(ℓ∗∞, σ(ℓ
∗
∞, ℓ∞))

ϕ
Ð→ (ℓ∗∗1 , σ(ℓ∗∗1 , ℓ∗1))

is a homeomorphism. Observe that ϕ = (ψ−1)∗, ϕ−1 = (ψ)∗, both dual maps. ψ being an
isometric isomorphism in the norm topology implies that the same holds for ϕ. By the previous
observation, it suffices to show that for all y ∈ ℓ∗1, ŷ○ϕ ∶ (ℓ

∗
∞, σ(ℓ

∗
∞, ℓ∞))→ scalars is continuous.

Indeed, observe that for f ∈ ℓ∗∞ , ŷ ○ϕ(f) = ϕ(f)(y) = (ψ−1)∗(f)(y) = f(ψ−1(y)) = ψ̂−1(y)(f),

and so ŷ ○ ϕ = ψ̂−1(y), which is weak-* continuous by the universal property of the weak
topology, hence we are done.

Lecture 14

Theorem 3.7. Let X be a Banach space. Then TFAE:

(i) X is reflexive.

(ii) (BX ,w) is compact.

(iii) X∗ is reflexive.

Proof. (i)Ô⇒ (ii): using the canonical embedding (a w−w∗ homeomorphism), (BX ,w) = (BX∗∗ ,w
∗)

BX is compact by Banach-Alaoglu (Theorem 3.5).

(ii)Ô⇒ (i): (BX ,w) = (BX∗∗ ,w
∗)11, so BX is compact in the weak-* topology of X∗∗. So BX

is weak-* closed in X∗∗. By Goldstine, BX∗∗ ⊇ BX
w∗
= BX .

(i)Ô⇒ (iii): (BX∗ ,w) = (BX∗ ,w
∗) by reflexivity and is compact by Theorem 3.5. By (ii)Ô⇒

(i), X∗ is reflexive.

(iii)Ô⇒ (i): By what we have just proved, X∗∗ is reflexive. By the implication (i) Ô⇒ (ii),

(BX∗∗ ,w) is compact. Since, X is complete, X is closed in X∗∗, and hence weakly closed in X∗∗

(by Mazur). Hence, BX =X ∩BX∗∗ is a weakly. closed subset of BX∗∗ and thus weakly compact12.
By (ii)Ô⇒ (i), X is reflexive.

Remark. If X is separable and reflexive, then (BX ,w) is compact, metrisable. Hence, BX is
weakly sequentially compact.

11making the appropriate identifications, i.e. with the canonical embedding ι ∶ X ↪ X∗∗.
12BX∗∗ is weak-* compact by Banach-Alaoglu and the map ι ∶ (BX ,w)→ (B̂X ,w∗) is a homeomorphism.
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3.3 Hahn-Banach Separation Theorems 3 WEAK TOPOLOGIES

Lemma 3.3. Let (K,d) be a non-empty compact metric space. Then there exists a contin-
uous surjection ϕ ∶ {0,1}N →K, where {0,1}N is given the product topology.

Proof. Since compact and metric imply totally bounded, that is if A ⊆K is non-empty, closed and

ϵ > 0, then there exist non-empty closed sets B1, . . . ,Bn s.t. A =
n

⋃
j=1

Bj and diam(Bj) < ϵ for all j.

Applying this13, there exists a non-empty closed subset Kϵ of K for all ϵ ∈ Σ =
∞
⋃
n=1
{0,1}n s.t.

K∅ = K, Kϵ = Kϵ,0 ∪Kϵ,1 and max
ϵ{0,1}n

diamKϵ → 0 as n → ∞. Imagine some picture like the one

below:

K

K0

K00

⋰
K01

⋮

K1

K10

⋮
K11

⋱

Define ϕ ∶ {0,1}N → K, ϕ((ϵi)
∞
i=1) = the unique point in

∞
⋂
n=1

Kϵ1,...,ϵn (is well-defined by com-

pactness and nestedness of Kϵ’s).

ϕ is onto: given x ∈K, inductively construct ϵ1, . . . , ϵn s.t. for all n x ∈Kϵ1,...,ϵn .

ϕ is continuous: for ϵ = (ϵi)
∞
i=1 ∈ {0,1}

N, let n ∈ N, then for all δ = (δi)
∞
i=1 ∈ {0,1}

N if δi = ϵi for
all 1 ≤ i ≤, then d(ϕ(d), ϕ(ϵ)) ≤ diamKϵ1,...,ϵn → 0 as n→∞.

Remark. {0,1}N is homeomorphic to the middle third Cantor set ∆ via the map

(ϵi)
∞
i=1 ↦

∞
∑
i=1
(2ϵi) ⋅ 3

−i

.

Theorem 3.8. Every separable Banach space X embeds isometrically into C[0,1]. So
C[0,1] is isometrically universal for the class of separable Banach spaces (SB).

Proof. From the proof of proposition 3.6 that X ↪ C(K) isometrically where K = (BX∗ ,w
∗). Since

X is separable, K is metrisable. By lemma 3.3, there exists a continuous surjection ϕ ∶ ∆ → K.
Hence, C(K) ↪ C(∆) isometrically via f ↦ f ○ ϕ. Also have C(∆) ↪ C([0,1]) isometrically via
f ↦ f̃1.

Write [0,1]∖∆ as a disjoint union
∞
⋃
n=1
(an, bn). Then f̃↾∆ = f for all n, f̃ is linear on [an, bn] with

f̃(an) = f(an), f̃(bn) = f(bn).

13at each branching point ϵ ∈ Σ, can cover Kϵ by balls of diameter diamKϵ/2, ’shedding balls’ until only the
intersection with one remains, hence halving the diameter in a finite depth and proceed like so recursively.
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4 CONVEXITY

4 Convexity

Let X be a real or complex vector space and K ⊆ X be a convex set. A point x ∈ K is an
extreme point of K if whenever x = (1 − t)y + tz for t ∈ (0,1), y, z ∈ K, we have y = z = x. Let
ExtK be the set of extreme points of K.

Examples:

(a) Bℓ2
1

(b) Bℓ2
2

Figure 2: Above are displayed balls and their extreme points in ℓ21, ℓ
2
1 respectively.

Furthermore, for the sequence space c0, have that Ext(Bc0) = ∅.

Indeed, given x = (xn) ∈ Bc0 . Fix N ∈ N s.t. ∣xN ∣ <
1
2
. Let yn = zn = xn for all n ≠ N ∈ N and

yN = xN +
1
2
, zN = xN −

1
2
. Then y = (yn)n∈N, z = (zn)n∈N ∈ Bc0 and x = 1

2
y + 1

2
z, y ≠ x, z ≠ x.

Theorem 4.1 (Krein-Milman). Let (X,P) be a LCS. Let K be a compact, convex subset
of X. Then K = conv(ExtK). In particular, ExtK ≠ ∅ provided K ≠ ∅.

Corollary 4.1.1. If X is a normed space, then BX∗ = conv
w∗(ExtK) and ExtBX∗ ≠ ∅.

Note c0 is not a dual spce isometrically, i.e. there exists no normed space X s.t. c0 ≅X
∗.

Definition 4.1. Let K be a compact convex set in a LCS (X,P). A face of K is a non-
empty, compact convex set E ⊆K s.t. if y, z ∈K, t ∈ (0,1), (1 − t)y + tz ∈ E, then y, z ∈ E.

Examples:

1. K is a face of K. For x ∈K, x ∈ ExtK ⇐⇒ {x} is a face of K.

2. let f ∈X∗, α = sup
K
f , E = {x ∈K ∶ f(x) = α} is a face.

(E ≠ ∅, convex, compact and if y, z ∈ K, t ∈ (0,1) and (1 − t)y + tz ∈ E, then α =
f((1 − t)y + tz) = (1 − t)f(y) + tf(z) ≥ α giving equality, hence f(y) = f(z) = α, hence
y, z ∈ E).

[In the complex case, use Re f . From now on, we only use real scalars.]

3. Let E be a face of K. If F is a face of E, then F is a face of K. So if x ∈ ExtE, then
x ∈ ExtK.

Proof. Proof of Theorem 4.1 Let E be a face of K. We show ExtE ≠ ∅.
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4 CONVEXITY

By Zorn, lemma 1.1, there exists a minimal (wrt inclusion) face F of E. If ∣F ∣ > 1, then pick
x ≠ y ∈ F and f ∈X∗ s.t. f(x) > f(y) (by Hahn-Banach). Then G = {z ∈ F ∶ f(z) = sup

F
f} is a face

of F, y /∈ G so G /⊆ F , a contradiction. So F is a singleton which means ExtE ≠ ∅.

Now, let L = convExtK. then L ≠ ∅, convex, compact, L ⊆ K. Assume x0 ∈ K ∖ L. By
Theorem 3.2, there exists f ∈ X∗ s.t. f(x0) > sup

L
f . Let α = sup

K
f , then E = {x ∈ K ∶ f(x) = α}

is a face of K. So there’s an extreme point z of K with X ∈ E. Since α ≥ f(x0), E ∩ L ≠ ∅, a
contradiction. So z /∈ L.

Lemma 4.1.Lecture 15 let (X,P) be a LCS, let K be compact and x0 ∈K. Then for a neighbourhood
V of x0 in X, there exist f1, . . . , fn ∈ X

∗, α1, . . . , αn ∈ R s.t. x0 ∈ {x ∈ X ∶ fi(x) < αi,1 ≤ i ≤
n} ∩K ⊆ V.

Proof. let τ be the topology of X defined by P let σ = σ(X,X∗). Then Id ∶ (K,τ) → (K,σ)
is a continuous bijection (σ ⊆ τ) from compact to Hausdorff (as X∗ separates points of X by
Hahn-Banach), so it is a homeomorphism, i.e. σ = τ on K.

Lemma 4.2. let (X,P) be a LCS, let K be compact and convex. x0 ∈ ExtK. Then for a
neighbourhood V of x0 in X, there exists f ∈X∗, α ∈ R s.t. x0 ∈ {x ∈X ∶ f(x) < α}∩K ⊆ V.

Proof. Let n, f1, . . . , fn ∈ X
∗, α1, . . . , αn be as in lemma 4.1 and K1 = {x ∈ K ∶ fi(x) ≥ αi}.

This is compact and convex. Observe
n

⋃
i=1
Ki ⊇ K ∖ V and x0 /∈

n

⋃
i=1
Ki. Also, conv

n

⋃
i=1
Ki =

{
n

∑
i=1
tixi ∶ xi ∈Ki, ti ≥ 0,

n

∑
i=1
ti = 1}. Since x0 is an extreme point of K, x0 /∈ conv

n

⋃
i=1
Ki (the case

n = 2 is true by definition, and use induction to arrive at the general case).

Furthermore, K1 × . . .Kn ×{(ti) ∈ Rn ∶ ti ≥ 0∀i,
n

∑
i=1
ti = 1} is compact and (x1, . . . , xn, (ti)

n
i=1)↦

n

∑
i=1
tixi is continuous (algebraic operaitons ”+,×” are continuous in LCS), so the image B =

conv
n

⋃
i=1
Ki is compact. By Theorem 3.2, there exists f ∈ X∗ s.t. f(x0) < inf

B
f . Choose α ∈ R

with f(x0) < α < inf
B
f . Then x0 ∈ {x ∈X ∶ f(x) < α}∩K, which is disjoint from B and hence from

n

⋃
i=1
Ki and so is contained in V.

(a) Illustration of lemma 4.1. (b) Illustration of lemma 4.2.

Figure 3
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Theorem 4.2. Let (X,P) be a locally convex space, K compact, convex and S ⊆ K. If
K = convS, then S ⊇ ExtK.

Remark. The closure is necessary. For instance, let S be a dense subset of Sℓ22
. Then convSℓ22

=
Bℓ22

and ExtBℓ22
= Sℓ22

.

Also, ExtK need not be closed. E.g. in R3,

Figure 4: Illustration of extreme points of a double cone in R3 (which include top and bottom
vertices).

Proof. Proof of Theorem 4.2 Assume x0 ∈ ExtK ∖S. Apply lemma 4.2 with V =X ∖S. So, f ∈X∗,
α ∈ R s.t. x0 ∈ {x ∈ X ∶ f(x) < α} ∩K ⊆ V. Then, L = {x ∈ K ∶ f(x) ≥ α} is compact, convex with
L ⊇ S. Hence, L ⊇ convS =K, a contradiction since x0 /∈ L. Thus, x0 ∈ S.

Remark. One can show that ExtBC(K)∗ = {λδk ∶ ∣λ∣ = 1, k ∈ K} (δk(f) = f(k)), where K is
compact, Hausdorff. Can use Theorem 4.2 for ”⊆”.

Theorem 4.3 (Banach-Stone). Let K,L be compact, Hausdorff spaces, then C(K) ≅ C(L)
⇐⇒ L and K are homeomorphic.

Proof. ”⇐Ô ”: If ϕ ∶K → L is a homeomorphism then

ϕ∗ ∶ C(L) ≅ C(K)
f ↦ f ○ ϕ

is an isometric isomorphism.

”Ô⇒ ”: let T ∶ C(L) ≅ C(K) be an isometric isomorphism. Then so is its dual T ∗ ∶ C(K)∗ ≅
C(L)∗. So T ∗(BC(K)∗) = BC(L)∗ and T

∗(ExtBC(K)∗) = ExtBC(L)∗ . Thus, for each k ∈K, T ∗(δk) =
λ(k) ⋅ δϕ(k) for some scalar λ(k), ∣λ(k)∣ = 1 and some ϕ(k) ∈ L. So we have functions

λ ∶K → scalars
ϕ ∶K → L

Now, for all k ∈ K, λ(k) = T ∗(δk)(1L) = T (1L)(k), which means λ = T (1L) ∈ C(K), so λ is
continuous. Recall, δ ∶K → (C(L)∗,w∗) is continuous (indeed, it is a homeomorphism between K

and δ(K)). Also, T ∗ ∶ C(K)∗ → C(L)∗ is w ∗ −w∗ continuous. hence, h ↦ λ(k) ⋅ T ∗(δk) = δϕ(k) ∶

K → (C(L)∗,w∗) is continuous. Since ϕ ∶ K
T ∗
Ð→ (δ(L),w∗)

δ−1
ÐÐ→ L is a composition of continuous

maps, hence continuous.

ϕ is into: Assume ϕ(k1) = ϕ(k2). So λ(k) ⋅ T ∗(δk1) = λ(k) ⋅ T
∗(δk1). Evaluate at T −1(1K) to

get λ(k1) = λ(k2) and so δk1 = δk2 (as T ∗ is injective) which finally gives k1 = k2.

ϕ is onto: Given l ∈ L, since T ∗ is onto, there exists a scalar µ, ∣µ∣ = 1, k ∈ K s.t. T ∗(µδk) = δl. So
µλ(k)δϕ(k) = δl. Evaluate at 1L to get µλ(k) = 1 and so ϕ(k) = l.
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5 Banach Algebras

A real or complex algebra is a real or resp. complex vector space A with multiplication A×A ∶→
A, (a, b)↦ a ⋅ b s.t.

(i) a(bc) = (ab)c

(ii) a(b + c) = ab + ac, (a + b) ⋅ c = ac + bc

(iii) λ(ab) = (λa)b = a(λb)

for all a, b, c ∈ A, b scalar.

A is unital if there exists 1 ∈ A s.t. 1 ≠ 0 and for all x ∈ A 1a = a1 = a. This element is unique,
called the unit of A.

An algebra norm on A is a norm on A s.t. for all a, b ∈ A, ∥ab∥ ≤ ∥a∥ ⋅ ∥b∥. A normed algebra is
an algebra with an algebra norm. note that multiplication is continuous (as well as addition and
scalar multiplication). A Banach algebra (BA) is a complete normed algebra.

A unital normed algebra is a normed algebra, A with an element 1 ∈ A s.t. for all x ∈ A,
1a = a1 = a and s.t. ∥1∥ = 1 (∥1∥ ≤ ∥1∥ ⋅ ∥1∥ and 1 ≤ ∥1∥). If A is a normed algebra which is also
a unital algebra (but not assuming ∥1∥ = 1), then ~a~ = sup{∥ab∥ ∶ ∥b∥ ≤ 1} defines an equivalent
norm on A that makes A a unital normed algebra.

A unital Banach algebra is a complete unital normed algebra. A linear map θ ∶ A→ B between
algebras is a homomorphism if for all a, b ∈ A θ(ab) = θ(a) ⋅ θ(b). If in addition A and B are unital
with units 1A and 1B and θ(1A) = 1B , then θ is a unital homomorphism. In the category of
normed algebras, an isomorpism will mean a continuous homomorphism with continuous inverse.
BUT, homomorphisms are not assumed continuous.

Lecture 16 Note: from now on, the scalar field is C.

Examples:

1. C(K), K compact Hausdorff, is a commutative, unital BA with pointwise multiplication
in the uniform norm.

2. Let K be compact, Hausdorff, A uniform algebra on K is a closed sub-algebra of C(K)
that separates points of K and contains the constant functions.

3. The disk algebra A(∆) = {f ∈ C(∆) ∶ f holomorphic on the interior of ∆},
∆ = {z ∈ C ∶ ∣z∣ ≤ 1}.

More generally, let K ⊆ C,K ≠ ∅ compact. We have the following uniform alge-
bras on K ∶ P(K) ⊆ R(K) ⊆ O(K) ⊆ A(K) ⊆ C(K), where P(K),R(K),O(K) are
the closures in C(K) of respectively, polynomials, rational functions with no pole in
K, functions holomorphic on some open neighbourhood of K. A(K) = {f ∈ C(K) ∶
f holomorphic on int(K)}. Later, R(K) = O(K) say, R(K) = R(K) if and only of
C ∖K is connected. In general A(K) ≠ O(K), A(K) = C(K) ⇐⇒ int(K) = ∅.

4. L1(R) with the L1−norm and convolution f ∗g(x) = ∫
R
f(y)g(x−y)dy is a commutative

Banach algebra without a unit (Riemann-Lebesgue lemma).

5. If X is a Banach space, then B(X) with composition an operator norm is a unital
Banach algebra. It is not commutative if dimX > 1.

special case: if X is a Hilbert space, then B(X) is a C∗−algebra (see later).
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5.0.1 Elementary constructions

1. If A is a unital algebra with unit 1, then a unital sub-algebra is a sub-algebra B of A s.t.
1 ∈ B. If A is a normed algebra, then the closure of a sub-algebra of A is a sub-algebra of A.

2. Unitisation: The unitisation of an algebra A is the vector space direct sum A+ = A⊕C with
multiplication (a, λ) ⋅ (b, µ) = (ab + λb + µa,λ,µ). Then A+ is a unital algebra with unit
1 = (0,1).

The ideal {(a,0) ∶ a ∈ A} is isomorphic to A and will always be identified with A/ We can
weite A = {a+λ1 ∶ a ∈ A,λ ∈ C}. If A is a normed algebra, then A+ becomes a unital normed
algebra with ∥a + λ1∥ = ∥a∥ + ∣λ∣. Then A is a closed ideal of A+. If A is a Banach algebra,
then A+ is a unital Banach algebra.

3. The closure of an ideal of a normed algebra is an ideal. If J is a closed ideal of the normed
algebra of A, then A ∖J is a normed algebra in the quotient norm. If A is a unital normed
algebra and J is a proper closed ideal of A(J ≠ A), then A ∖ J is a unital normed algebra
with 1 +J (∥1 +J ∥ ≤ ∥1∥ = 1 and ∥1 +J ∥ ≥ 1 from an earlier observation).

4. let Ã be the Banach space completion of a normed algebra. Then Ã is a Banach algebra
with the following multiplication: given a, b ∈ Ã, choose sequences (an), (bn) in A s.t. an →
a, bn → b and define a ⋅ b = lim

n→∞
an ⋅ bn.

5. Let A be a unital Banach algebra. Let X = A thought of as a Banach space. For a ∈ A,
define La ∶ X → X, La(x) = a ⋅ x. Then La ∈ B(X) and ∥La∥ = ∥a∥. The map L ∶ A → B(X),
a↦ La, is an isometric unital HM (homomorphism).

Lemma 5.1. Let A be a unital Banach algebra and a ∈ A. Ift ∥1 − a∥ < 1, then a is invertible
(there exists b ∈ A s.t. ab = ba = 1) and ∥a−1∥ ≤ 1

1−∥1−a∥ .

Proof. For all n ∈ N, ∥(1 − a)n∥ ≤ ∥1 − a∥n, so
∞
∑
n=0
∥(1 − a)n∥ <∞. Hence,

∞
∑
n=0
(1 − a)n converges

((1 − a)0 = 1).

Let b =
∞
∑
n=0
(1 − a)n. Then (1 − a)b = b(1 − a) =

∞
∑
n=1
(1 − a)n = b − 1, and so ab = ba = 1. So,

b = a−1 and ∥a−1∥ = ∥b∥ ≤ Let b =
∞
∑
n=0
(1 − a)n. Then (1 − a)b = b(1 − a) =

∞
∑
n=1
(1 − a)n = b − 1, and so

ab = ba = 1. So, b = a−1 and ∥a−1∥ = ∥b∥ ≤
∞
∑
n=1
∥(1 − a)n∥ ≤

∞
∑
n=1
∥1 − a∥

n
=

1

1 − ∥1 − a∥
.

Notation: we let G(A) denote the group of invertibles of a unital algebra A.

Corollary 5.0.1. Let A be a unital Banach algebra.

(i) G(A) is open in A.

(ii) x↦ x−1 is a continuous function on G(A).

(iii) Assume (xn) ⊆ G(A), xn → x ∈ A ∖ G(A). Then ∥x−1n ∥→∞ as n→∞.

(iv) If x ∈ BG(A) = G(A)∖G(A), then there exists (zn) in A s.t. ∥zn∥ = 1 for all n and
zn ⋅ x→ 0 and x ⋅ zn as n→∞. It follows that x has no left or right inverse in A, not
even in any unital algebra B containing A as a (not necessarily unital) sub-algebra.

Proof. (i) Let x ∈ G(A). If y ∈ A and ∥y − x∥ ≤ 1
∥x−1∥ , then ∥1 − x−1y∥ = ∥x−1(x − y)∥ ≤

∥x−1∥ ⋅ ∥x − y∥ < 1. Hence, by lemma 5.1, x−1y ∈ G(A), which implies that y = x ⋅x−1y ∈ G(A).

36



5 BANACH ALGEBRAS

(ii) Let us fix x ∈ G(A). For y ∈ G(A) y−1 − x−1 = y−1(x − y)x−1 so ∥y−1 − x−1∥ ≤ ∥y−1∥ ⋅ ∥x−1∥ ⋅

∥x − y∥. If ∥x − y∥ < 1
2∥x−1∥ , then ∣ ∥y

−1∥ − ∥x−1∥ ∣ ≤ 2 ⋅ ∥x−1∥
2
⋅ ∥x − y∥→ 0 as y → x.

(iii) From proof of (i), if ∥x − xn∥ <
1

x−1n
, then x ∈ G(A), a contradiction. So ∥x − xn∥ ≥

1
xn

.

Since, ∥x − xn∥→ 0, the result follows.

(iv) Given x ∈ BG(A), there exists a sequence (xn) ⊆ G(A), xn → x. By part (iii) ∥xn∥ →∞,

let zn =
x−1n
∥x−1n ∥

, for all n ∈ N. Then znx = znxn + zn(x − xn) =
1

∥x−1n ∥
+ zn(x − xn) → 0, by the

above and since ∥zn(x − xn)∥ ≤ ∥zn∥ ⋅ ∥x − xn∥→ 0. Similarly, xzn → 0.

Assume that B is a unital BA and A is a sub-algebra of B. If y ∈ A and yx = 1B , then
yxzn = zn. So ∥zn∥ = 1 = ∥yxzn∥ ≤ ∥y∥ ⋅ ∥xzn∥, n →∞, a contradiction. Similarly, there is no
y ∈ B s.t. xy = 1B .

Definition 5.1.Lecture 17 Let A be an algebra (always complex) and let x ∈ A. The
spectrum σA(x) of x in A is defined as follows: if A is unital, then σA(x) = {λ ∈ C ∶ λ1−x /∈
G(A)} and if A is non-unital then σA(x) ∶= σA+(x).

Examples:

1. A =Mn(C), x ∈ A, σA(x) is the set of eigenvalues (evals) of x.

2. A = C(K), K compact Hausdorff, f ∈ A, σA(f) = f(K).

3. X a Banach space, A = B(X), T ∈ A, then
σA(T ) = {λ ∈ C ∶ λ Id−T not an isomorphism}.

Theorem 5.1. Let A be a Banach algebra, x ∈ A. Then σA(x) is a non-empty, compact
subset of {λ ∈ C ∶ ∣λ∣ ≤ ∥x∥}.

Proof. Wlog, A is a unital Banach algebra. If ∣λ∣ > ∥x∥, then ∥x∥ < 1, so by lemma 5.1, 1− x
λ
∈ G(A)

and so λ1−x = λ(1− x
λ
) ∈ G(A). Hence, σA(x) ⊆ {λ ∈ C ∶ ∣λ∣ ≤ ∥x∥}. Also, σA(x) is the inverse image

of the closed set A ∖ G(A) (corollary 5.0.1(i)) under the continuous function λ ↦ C → A ∶ λ1 − x
and hence σA(x) is closed. It follows that σA(x) is compact.

σA(x) is non-empty: consider f ∶ C ∖ σA(x) → A, f(λ) = (λ1 − x). By corollary 5.0.1(ii) f is
continuous and for λ ≠ µ:

f(λ) − f(µ) = f(λ)((µ1 − x) − (λ1 − x))f(µ)
= f(λ)(µ − λ)f(µ)
= (µ − λ)f(λ)f(µ).

So f(λ)−f(µ)
λ−µ = −f(λ)f(µ) → −f(µ)2 as λ → µ because f is continuous. Thus, f is holomorphic. If

∣λ∣ > ∥x∥ then λ1 − x ∈ G(A) and ∥(λ1 − x)−1∥ = 1
∣λ∣ ∥(1 −

x
λ
)
−1
∥ ≤ 1

∣λ∣
1

1−∥ xλ ∥
= 1
∣λ∣−∥x∥ → 0 as ∣λ∣ →∞.

If σA(x) where empty, then f is a bounded entire function, so by vector-valued Liouville, f is
constant, and since f(λ)→ 0 as ∣λ∣→∞, f ≡ 0, a contradiction.

Corollary 5.1.1 (Gelfand-Mazur). A complex unital normed division (G(A) = A ∖ {0})
algebra is isometrically isomorphic to C.

Proof. Let us define the map θ ∶ C → A, θ(λ). = λ ⋅ 1. then θ is an isomtric homomorphism. To
show that it is onto, fix any x ∈ A. Let B be the completion of A. Then B is a unital Banach
algebra. Then by Theorem 5.1, σB(x) is non-empty which implies that there exists λ ∈ C s.t.
λ1 − x is NOT invertible in B, hence λ1 − x is not in G(A) which means that λ1 − x = 0 and so
θ(λ) = x.
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Definition 5.2 (Spectral radius). Let A be a Banach algebra and x ∈ A. The
spectral radius rA(x) of x in A is rA(x) = sup{∣λ∣ ∶ λ ∈ σA(x)}. From Theorem 5.1, rA(x)

is well-defined and rA(x) ≤ ∥x∥.

Note: let x, y be comuting elements of a unital algebra A. Then x ⋅ y ∈ G(A) ⇐⇒ x ∈ G(A)
and y ∈ G(A) (use the fact that z(xy) = (xy)z = 1 gives yzx = yzx ⋅ yxz = yxz = 1).

Lemma 5.2 (Spectral Mapping Theorem for polynomials). Let A be a unital Banach

algebra and x ∈ A. Then for a complex polynomial p =
n

∑
k=0

akz
k we have

σA(p(x)) = {p(λ) ∶ λ ∈ σA(x)} = p(σA(x))

where p(x) =
n

∑
k=0

akz
k and x0 = 1A.

Proof. Wlog n ≠ 1 and an ≠ 0 (σA(λ1) = {λ}). Fix µ ∈ C. Write µ − p(z) = c ⋅
n

∏
k=1
(λk − z) for

some c, λ1, . . . , λn ∈ C, c ≠ 0. note that {λ ∶ p(λ) = µ} = {λ1, . . . , λn}. Now µ /∈ σA(p(x)) ⇐⇒

µ1 − p(x) =
n

∏
k=1
(λk1 − x) is invertible ⇐⇒ λk − xλk1 − x is invertible (use previous note on

commutativity and invertibility) ⇐⇒ there exists no λ ∈ σA(x) s.t. p(λ) = µ. The result now
follows.

Theorem 5.2 (Beurling-Gelfand Spectral Radius Formula (SRF)). Let A be a unital Ba-
nach algebra, x ∈ A. Then

rA(x) = lim
n→∞

∥xn∥
1
n = inf

n∈N
∥xn∥

1
n .

Proof. Wlog A is unital. By lemma 5.2, if λ ∈ σA(x) and n ∈ N, then λn ∈ σ(xn). By Theorem 5.1,

∣λn∣ ≤ ∥xn∥ and ∣λ∣ ≤ ∥xn∥
1
n . It thus follows that rA(x) ≤ infn∈N ∥x

n∥
1
n .

Consider f ∶ C ∖ σA(x)→ A,f(λ) = (λ1 − x)−1, by the proof of Theorem 5.1, f is holomorphic.

Note that C∖σA(x) ⊇ {∣λ∣ > rA(x)} ⊇ {λ ∶ ∣λ∣ > ∥x∥}. If ∣λ∣ > ∥x∥, then f(λ) = 1
λ
(1 − x

λ
)
−1
= 1

λ

∞
∑
n=0

xn

λn

(by the proof of lemma 5.1).

Fix ϕ ∈ A∗ (Banach space dual). Then ϕ ○ f is holomorphic on C ∖ σA(x) and if ∣λ∣ > ∥x∥,

then ϕ ○ f(λ) = 1
λ

∞
∑
n=0

ϕ(xn)

λn
. This Laurent expansion must also be valid on {∣λ∣ > rA(x)}. So for

∣λ∣ > rA(x) and for ϕ ∈ A∗, ϕ (x
n

λn ) → 0 as n →∞. So for ∣λ∣ > rA(x),
xn

λn

w
Ð→ 0. By proposition 3.5,

there exists M > 0 s.t. for all n ∈ N, ∥x
n

λn ∥ ≤M
1
n and so lim sup ∥xn∥

1
n ≤ ∣λ∣. We have thus proved

that rA(x) ≤ inf
n∈N
∥xn∥

1
n ≤ lim inf

n∈N
∥xn∥

1
n ≤ lim sup

n∈N
∥xn∥

1
n ≤ rA(x).

Theorem 5.3. Let A be a unital Banach algebra and B be a closed, unital sub-algebra of
A. Let x ∈ B. Then, σB(x) ⊇ σA(x) and BσB(x) ⊆ σA(x). It follows that σB(x) is the
union of σA(x) and some of the bounded components of C ∖ σA(x).

Before we proceed with the proof of the above, we prove a topological lemma.

Lemma 5.3. Suppose V and W are open sets in some topological space X s.t. V ⊆W and
W contains non boundary points of V. Then V is a union of components of W.
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Proof. Let Ω be a component of W that intersects V. Let U be the complement of V. Since W
contains no boundary point of V, Ω is the union of two disjoint open sets Ω ∩ V and Ω ∩ U . Since
Ω is connected, Ω ∩ U is empty and so it follows that Ω ⊆ V.

Proof of Theorem 5.3. σB(x) ⊇ σA(x) holds since an element invertible in B is also invertible in
A. Let λ ∈ BσB(x). then, there exist (λn) ⊆ C ∖ σB(x) s.t. λn → λ. So λn1 − x ∈ G(B) and
λn1 − x → λ1 − x ∈ B ∖ G(B), which means λ1 − x ∈ BG(B). By corollary 5.0.1(iv), λ1 − x is not
invertible in A, that is λ ∈ σA(x).

To conclude, let ΩA,ΩB be the complements in C of σA(x), σB(x) respectively. The preceding
discussion implies that BΩB ⊆ σA(x) and so can use the topological lemma with V = ΩB ,W = ΩA.
Thus, ΩB is the union of components of ΩA. This means that σB(x) is the union of σA(x) and
some bounded components of ΩA = σA(x) ∖ σA(x).

(a) σA(x) (b) σB(x)

Figure 5: Illustration of Thheorem 5.3 for a sub-algebra B ⊆ A, x ∈ B.

Proposition 5.1.Lecture 18 Let A be a unital Banach algebra and C a maximal commutative sub-
algebra of A (wrt inclusion). Then C is a unital closed sub-algebra of A. Moreover, for all
x ∈ C, σC(x) = σA(x).

Proof. C is a commutative sub-algebra of A. C ⊇ C and by maximality C = C is closed.
C +C ⋅ 1 is a commutative sub-algebra of A contains C, so by maximality C = C +C ⋅ 1, i.e. 1 ∈ C.
Fix x ∈ C. We know that σC(x) ⊇ σA(x). Assume λ ∈ C ∖ σA(x)/ Let y = (λ1 − x)−1 (in A). Have
for all z ∈ C, z(λ1 − x) = (λ1 − x)z as C is commutative and hence yz = zy. It follows that the
sub-algebra generated by C ∪ {y} is commutative, so by maximality it is in C and so y ∈ C and
λ /∈ σC(x). Hence, σC(x) ⊆ σA(x).

Definition 5.3. A non-zero homomorphism ϕ ∶ A → C on an algebra A is called
a character on A. Let ΦA be the set of all characters on A. If A is unital, then ϕ(1A) = 1
for all characters ϕ.

Lemma 5.4. Let A be a Banach algebra and ϕ ∈ ΦA. Then ϕ is continuous and ∥ϕ∥ ≤ 1.
Moreover, if A is a unital Banach algebra, then ∥ϕ∥ = 1.

Proof. Wlog, A is a unital Banach algebra: can define ϕ+ ∶ A+ → C by ϕ+(a + λ1) = ϕ(a) + λ.
Then ϕ+ ∈ ΦA+ and ϕ+↾A = ϕ. Now assume that A is a unital Banach algebra and ϕ ∈ ΦA.
Let x ∈ A and assume ϕ(x) > ∥x∥. By Theorem 5.1, ϕ(x) /∈ σA(x). So ϕ(x)1 − x ∈ G(A). So
1 = ϕ(x) = ϕ((ϕ(x)1−x) ⋅(ϕ(x)1−x)−1) = (ϕ(x)1−x) = 0, a contradiction. So ∣ϕ(x)∣ ≤ ∥X∥, giving
∥ϕ∥ ≤ 1. In fact ∥ϕ∥ = 1 since ϕ(1) = 1.

Lemma 5.5. Let A be a unital Banach algebra and J be a proper ideal of A. Then J is
also a proper ideal. In particular, maximal ideals are closed.
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Proof. Since J is proper, J ∩G(A) is empty. By corollary 5.0.1, G(A) is open giving that J ∩G(A)
is empty, hence J is proper. We have shown that ifM is a maximal ideal of A, thenM is proper
and hence so isM. By maximality,M = J is closed.

Notation: For an algebra A, we letMA be the set of all maximal ideals of A.

Theorem 5.4. Let A be a commutative unital Banach algebra. Then the map

ΦA →MA

ϕ↦ kerϕ

is a bijection.

Proof. Well-defined: let ϕ ∈ ΦA. Since ϕ is a homomorphism, kerϕ is an ideal of A. Since ϕ is a
non-zero linear functional, kerϕ is a 1−codimensional sub-space. So kerϕ is a maximal ideal.

Injective: assume ϕ,ψ ∈ ΦA and kerϕ = kerψ. For x ∈ A, ϕ(x)1−x ∈ kerϕ = kerψ, which implies
ψ(ϕ(x)1 − x) = 0 giving ϕ(x) ⋅ ψ(1) = ψ(x) = ϕ(x).

Surjective: letM ∈MA. By lemma 5.5,M is closed, so A∖M is a unital Banach algebra in the
quotient norm. From algebra, A∖M is a field, so a division algebra. By corollary 5.1.1 (Galfand-
Mazur), A ∖M ≅ C. So the quotient map q ∶ A→ A ∖M ”is” a character and ker q =M.

Corollary 5.4.1. Let A be a commutative unital Banach algebra and x ∈ A. Then

(i) x ∈ G(A) ⇐⇒ for all ϕ ∈ ΦA, ϕ(x) ≠ 0.

(ii) σA(x) = {ϕ(x) ∶ ϕ ∈ ΦA}.

(iii) rA(x) = sup{∣ϕ(x)∣ ∶ ϕ ∈ ΦA}

Proof. (i) If x ∈ G(A), then for all characters ϕ, 1 = ϕ(1) = ϕ(x ⋅x−1) = ϕ(x) ⋅(ϕ(x))−1 implying
that ϕ(x) ≠ 0.
Assume that x /∈ G(A), then J = xA = {xa ∶ a ∈ A} is a proper ideal of A, and so is contained
in a maximal ideal which is kerϕ for some character ϕ by Theorem 5.4. So ϕ(x) = 0 since
x ∈ J ⊆ kerϕ.

(ii) λ ∈ σA(x) ⇐⇒ (λ1 − x) /∈ G(A) ⇐⇒ (by (i)) there exists ϕ ∈ ΦA s.t. ϕ(λ1 − x) = 0, i.e.
λ = ϕ(x).

(iii) Is immediate from (ii).

Corollary 5.4.2. Let x, y be commuting elements of a Banach algebra A. Then

rA(x + y) ≤ rA(x) + rA(y)
rA(x ⋅ y) ≤ rA(x) ⋅ rA(y).

Proof. Wlog, A is a commutative unital Banach Algebra. (A → A+ if necesary and then replace
A by a maximal commutative sub-algebra containing x, y and use proposition 5.1). Then for all
characters ϕ, ∣ϕ(x+y)∣ ≤ ∣ϕ(x)∣+∣ϕ(y)∣ ≤ rA(x)+rA(y) by corollary 5.4.1. Taking supremum over all
characters ϕ gives rA(x + y) ≤ rA(x) + rA(y). Argue analogously for the remaining inequality.

Examples:

1. A = C(K), K compact, Hausdorff. ΦA = {δk ∶ k ∈ K} (δk(f) = f(k)). ”⊇” is easy to
check.
”⊆”: let M ∈MA. Seek k ∈ K s.t. M = ker δk. Assume there is non such A. Then
for all k ∈ K, there exist fk ∈ M s.t. fk(k) ≠ 0. By continuity, there exists open
neighbourhoods Uk of k s.t. fk↾Uk

≠ 0. By compactness, there exist k1, . . . , kn ∈ K s.t.
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⋃Ukj = K. Then g =
n

∑
j=1
∣fkj ∣

2 > 0 on K. So 1
g
∈ C(K). Also, g =

n

∑
j=1

fkj ⋅ fkj
∈M, a

contradiction.

2. Let K ⊆ C, K compact and non-empty. Then ΦR(K) = {δw ∶ w ∈K}.

3. ΦA(∆) = {δw ∶ w ∈∆} where A(∆) is the disc algebra.

4. Wiener algebra: W = {f ∈ C(T) ∶ ∑
n∈Z
∣f̂n∣ < ∞}, where T = {z ∈ C ∶ ∣z∣ = 1},

f̂n =
1
2π ∫

π

−π
f(eiθ)e−inθdθ. W is a commutative unital Banach algebra with pointwise

operations in the norm ∥f∥1 = ∑
n∈Z
∣f̂n∣. [It is isometrically isomorphic to ℓ1(Z) which is a

Banach algebra in the ℓ1−norm and convolution product. That is for a = (an), b = (bn),

(a ∗ b)n = ∑
j+k=n

akbj , n ∈ Z. The isomorphism is given by f ↦ (f̂n)n ∈ Z]. Have

ΦW = {δw ∶ w ∈ T}, so σW (f) = f(T). So if f ∈ C(T) has absolutely convergence Fourier
series and is nowhere zero, then 1

f
∈ W and so has an absolutely convergence Fourier

series and is nowhere zero (Wiener’s Theorem).

Definition 5.4.Lecture 19 Let A be a commutative unital Banach algebra. Then

ΦA = {ϕ ∈ BA∗ ∶ ϕ(ab) = ϕ(a)ϕ(b)∀a, b ∈ A,ϕ(1A = 1}

= BA∗ ∩ (âb − â ⋅ b̂)
−1({0}) ∩ 1−1A ({1})

is weak-* closed. (Here for x ∈ A, x̂ ∈ A∗∗ is its canonical image in A∗∗). Hence,
ΦA is w∗−compact. The w∗ − topology on ΦA is called the Gelfand topology. ΦA

with the Gelfand topology is the spectrum of A OR the character space of A OR the
maximal ideal space of A. For x ∈ A, x̂↾ΦA

is continuous on ΦA wrt the Gelfand topol-
ogy; we denote x̂↾ΦA

by x̂. So x̂ ∈ C(ΦA)-called the Gelfand transform of x. The map

A→ C(ΦA)
x↦ x̂

is the Gelfand map.

Theorem 5.5 (Gelfand Representation Theorem). Let A be a commutative unital Banach
algebra, then the Gelfand map is a continuous unital homomorphism A→ C(ΦA). For x ∈ A

(i) ∥x̂∥∞ = rA(x) ≤ ∥x∥.

(ii) σC(ΦA)(x̂) = σ(x).

(iii) x ∈ G(A) ⇐⇒ x̂ ∈ G(C(ΦA)).

Proof. The Gelfand map is linear since x→ x̂ ∶ A→ A∗∗ is linear.

Homomorphism: for x, y ∈ A x̂y(ϕ) = ϕ(xy) = ϕ(x)ϕ(y) = x̂ ⋅ ŷ for all ϕ ∈ ΦA, so x̂y = x̂ŷ.

Unital: 1̂A(ϕ) = ϕ(1A) = 1 for all ϕ ∈ ΦA, so 1̂A = 1̂ΦA
.

Continuity: follows once we prove (i).

(i) ∥x̂∥∞ = sup{∣x̂(ϕ)∣ ∶ ϕ ∈ ΦA}
Cor5.4.1(iii)
= rA(x)

Thm5.1
≤ ∥x∥.

(ii) σC(ΦA)(x̂) = {
=ϕ(x)
∣x̂(ϕ)∣∶ ϕ ∈ ΦA}

Cor5.4.1(ii)
= σA(x).
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(iii) Immediate.

Note: the Gelfand map need not be injective or surjective. Using Theorem, 5.2 its kernel is

{x ∈ A ∶ σA(x) = {0}} = {x ∈ A ∶

quasi-nilpotent=0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

lim
n→∞

∥xn∥
1
n }

= ⋂
ϕ∈ΦA

kerϕ

= ⋂
M∈MA

M

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Jacobson radical of A,J (A)

.

Say A is semi-simple if J (A) = {0}.

6 Holomorphic Functional Calculus (HFC)

Recall For a non-empty open set U ⊆ C, O(U) = {f ∶ U → C ∶ f holomorphic} is a LCS with the
topology of local uniform convergence induce by the family of semi-nnorms: f ↦ ∥f∥K = sup

K
∣f ∣

for non-empty compact K ⊆ U . O(U) is also an algebra with pointwise multiplication which is
cotinuous wrt the topology of O(U) [a Fréchet algebra].

Notation: Define e, u ∈ O(U) by e(z) = 1 and u(z) = z for all z ∈ C. O(U) is a untial algebra
with unit e.

Theorem 6.1 (Holomorphic Function Calculus). Let A be a commutative unital Banach
algebra, x ∈ A, U ⊆ C open and σA(x) ⊆ U . Then there exists a unique unital homomorphism
Θx ∶ O(U) → A s.t. Θx(u) = x. Moreover, ϕ (Θx(f)) = f(ϕ(x)) for all ϕ ∈ ΦA, f ∈ O(U)
and σA (Θx(f)) = {f(λ) ∶ λ ∈ σA(x)}.

Note: Think of Θx as ”evaluation as x”-write f(x) for Θx(f). Then e(x) = 1, u(x) = x. If p is

a polynomial, there exist n ∈ N, a0, . . . , an ∈ C s.t. for all z ∈ C, p(z) =
n

∑
k=0

akz
k, then p =

n

∑
k=0

aku
k.

So Θx(p) = p(z) =
n

∑
k=0

ak (Θx(u))
k
=

n

∑
k=0

akx
k = p(x) as defined in lemma 5.2.

Also, ϕ(f(x)) = f(ϕ(x)) for all f ∈ O(U), ϕ ∈ ΦA and σA(f) = {f(λ) ∶ λ ∈ σA(x)} = f(σA(x)).

Theorem 6.2 (Runge’s Approximation Theorem). Let K be non-empty and compact.
Then O(K) = R(K), i.e. if f is a function holomorphic on some open neighbourhood of
K then for all ϵ > 0, there exists ration function r with no poles in K s.t. ∥f − r∥K < ϵ.

More precisely, given a set Λ consisting of one point from each bounded component of C∖K,
r can be chosen s.t. all its poles are in Λ. If C∖K is connected, then Λ is empty so in fact
we get O(K) = P(K).

6.1 Vector-valued integration

Let a < b in R, X be a Banach space and f ∶ [a, b] → X continuous. We define ”∫
b

a
f(t)dt”.

We choose dissections Dn ∶= a = t
(n)
0 < t

(n)
1 < ⋅ ⋅ ⋅ < t

(n)
kn
= b s.t. ∣Dn∣ = max

1≤j≤kn

(t
(n)
j −t

(n)
j−1)→ 0 as n→∞.

Since f is uniformly continuous, the limit of

kn

∑
j=0

f(t
(n)
j )(t

(n)
j − t

(n)
j−1)
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exists and is independent of (Dn). We define ∫
b

a
f(t)dt to be this limit. It follows that for all

ϕ ∈X∗

ϕ(∫
b

a
f(t)dt) = ∫

b

a
ϕ(f(t))dt.

Taking ϕ to be a norming functional for ∫
b

a
f(t)dt, we get

∥∫
b

a
f(t)dt∥ ≤ ∫

b

a
∥f(t)∥dt, (∥ϕ∥ ≤ 1).

Let γ be a path in C (continuously differentiable), f ∶ [γ]→X be continuous14. Define

∫
γ
f(z)dz = ∫

b

a
f(γ(t))γ′(t)dt

Given a chain Γ = (γ1, . . . , γn)
15 and continuous f ∶ [γ]→X define

∫
Γ
f(z)dz =

n

∑
j=1
∫

b

a
f(γ(t))γ′(t)dt

and have for all ϕ ∈X∗

ϕ(∫
Γ
f(z)dz) = ∫

Γ
ϕ(f(z))dz.

and

∥∫
Γ
f(z)dz∥ ≤ ℓ(Γ) ⋅ sup

z∈[γ]
∥f(z)∥ .

Theorem 6.3 (Vector-valued Cauchy’s Theorem). Let U ⊆ C be open, Γ a cyclea in U , s.t.

n(Γ,w) = 1
2πi ∫

γ

1

z −w
dz = 0 for all w /∈ U and f ∶ U →X holomorphic. Then

∫
Γ
f(z)dz = 0.

aa cycle is a chain Γ = (γ1, . . . , γn), n ∈ N of paths γj ∶ [aj , bj]→ C s.t. there exists a permutation ρ ∈ Sn

s.t. γj(bj) = γρ(j)(aρ(j)) for all j = 1, . . . , n.

Proof. For ϕ ∈X∗, apply the scalar version of Cauchy’s Theorem to deduce

ϕ(∫
Γ
f(z)dz) = 0, for all ϕ ∈X∗

and then apply Hahn-Banach to conclude.

Lemma 6.1. Let K be a non-empty compact s.t. K ⊆ U , U ⊆ C open. Then there is a cycle
Γ such that

n(Γ,w) =

⎧⎪⎪
⎨
⎪⎪⎩

1, w ∈K

0, w /∈ U .

Proof. Note that K being compact means that dist(K,C∖U) = δ > 0. Thus, there exists an n ∈ N16,
s.t. K is covered by finitely many (by compactness) boxes in the dyadic lattice 2−nZ2 where any
adjacent to them boxes are also ⊆ U , see figure 6. More precisely, A = {(x, y) ∈ Z2 ∶ [x ⋅2−n, x ⋅2−n +
2−n]×[y⋅2−n, y⋅2−n+2−n]∩K ≠ ∅}. Have ∣A∣ <∞. Now, define B = A∪{(x±1, y±1) ∈ Z2 ∶ (x, y) ∈ A)}.
Let Γ be the boundary of the boxes above, that is

Γ = B ⋃
(x,y)∈B

[x ⋅ 2−n, x ⋅ 2−n + 2−n] × [y ⋅ 2−n, y ⋅ 2−n + 2−n]

14[γ] denotes the path itself in C.
15any finite collection of paths defined as above.
16for instance, take n ∈ N s.t. 2

√
2 ⋅ 2−n < δ

2
.
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oriented counter-clockwise (black curve in figure 6), and note that Γ ⊆ U ∖K.

Now, for any w ∈ K, w is either in the interior of a box or the interior of the union of boxes
adjacent to it. Regardless, one computes the winding number around such a curve Γ̃ (red in
figure6), which is seen to be the same as the winding number of Γ around w, by homotopy invariance
(Cauchy’s Theorem). One argues similarly for w ∈ C ∖ U to obtain n(Γ,w) = 0.

Figure 6: Illustration of proof of Lemma 6.1, where n ∈ N,w ∈K and K,U ,Γ (in black) as in in the
lemma.

Lemma 6.2.Lecture 20 Let A,x,U be as in Theorem 6.1. K = σA(x) and fix a cycle (guaranteed to
exists by Lemma 6.1) Γ in U ∖K s.t.

n(Γ,w) =

⎧⎪⎪
⎨
⎪⎪⎩

1, w ∈K

0, w /∈ U .

Define the map

Then,

(i) Θx is well-defined, linear, continuous.

(ii) For a rational function r with no poles in U , Θx(r) = r(x) in the usual sense.

(iii) ϕ (Θx(f)) = f(ϕ(x)) for all ϕ ∈ ΦA, f ∈ O(U) and σA (Θx(f)) = {f(λ) ∶ λ ∈
σA(x)}.

Remark. So we can think of the HFC as a Banach algebra valued Cauchy integral formula. Lemma
6.2 almost proves the theorem (6.1). It remains to show that Θx is a homomorphism and it is
unique.

Proof. (i) If z ∈ [Γ] then z /∈ K = σA(x). So z1 − x ∈ G(A). By the proof of Theorem 5.1,
the map z ↦ (z1−x)−1 is continuous (indeed, holomorphic). So, Θx is well-defined. It’s also
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linear by linearity of integration. We also have the estimate

∥Θx(f)∥ ≤
1

2π
ℓ(Γ) ⋅ sup

z∈[γ]
∣f(z)∣ ⋅ ∥(z1 − x)−1∥ .

Since the map z ↦ ∥(z1 − x)−1∥ is continuous on the compact set [Γ], it is bounded. So there
exists M > 0 s.t. for all f ∈ O(U) ∥Θx(f)∥ ≤M ⋅ ∥f∥[Γ].

By Lemma 1.3, Θx is continuous.

(ii) First we show Θx(e) = 1.

FixR > ∥x∥ and let γ be the anticlockwise boundary ofD(0,R). Then γ and Γ are homologous
in C ∖K. So, by Cauchy’s Theorem and the proof of Lemma 5.1,

Θx(e) =
1

2πi ∫
γ
(z1 − x)−1dz

= 1
2πi ∫

γ

1

z

∞
∑
n=0
(
x

z
)
n

dz

= ∑
∞
n=0

1
2πi ∫

γ

1

z

xn

zn+1
dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sum conv. absolutely and uniformly on γ

= x0 = 1.

Let r ∈ O(K) be a rational function. So r = p
q
, for polynomials p, q s.t. for all z ∈ U ,

q(z) ≠ 0. By Lemma 5.2, σA(q(x)) = {q(λ) ∶ λ ∈
=K

σA(x)} and so 0 /∈ σA(q(x)). We define
r(x) = p(x) ⋅ q(x)−1 (”usual sense”). For z,w ∈ C, r(z) − r(w) = q(z)−1q(w)−1(q(w)p(z) −
q(z)p(w)) = q(z)−1q(w)−1(z−w)s(z,w), where s is a polynomial in z,w. Hence, r(z)1−r(x) =
q(z)−1q(w)−1(z1 −w)s(z,w) and

Θx(r) =
1

2πi ∫
γ

r(z)
±

r(z)1−r(x)+r(x)

(z1 − x)−1dz

= 1
2πi ∫

γ
q(z)−1q(w)−1s(z,w)dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by Cauchy

+ 1
2πi ∫

γ
(z1 − x)−1)dz ⋅ r(x)

= r(x) ⋅Θx(e) = r(x).

(iii) ϕ (Θx(f)) =
1

2πi ∫
γ
f(z)(z1 − x)−1dz = f(ϕ(x)) by Cauchy’s integral formula. and so

σA (Θx(f))
Cor 5.4.1
= {

=f(ϕ(x))
ϕ (Θx(f))∶ ϕ ∈ ΦA} = {f(λ) ∶ λ ∈ σA(x)}.

Proof. Proof of Theorem 6.2 Let A = R(K). Let x ∈ A be the element x(z) = z for all z ∈ K.
σA(x) = {λ ∈ C ∶ λ ∈ σA(x)} =K (for λ /∈K, 1

λ−z is the inverse to λ1 − x).

Let f be holomorphic on some open set U ⊇ K. Let Θx ∶ O(U) → A be given by Lemma
6.2. Θx(f)(w) = δw (Θx(f)) = f(δw(x)) = f(w) for all w ∈ K. So Θx(f) = f↾K ∈ R(K). So
O(K) =R(K).

Let us now fix Λ as in the statement of Theorem 6.2. Let B be the closed sub-algebra of A
generated by 1, x, (λ1 − x)−1, λ ∈ Λ. So B = closure in C(K) of rational functions with poles in Λ.
By Theorem 5.3, σB(x) is the union of σA(x) and some of the bounded components of C ∖K.
Since for any such component D there exists λ ∈ Λ ∩D, so λ ⋅ 1 − x ∈ G(A). So σB(x) = σA(x). So
Θx(f) takes values in B, i.e. f↾K ∈ B.
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Corollary 6.3.1. Let Let U ⊆ C be non-empty and open. Then the algebra R(U) of rational
functions with no poles in U is dense in O(U).

Proof. Let f ∈ O(U) and V be a neighbourhood of f in O(U). We need V ∩R(U) ≠ ∅.

Wlog, V = {g ∈ O(U) ∶ ∥g − f∥K < ϵ} for some non-empty, compact K ⊆ U and ϵ > 0. Let K̂ be
the union of K and those bounded components D of C ∖K that are combined in U .

If D is a bounded component of C∖K̂, then D is a bounded component of C∖K s.t. D∖U ≠ ∅
so we can fix λ0 ∈ D ∖ U . Let Λ be the set of all these λ0’s. By Theorem 6.2, there exists rational
function r s.t. ∥r − f∥K̂ < ϵ and the poles of r are in Λ. Hence, r ∈ V ∩R(K).

Combining the above results, we can now embark on a proof of Theorem 6.1, which we started
this section with.

Proof. Let Θx be as in lemma 6.2. Then for all f, g ∈ R(U), Θx(fg)
Lemma6.2(ii)

= (f ⋅ g)(x)
= f(x)g(x) = Θx(f) ⋅Θx(g) and conclude by density of R(U) in O(U) and continuity that Θx is a
homomorphism.

For uniqueness, assume Ψ ∶ O(U) → A is a continuous unital homomorphism and ψ(x) = x.
Then for all polynomials p, Ψ(p) = p(x) = Θx(p) and so for all rational r ∈ R(U) Ψ(r) = r(x) =
Θx(r) and hence Ψ ≡ Θx by density and continuity.
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7 C∗−ALGEBRAS

7 C∗−algebras

A C∗− algebra is a complex algebra A with an involution: a map A→ A,x↦ x∗ s.t.

(i) (λx + µy)∗ = λx∗ + µy∗

(ii) (xy)∗ = y∗x∗

(iii) x∗∗ = x

for all x, y ∈ A,λ,µ ∈ C. If A is unital, then 1∗ = 1. A C∗−algebra is a Banach algebra with an
involution s.t. the C∗-equation holds:

∥x∗x∥ = ∥x∥
2
, for all x ∈ A.

A complete algebra norm on a *-algebra that satisfies the C∗−equation is a C∗−norm. So a
C∗−algebra is a *-algebra with a C∗−norm on it.

Remark.Lecture 21

1. If A is a C∗−algebra, and x ∈ A, then ∥x∗∥ = ∥x∥ (∥x∥
2
= ∥x∗x∥ ≤ ∥x∗∥ ⋅ ∥x∥ so ∥x∥ ≤ ∥x∗∥ and

hence ∥x∗∥ ≤ ∥x∗∗∥ = ∥x∥). So the involution is continuous.

A Banach algebra with an involution s.t. ∥x∗∥ = ∥x∥ for all x.

2. If A is a C∗−algebra and if A has a multiplicative identity 1 ≠ 0, then automatically A is a
unital C∗−agebra, ∥1∥ = 1 (∥1∥

2
= ∥1∗1∥ = ∥1∥).

Definition 7.1. A *-sub-algebra of a *-algebra A is a sub-algebra B of A s.t. for all x ∈ B,
x∗ ∈ B. A C∗−sub-algebra of a C∗−algebra is a closed *-algebra. So a C∗−sub-algebra of a
C∗−algebra is a C∗−algebra. The closure of a *-algebra of a C∗−algebra is a *-sub-algebra,
so a C∗−algebra.

A *-homomorphism between *-algebras is a homomorphism θ ∶ A → B s.t. θ(x∗) = θ(x)∗

for all x ∈ A. A *-isomorphism is a bijective *-homomorphism.

Examples:

1. C(K), K compact Hausdorff, is a commutative, unital C∗−algebra with involution f ↦

f∗, where f∗(k) = f(k) for all k ∈K, f ∈ C(K).

2. B(H), H Hilbert space is a unital C∗−algebra with involution T ↦ T ∗ where T ∗ is the
adjoint.

3. Any C∗−sub-algebra of B(H), (H any Hilbert space) is a C∗−algebra.

. . . And that’s all folks!

Remark. the Gelfand-Naimark Theorem says that if A is a C∗−algebra then there exists a Hilbert
space H s.t. A is isometrically *-isomorphic to some C∗−sub-algebra of B(H). We will prove the
commutative version.

Definition 7.2. Let A be a C∗−algebra and x ∈ A. We say x is

(i) hermitian or self-adjoint if x∗ = x

(ii) unitary if (A is unital and) x∗x = xx∗ = 1

(iii) normal if x∗x = xx∗
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Examples:

1. 1 is both hermitian and unitary. In general, hermitian and unitary are normal.

2. f ∈ C(K) is Hermitian ⇐⇒ f(K) ⊆ R and unitary ⇐⇒ f(K) ⊆ T. (Recall: f(K) =
σC(K)(f)).

Remark. 1. If A is a C∗−algebra and x ∈ A. Then there exist unique hermitian h, k ∈ A s.t.
x = h+ ik. [If x = h+ ik then x∗ = h− ik, so h = x+x∗

2
, k = x−x∗

2i
and conversely, this choice for

h, k works].

2. If A is a unital C∗−algebra and x ∈ A, then x ∈ G(A) ⇐⇒ x∗ ∈ G(A) and in this case
(x∗)−1 = (x−1)∗.

It follows that σA(x
∗) = {λ ∶ λ ∈ σA(x)} (λ1 − x ∈ G(A) ⇐⇒ (λ1 − x)∗ = λ ⋅ 1 − x∗ ∈ G(A))

so σA(x
∗) = σA(x).

Lemma 7.1. Let A be a C∗−algebra and x ∈ A. Then rA(x) = ∥x∥ provided x is normal.

Proof. Assume x is hermitian. Then ∥x∥
2
= ∥x2∥ and inductively, ∥x∥

2n
= ∥x2

n

∥ for all n. By the

spectral radius formula (Theorem 5.2), rA(x) = lim
n→∞

∥x2
n

∥
1
2n = ∥x∥.

If x is normal, then ∥x∗x∥ = rA(x
∗x) because x∗x is hermitian.

Now, rA(x
∗x) ≤ rA(x∗)rA(x)

(Cor5.4.2)
≤ ∥x∗∥ ⋅ ∥x∥. But ∥x∥

2
= ∥x∗x∥. So we have equality through-

out and so ∥x∥ = rA(x).

Lemma 7.2. Let A be a unital C∗−algebra and x ∈ A. Then ϕ(x∗) = ϕ(x) for all ϕ ∈ ΦA.

Proof. Wlog we can assume that x is hermitian. [For general x, write x = h + ik, h, k hermitian.

Then ϕ(x∗) = ϕ(h− ik) = ϕ(h)− iϕ(k) = ϕ(x) (ϕ(h), ϕ(k) real)]. Now assume x is hermitian ϕ ∈ ΦA

and write ϕ(x) = a + ib, a, b ∈ R.

Need: For t ∈ R,

∣ϕ(x + it1)∣2 = ∣a + i(b + t)∣2

= a2 + (b + t)2 = a2 + b2 + 2bt + t2

≤ ∥x + it1∥
2
= ∥(x + it)∗(x + it)∥

= ∥(x − it)∗(x + it)∥ = ∥x2 + t21∥ ≤ ∥x2∥ + t2.

Hence, b = 0.

Corollary 7.0.1. Let A be a unital C∗−algebra.

(i) If x ∈ A is hermitian, then σA(x) ⊆ R.

(ii) If x ∈ A is unitary, then σA(x) ⊆ T.

(iii) If B is a unital C∗−sub-algebra of A and x ∈ B is normal then σB(x) = σA(x).

Proof. (i) Let B = C∗−algebra generated by 1, x (check *-sub-alg) p(x) ∶ p poly . B is com-
mutative, so σ)B(x) = {ϕ(x) ∶ ϕ ∈ ΦB}. By Lemma 7.2, σA(x) ⊆ σB(x) ⊆ R.

(ii) Let B = C∗−algebra generated by by 1, x, x∗ = {p(x,x∗) ∶ p poly in two variables }. B is

commutative, so σB(x) = {ϕ(x) ∶ ϕ ∈ ΦB}. By Lemma 7.2, 1 = ϕ(1) = ϕ(x∗x) = ϕ(x)ϕ(x),
hence ∣ϕ(x)∣2 = 1. So σA(x) ⊆ σB(x) ⊆ T.
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(iii) For the last part, assume x ∈ B is hermitian. Then σA(x) ⊆ R, so C∖σA(x) is connected.
So it follows by Theorem 5.3 that σA(x) = σB(x).

Now assume x ∈ B is normal. Then for λ ∈ C we have

λ1 − x ∈ G(A) ⇐⇒ λ1 − x ∈ G(A) & (λ1 − x)∗ ∈ G(A)
commuting elements

⇐⇒ (λ1 − x)(λ1 − x)∗ ∈ G(A)
hermitian
⇐⇒ (λ1 − x)(λ1 − x)∗ ∈ G(B)

commuting elements
⇐⇒ λ1 − x ∈ G(B) & (λ1 − x)∗ ∈ G(B)

⇐⇒ λ1 − x ∈ G(B).

Remark. T ∈ B(H), T hermitian or unitary, then σ(T ) = Bσ(T ) ⊆ σap(T ) = set of approximate
evals. So σ(T ) = σap(T ) (also holds for normal operators).

Theorem 7.1.Lecture 22 Let A be a commutative unital C∗−algebra. Then there exists compact,
Hausdorff K s.t. A is isometrically isomorphic to C(K). In particular, the Gelfand map

A→ C(ΦA)
x↦ x̂

is an isometric *-isomorphism.

Proof. By Theorem 5.5, the Gelfand map G ∶ A → C(ΦA) where G(x) = x̂↾ΦA
, is a unital homo-

morphism. It remains to check the following three properties:

G is a *-homomorphism: x̂∗(ϕ) = ϕ(x∗)
Lemma7.2
= ϕ(x) = x̂(ϕ) = (x̂)∗(ϕ) for all ϕ ∈ PhiA.

G is isometric: ∥G(x)∥ = ∥x̂∥∞
Thm5.5(i)
= rA(x)

A commutative Lemma 7.1
= for all x ∈ A.

G is surjective: let Â be the image of G. So Â = {x̂ ∶ x ∈ A}. SInce G is an isometric unital *-

homomorphism, it follows that Â is a closed sub-algebra of C(ΦA) containing the constant functions
and closed under conjugation. Also Â separates points of ΦA: if ϕ ≠ ψ in ΦA, then there exists
x ∈ A s.t. ϕ(x) ≠ ψ(x), i.e. x̂(ϕ) ≠ x̂(ψ). By Stone-Weierstrass, Â = C(ΦA).

Applications:

1. Let A be a unital C∗−algebra and let x ∈ A. Say x is positive if x is hermitain and

σA(x) ⊆ [0,∞). We show there exists a unique positive y ∈ A s.t. y2 = x, called the

square root of x, denoted x
1
2 .

Existence: B = C∗−sub-algebra generated by by 1, x = {p(x) ∶ p poly }. B is a commutative
unital C∗−algebra. By Theorem 7.1, the Gelfand map

B → C(ΦB)
w ↦ ŵ

is an *-isomorphism. Now, we compute σC(ΦB)(x̂)
Cor5.4.1(ii)
= σB(x)

Cor7.0.1
= σA(x) ⊆ [0,∞).

The map ϕ ∈ ΦB , ϕ ↦
√
x̂(ϕ) ∈ C(ΦB), so there exists a y ∈ B s.t. ŷ(ϕ) =

√
x̂(ϕ) for all

ϕ ∈ ΦB . ŷ∗ = (ŷ)
∗ =
√
x̂ =
√
x̂ = ŷ.The Gelfand map is injective, so y∗ = y, i.e. y is hermitian.

Now, σA(y) = σB(y) = σC(ΦB)(ŷ) ⊆ [0,∞), so y is positive. Finally, ŷ2 = (ŷ)2 = x̂, so y2 = x.
Note that y is a limit of sequence of polynomials in x.
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Uniqueness: Assume z ∈ A is positive and z2 = x. Have zx = xz = z3, so zp(x) = p(x)z for

all polynomials p, so yz = zy. Let B̃ = C∗−sub-algebra generated by 1, y, z. Then B̃ is a

commutative unital C∗−algebra containing y, z, x = y2 = z2. Theorem 7.1 gives that the

B̃ → C(ΦB̃)
w ↦ ŵ

is an isometric *-isomorphism. σC(ΦB̃)(ŷ) = σB̃(y) = σA(y) ⊆ [0,∞). Also, ẑ2 = ẑ2 = x̂ = ŷ2 =

ŷ2 and hence ŷ = ẑ and thus y = z.

This applies to a positive operator T ∈ B(H), where H is a Hilbert space (T is positive ⇐⇒
for all x ∈H⟨Tx,x⟩ ≥ 0).

2. Polar decomposition: let H be a Hilbert space, and T ∈ B(H) invertible. Then there exists
unique operators R,U s.t. R is positive, U is unitary and T =RU .

Existence: TT ∗ is positive (⟨TT ∗x,x⟩ = ∥T ∗x∥
2
≥ 0). Let R = (TT ∗)

1
2 . So R2 = TT ∗ is

invertible, and hence so is R (being the product of R,R, commuting elements is invertible

⇐⇒ R). Let U =R−1T . Then U is invertible and UU∗ =R−1TT ∗(R−1)∗ R−1
R2

TT ∗ R−1 = Id.

Uniqueness: if T = RU , R positive, U unitary, then TT ∗ = RUU∗R = R2 so R =
√
TT ∗ and

U =R−1T .
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8 Borel Functional Calculus and Spectral Theory

Throughout we fix:

H non-zero, complex Hilbert space.

B(H) a bounded linear operator on H.

K compact, Hausdorff.

B Borel σ−field on K.

8.1 Operator-valued measures

Definition 8.1 (A resolution of the identity of H over K).
A resolution of the identity of H over K (roti of H over K) is a map P ∶ B → B(H) s.t.

(i) P (∅) = 0 and P (K) = Id.

(ii) For all E ∈ B P (E) is an orthogonal profection.

(iii) For all E,F ∈ B P (E ∩ F ) = P (E) ○ P (F ) = P (F ) ○ P (E).

(iv) For all E,F = ∅. Then, P (E ∪ F ) = P (E) + P (F ).

(v) For all x, y ∈H the map Px,y ∶ B → C defined by Px,y(E) = ⟨P (E)x, y⟩, E ∈ B, is a
regular complex Borel measure.

Example:
H = L2[0,1], K = [0,1], P (E)f = 1Ef .

Simple Properties:

(i) For all E,F ∈ B P (E ∩E), P (F ) commute (directly follows from (ii) above).

(ii) If E ∩ F = ∅, then P (E)(H) ⊥ P (F )(H). That is for all x, y ∈ H ⟨P (E)x,P (F )y⟩ =

⟨P (F ) ⋅ P (E)x, y⟩⟨P
=∅

(E ∩ F ) x, y⟩ = 0.

(iii) For x ∈H, Px,x is a positive measure of total mass Px,x(K) = ∥x∥
2
. (Px,x(E) = ⟨P (E)x,x⟩ =

⟨P (E)2x,x⟩ ⟨P (E)x,P (E)x⟩ = ∥P (E)x∥
2
≥ 0, which equals ∥x∥

2
if E =K).

(iv) p is finitely additive and for x ∈ H, E ↦ P (E)x ∶ B → H is countably additive. That is, for
En ∈ B, n ∈ N, En ∩Em = ∅ for all m ≠ n,

⟨∑
n∈N

P (En)x, y⟩ = ∑
n∈N
⟨P (En)x, y⟩ = ∑

n∈N
Px,y(En)

= Px,y (⋃n∈NEn) = ⟨P (⋃n∈NEn)x, y⟩

for all y ∈H so

∑
n∈N

P (En)x = P (⋃
n∈N

En)x.

Note that ∑
n∈N
∥P (En)∥

2
≤ ∥x∥

2
be Bessel’s inequality since (P (⋃n∈NEn)x)n∈N are pairwise

orthogonal.

(v) P need not be countably additive, but if P (En) = 0 for all n ∈ N then P (⋃n∈NEn) = 0.

(vi) For (En)n∈N ⊆ B, consider the sequence F1 = E1, Fn = En ∖
n−1
⋃
i=1

Ei, for n > 1, then

P (⋃
n∈N

En)x = P (⋃
n∈N

Fn)x = ∑
n∈N

P (Fn)x = 0, for all x ∈H.
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Definition 8.2 (The algebra L∞(P )).Lecture 23 Let P be a resolution of H over K. Say a Borel
function f ∶ K → C is called P−essentially bounded if there exists E ∈ B s.t. P (E) = 0 and
f bounded on K ∖E.
Then define

∥f∥∞ = inf{∥f∥K∖E ∶ E ∈ B, P (E) = 0},

which is attained (check!).
Let L∞(P ) be the set of all P−essentially bounded Borel functions f ∶ K → C. This is a
commutative, unital C∗−algebra with pointwise operations and ∥⋅∥∞ [As usual, we identify
f, g ∈ L∞(P ) P−a.e., if there exists E ∈ B s.t. P (E) = 0, f = g on K ∖E].

Lemma 8.1. Let P be as above. Then there exists an isometric, unital *-homomorphism
Φ ∶ L∞(P )→ B(H) s.t.

(i) ⟨Φ(f)x, y⟩ = ∫
K
fdPx,y for all f ∈ L∞(P ) for all x, y ∈H.

(ii) ∥Φ(f)x∥
2
= ∫

K
∣f ∣2dPx,x for all f ∈ L∞(P ) for all x, y ∈H.

(iii) For S ∈ B(H), S commutes with all Φ(f), f ∈ L∞(P ) ⇐⇒ S commutes with all
P (E), E ∈ B.

Note: Φ(f) is uniquely determined by (i). We denote Φ(f) by ∫
K
fdP . So it says

⟨∫
K
fdPx, y⟩ = ∫

K
fdPx,y.

Proof. Sketch Define Φ(1E) = ∫K 1EdP = P (E).

For simple functions s =
n

∑
j=1

aj1Ej , Φ(s) = ∫
K
sdP =

n

∑
j=1

ajP (Ej).

Φ is an isometric *-isomorphism, unital, on simple functions. Extend by density.

Definition 8.3. let L∞(K) be the set of all bounded Borel functions f ∶ K → C. This
is a commutative unital C∗−algebra with pointwise operations and the sup-norm ∥f∥K =
sup
z∈K
∣f(z)∣. If P is a resolution of the identity of H over K, then L∞(K) ⊆ L∞(P ) and the

inclusion is a norm decreasing unital *-homomorphism.

Theorem 8.1 (Spectral Theorem for commutative C∗−algebras). Let A ⊆ B(H) be a
commutative unital C∗−algebra of B(H). Let K = ΦA. Then there exists a unique resolution
of the identity of H over K, s.t.

∫
K
T̂ dP = T, for all T ∈ A.

Moreover,

(i) P (U) ≠ ∅ for any ≠ ∅, open U ⊆K.

(ii) S ∈ B(H) commutes with all T ∈ A ⇐⇒ S commutes with all P (E), E ∈ B.

Proof. By Theorem 7.1 the Gelfand map

A→ C(K)
x↦ x̂
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is an isometric *-isomorphism and hence so is its inverse

G−1 ∶ C(K)→ A

T̂ ↦ T.

We see a roti P over K which represents G−1 ∶ G−1(T̂ ) = ∫
K
T̂ dP .

This is an operator version of the Riesz Representation Theorem, Theorem 2.5.

Uniqueness: T = ∫
K
T̂ dP for all T means

⟨Tx, y⟩ = ∫
K
T̂ dPx,y, for all T ∈ A,x, y ∈H.

By uniqueness in the Riesz Representation Theorem (RRT), Px,y is uniquely determined for all
x, y ∈H. Since Px,y(E) = ⟨P (E)x, y⟩, P (E) is uniquely determined for all E ∈ B.

Existence: For x, y ∈ H, T̂ ↦ ⟨Tx, y⟩ ∶ C(K) → C is in M(K) = C(K)∗ with norm at most
∥x∥ ⋅ ∥y∥. By RRT, there exists a unique µx,y ∈M(K) s.t.

⟨Tx, y⟩ = ∫
K
T̂ dµx,y, for all T ∈ A.

∥µx,y∥1 ≤ ∥x∥ ⋅ ∥y∥. Now, by linearity

= λ∫
K
T̂ dµx,z + ∫

K
T̂ dµy,z.

By uniqueness in the RRT, µλx+y,z = λµx,z + µy,z. If T̂ is real-valued, then T is hermitian, so

∫
K
T̂ dµx,y = ⟨Ty, x⟩ = ⟨Tx, y⟩ = ∫

K
T̂ dµx,y.

By uniqueness in the RRT, µy,x = µx,y.

Fix f ∈ L∞(K). Then Θ ∶H ×H ×C, Θ(x, y) = ∫
K
fdµx,y is a sesquilinear form and ∣Θ(x, y)∣ ≤

∥f∥∞ ⋅ ∥µx,y∥1 ≤ ∥f∥∞ ⋅ ∥x∥ ⋅ ∥y∥. So there exists Ψ(f) ∈ B(H) s.t. ⟨ψ(f)x, y⟩ = Θ(x, y) = ∫
K
fdµx,y

and ∥Ψ(f)∥ = ∥Θ∥ ≤ ∥f∥K .

We now have a map Ψ ∶ L∞(K)→ B(H) s.t.

Ψ is linear: clear by the linearity of ∫
K
fdµx,y.

Ψ is bounded: ∥Ψ(f)∥ ≤ ∥f∥K .

Ψ is a *-map:

⟨Ψ(f)x, y⟩ = ∫
K
fdµx,y = ∫

K
fdµy,x

= ⟨Ψ(f)y, x⟩ = ⟨x,Ψ(f)y⟩
= ⟨Ψ∗(f)x, y⟩, for allx, y ∈H.

So Ψ((f)) = Ψ(f)∗.

Ψ↾C(K) = G−1: have ⟨Ψ(T̂ )x, y⟩ = ∫
K
T̂ dµx,y = ⟨Tx, y⟩ for all x, y. So Ψ(T̂ ) = T = G−1.

Ψ is multiplicative: for S,T ∈ A.

∫
K
Ŝ ⋅ T̂ dµx,y = ∫

K
ŜTdµx,y

= ⟨STx, y⟩

= ∫
K
ŜdµTx,y, S ∈ A.
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By uniqueness in RRT, T̂ dµx,y = dµTx,y as measures. Hence,

∫
K
fT̂ dµx,y = ∫

K
fdµTx,y = ⟨Ψ(f)Tx, y⟩

= ⟨Tx,Ψ(f)∗y⟩ = ∫
K
T̂ dµx,Ψ(f)∗y, for all T ∈ A,f ∈ L∞(K).

By uniqueness in RRT, fdµx,y = dµx,Ψ(f)∗y. Finally, for g ∈ L∞(K),

∫
K
gfdµx,y

= ∫
K
gdµx,Ψ(f)∗y

= ⟨Ψ(gf)x, y⟩
= ⟨Ψ(g)x,Ψ(f)∗y⟩
= ⟨Ψ(f)Ψ(g)x, y⟩, for all x, y ∈H.

So Ψ(fg) = Ψ(f) ⋅Ψ(g).

Define P (E) = Ψ(1E). Easy to check P is a roti of H over K. Px,x(E) = ⟨P (E)x, y⟩ =

∫
K
1Edµx,y = µx,y(E) for all E ∈ B. So Px,y = µx,y. Also,

⟨∫
K
T̂ dPx,y⟩ = ∫

K
T̂ dPx,y

= ⟨Ψ(T̂ )x, y⟩
= ⟨Tx, y⟩.

So ∫
K
T̂ dP = T . (Without Lemma 8.1, could define ∫

K
fdP = Ψ(f) for f ∈ L∞(K)).

(i) Fix U ⊆ K, U open. By Urysohn, there exists f ∶ K → [0,1] continuous, s.t. supp f ⊆ U ,
f ≠ 0.
There exists T ∈ A,

√
f = T̂ . Then T ≠ 0 so there exists x ∈ H s.t. Tx ≠ 0. 0 < ∥Tx∥

2
=

⟨T 2x,x⟩ = ∫
K
T̂ 2dPx,x = ∫

K
fdPx,x ≤ Px,x(U) = ⟨P (Ux), x⟩. So P (U) ≠ 0.

(ii) Let S ∈ B(H). ⟨STx, y⟩ = ⟨Tx,S∗y⟩ = ∫
K
T̂ dPx,S∗y and ⟨TSx, y⟩ = ∫

K
T̂ dPSx,y.

So

ST = TS for all T ∈ A ⇐⇒ Px,S∗y = PSx,y for all x, y ∈H.
⇐⇒ ⟨P (E)x,S∗y⟩ = ⟨P (E)Sx, y⟩ for all x, y ∈H,E ∈ B.
⇐⇒ SP (E) = P (E)S for all E ∈ B.

Lecture 24 Let A be a united Banach algebra and x ∈ A. We define ex =
∞
∑
n=0

xn

n!
(x0 = 1) (converges

absolutely, so converges in A). If xy = yx in A, then ex+y = ex ⋅ ey.

Lemma 8.2 (Fugledo-Putman-Rosenblum). Let A be a unital C∗−algebra, x, y, z ∈ A with
x, y normal. If xz = zy, then x∗z = zy∗.

Proof. None given.

Theorem 8.2 (Spectral Theorem for normal operators). Let T ∈ B(H) be normal. Then
there exists a unique resolution of the identity of H over σ(T ) = σB(H)(T ), P s.t. T =

∫
σ(T )

λdP (i.e. the spectral decomposition of T ). Moreover, S ∈ B(H) commutes with T

⇐⇒ S commutes with all
spectral projections

P (E) , E ∈ B.
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Proof. Let A be the unital C∗−sub-algebra of B(H) generated by T .

So A = {p(T,T ∗) ∶ p poly in two variables}. T normal implies that A is a commutative C∗−sub-
algebra. σA(T ) = σ(T ) by Corollary 7.0.1. By Lemma 7.2, every ϕ ∈ ΦA is uniquely determined

by ϕ(T ). [ϕ(T ∗) = ϕ(T ), ϕ(p(T,T ∗)) = p(ϕ(T ), ϕ(T ∗))]. Thus, the map

ΦA → σ(T )
ϕ↦ ϕ(T )

is a continuous bijection (Corollary 5.4.1) and thus a homeomorphism. T̂ , T̂ ∗ in C(ΦA) correspond
to λ↦ λ, λ↦ λ in C(σ(T )) respectively.

Existence of P : follows from Theorem 8.1.

Uniqueness: if T = ∫
σ(T )

λdP , then p(T,T ∗) = ∫
σ(T )

p(λ,λ)dP (Lemma 8.1). So ⟨p(T,T ∗)x, y⟩ =

∫
σ(T )

p(λ,λ)dPx,y. Since, λ ↦ p(λ,λ) are dense in C(σ(T )), by uniqueness in RRT, Px,y are

uniquely determined and hence so is P .

If ST = TS, then ST ∗ = T ∗S by Lemma 8.2. Finally, ST = TS ⇐⇒ S commutes with all
elements of A, ⇐⇒ S commutes with P (E), for all in E ∈ B (Theorem 8.1).

Theorem 8.3 (Borel Functional Calculus). Let T be a normal operator, let K = σ(T ) and
P be the roti of H over K given by Theorem 8.2. The map

L∞(K)→ B(H)

f ↦ f(T ) ∶= ∫
σ(T )

f(λ)dP

has the following properties:

(i) it is a unital *-homomorphism s.t. z(T ) = T (where z(λ) = λ for all λ ∈K).

(ii) ∥f(T )∥ ≤ ∥f∥K for all f ∈ L∞(K) with equality if f ∈ C(K).

(iii) For S ∈ B(H), ST = TS ⇐⇒ Sf(T ) = f(T )S for all f ∈ L∞(K).

(iv) σ(f(T )) ⊆ f(K) for all f ∈ L∞(K).

Proof. Everything follows from Lemma 8.1, Theorems 8.1 and 8.3. (Note that f(T ) = Ψ(f) from

Theorem8.1). For (iv), σ(f(T )) ⊆ σL∞(K)(f) = f(K).

Theorem 8.4 (Polar Decomposition). Let T ∈ B(H) be normal. Then, there exists a
positive operator R, unitary U s.t. T =RU . Also, T,R,U pointwise commute.

Proof. Define r, u on σ(T ):

r(λ) = ∣λ∣, u(λ) =

⎧⎪⎪
⎨
⎪⎪⎩

λ
∣λ∣ , λ ≠ 0

1, if λ = 0 ∈ σ(T ).

Then, r, u ∈ L∞(σ(T )) and ru = z (z(λ) = λ for all λ ∈ σ(T )) letR = r(T ),U . Then T = Z(T ) =RU .
r is positive, u is unitary in L∞(σ(T )) and hence R is positive, U is unitary in B(H). Since L∞(K)
is commutative, R,U , T must commute.

Theorem 8.5 (Unitaries as exponentials). Let U ∈ B(H) be unitary. Then there exists
hermitian Q s.t. U = eiQ.
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Proof. By Corollary 7.0.1, σ(u) ⊆ T. Let f ∶ T → R be in L∞(T) s.t. eif(t) = t for all t ∈ T. Let
Q = f(U). Then Q is hermitian since f is hermitian in L∞(K).

n

∑
k=0

(if(t))k

k!
→ t, uniformly on T.

n

∑
k=0

(iQ)k

k!
→ U ,

i.e. U = eiQ.

Theorem 8.6 (Connectedness of G(B(H))). Fix T ∈ G(B(H)). T = RU , R positive, U
unitary (Theorem 8.4) where R,U ∈ G(B(H)).

Proof. Since R is invertible, σ(R) ⊆ (0,∞). Let S = log(R) = ∫
σ(R)

logλdP (P is a roti of H over

K).

eS = lim
n→∞

n

∑
k=0

(S)k

k!
= lim

n→∞

→ uniformly on σ(R)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
n

∑
k=0

(logλ)k

k!
(R) = z(R) =R.

So T = eS⋅e
iQ

. The map [0,1]→ G(B(H)) ∶ t↦ etS ⋅ eitQ is a continuous path from Id to T . Hence
G(B(H)) is connected.
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