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Based on lectures by A. Zsak

Notes taken by Pantelis Tassopoulos
Michaelmas 2023

Though these notes are not endorsed by the lecturer, I have tried to keep them a faithful
representation of what was done in lectures. All errors are almost surely mine.

This course covers many of the major theorems of abstract Functional Analysis. It is intended to
provide a foundation for several areas of pure and applied mathematics. The following topics are
covered:

Hahn—Banach Theorems on the extension of linear functionals. Locally convex spaces.

Duals of the spaces L,(p) and C'(K). The Radon-Nikodym Theorem and the Riesz Represen-
tation Theorem.

Weak and weak-* topologies. Theorems of Mazur, Goldstine, Banach—Alaoglu. Reflexivity and
local reflexivity.

Hahn-Banach Theorems on separation of convex sets. Extreme points and the Krein—-Milman
theorem. Partial converse and the Banach—Stone Theorem.

Banach algebras, elementary spectral theory. Commutative Banach algebras and the Gelfand rep-
resentation theorem. Holomorphic functional calculus.

Hilbert space operators, C*-algebras. The Gelfand—Naimark theorem. Spectral theorem for com-
mutative C*-algebras. Spectral theorem and Borel functional calculus for normal operators.

Prerequisites

Thorough grounding in basic topology and analysis. Some knowledge of basic functional analysis
and basic measure theory (most of which was recalled either in lectures or via handouts). In Spec-
tral Theory we will make use of basic complex analysis. For example, Cauchy’s Theorem, Cauchy’s
Integral Formula and the Maximum Modulus Principle.
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Lecture 1

1 HAHN-BANACH EXTENSION THEOREMS

1 Hahn-Banach Extension Theorems

We start with setting up some notation.

1. Let X be a normed space. The dual space of X is denoted by X* and is the space of all
bounded linear functionals on X. Observe that X is always a Banach space in the operator
norm

|fI=sup{|f(z)]:z e Bx}, feX"

Recall that By ={z € X : |z| <1} (the unit ball in X), and Sx = {x € X : ||x|| =1} (the unit
sphere in X).

2. Let X,Y be normed spaces. We write X ~ Y if X, Y are isomorphic, i.e. there exists a linear
bijection T': X - Y s.t. T,T~! are continuous in the norm topologies.

3. Let X,Y be normed spaces. We write X 2 Y if X, Y are isometrically isomorphic, i.e. there
exists a surjective linear map T: X - Y s.t. |Tz| = |z| for all z € X.

4. For x € X, we write (z, f) = f(z). Note that (z, f) = |f(2)| < ||f] - =]
Examples:
1. For 1 < p,q < oo with % - % =1, then £} = {, (isometrically isomorphic)

2. If H is a Hilbert space, then H* ~ H (conjugate linear in the complex case).

Definition 1.1. Let X be a real vector space. A functional p: X - R is:
(i) positive homogeneous if p(tz) = tp(x) for allz e X and t>0

(ii) sub-additive if p(x +y) < p(x) + p(y) for all x,y e X.

Theorem 1.1. Let X be a real vector space and p: X - R be positive homogeneous and
sub-additive. Let Y <X and g:Y — R be a linear functional s.t. g(y) < p(y) for allyeY.
Then, there exists linear f: X - R s.t. fly =g and f(z) < p(x) for allz e X.

Recall now Zorn’s lemma, which is needed to prove Theorem [I.I] in complete generality. Let
(P,<) be a poset.

o If AcP, x e P, then z is an upper bound for A if for all z € A, a < z.
e 1 is a maximal element if for all y € P, y > x implies y = x

e A collection of subsets C of P is called a chain if for any two subsets C, D € C, either C ¢ D
or vice versa.

Lemma 1.1 (Zorn). If P + @ and every non-empty chain has an upper bound, then P has
a maximal element.

Proof of Theorem[1.1 Let P be the set of pairs (Z,h) where Z is a subspace of X with Y ¢ Z,
h:Z — R linear, hly = g and for all z € Z, h(z) < p(z). Observe that P is partially ordered by

(Z1,h) < (Zayhe) = Z1 S Za, halz, =hi.

Also, we have P #+ @ since (Y, g) is in P. If {(Z;, h;) }ier is a chain in P with I # @, then setting

Z =|JZ; and h: Z > R by requiring that hlz, = h;, for i € I, we have that (Z,h) is in P and it is
iel

an upper bound for the chain. So by Zorn, P has a maximal element (Z,h).

It suffices to show that Z = X. Suppose not, and fix z € X /7. Let W = span(Z u {z}) and
W =R, f(z+Mx) =h(z)+ A, for z€ Z, XA eR for some o € R. We seek o € R s.t. for all we W,
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f(w) < p(w). Then, (W, f) e P and (W, f) is strictly bigger than (Z, h), which would establish a
contradiction.

Need: h(z) + Aa < p(z + Aa) for all 2z, A € R. Since p is positive homogeneous, this is equivalent

to: h() ( )
z)+tas<pz+x )
{ h(z) -a<p(z-x) } for all z in Z.

That is, h(y) —p(y - x) < a < p(z +x) - h(2) for all y, z € Z. This holds since, for y,z € Z:

h(y) +h(z) =h(y+2)<p(y+z)=ply -z +z+x) <p(y-z)+p(z+x).

Definition 1.2. Let X be a real or complex vector space. A semi-norm on X is a functional
p: X >R s.t:

e forallze X, p(z) >0
o forallz e X and all X e R, p(Ax) = |A| - p(z)

o forallz,ye X, p(z+y) <p(z)+py).

Note: Norm = seminorm = (sub - additive & positive homogeneous)

Theorem 1.2 (Hahn Banach). Let X be a real of complex vector space and p be a semi-
norm on X. LetY be a subspace of X and g:Y — C linear s.t. for ally €Y |g(y)| < p(y).
Then there exists linear functional f on X s.t. fly =g and for all x € X |f(z)| < p(z).

\. .

Proof. Real case: for all y € Y g(y) < |g(y)| < p(y). By Theorem there exists linear func-
tional f : X > R st. fly = g and for all x € X f(z) = p(z). For x € X, we have also

—f(@) = f(-2) <p(-z) = p(x), so |f (2)| < p(x).

Complex case: Re(g) : Y - R, (Re)(y) = Re(g(y)), is real linear. For all y € Y |Re(g)(y)| <
lg(y)| < p(y). By the real case, there exists a real linear map h: X — R s.t. hly = Re(g) and for
all z € X |h(z)| < p(x).

Claim: there exists unique complex linear map f: X — C s.t. h =Re(f).

Proof of claim: Uniqueness If we have such an f, then for any z € X, f(z) = h(z) + Im(f) =
h(z) + Im(-if(iz)) = h(x) - ih(iz). Existence define f(x) = h(z) - th(iz), for x € X. Then f
is real linear and f(x) =if(z) for all z € X. Hence, f is complex linear and Re(f) = h, by definition.

We have f: X — C linear s.t. Re(f) = h. Then Re(f)ly = hly = Re(g), so by uniqueness
fty =g. Given x € X, write |f(z)| = Af(z) for some A € C, |A| = 1; now, |f(z)]| = Af(x) = f(Ax) =
Re(f)(Az) [=h(A\z) < p(Ax) = |A|p(z) = p(2). O
Remark. For a complex vector space Y, let Yr be Y viewed as a real vector space. The proof

above shows that for a normed space, X, the map f ~ Re(f) : (X*) —» (X5) is an isometric
isomorphism.

Corollary 1.2.1. Let X be a real or complex vector space, p a semi-norm on X and xg € X.
Then there exists linear functional f on X s.t. f(zo) =p(xo) and for allx € X |f(z)| < p(=).

Proof. Let Y = span{x(}, define g : Y —» (R,C) g(Azo) = Ap(zg). Then g is linear and g(zg) =

p(20),19(Az0)| = [A| - [p(20)| = p(Axo). So for all y € Y |g(y)| < p(y). By Theorem [1.2] there exists
linear function f on X s.t. fly = ¢ and for all z € X |f(z)| < p(x). Note that f(xg) = g(xg) =

p(l’o)- U
Yf(2) eR.
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Theorem 1.3 (Hahn-Banach). Let X be a real or complex normed space.
o ItY is a subspace of X and g € Y* then there exists f € X* s.t. fly =g and ||f| = |g|

o Given xg € X/{O}, there exists f € SX*E' s.t. f(xo) = |zol|-

%unit sphere.

\.

Proof. (i) let p(x) = ||g| - |z|, for € X. Then p is a semi-norm on X and for all y € Y,
lg(w)| < llgl - |ly]- By Theorem [1.2] there exists linear functional f: X — (R,C) s.t. fly =g
and for all x € X [f(z)| < p(x) = |g||- |z|, which implies | f| < |g|; since fly = g, we also have
I£] = llgll, so we have the desired equality | f] = |g]-

(ii) Apply Corollary with p(z) = ||z|, to get a linear functional f on X s.t. for all z € X
If(z)] < |z| and f(xo) = |zo. It follows that ||f| = 1.
O

Remark. 1. part (i) is a sort of linear version of Tietze’s extension theorem: given K compact,
Hausdorff, L ¢ K closed, g: K - (R,C) continuous, there exists continuous f : K — (R,C)

st flr=gand | f|. =9]c-

2. part (i) shows that for all x # y € X there exists f € X* s.t. f(x) # f(y) (usexop=2-y). X*
separates points of X. (This is a sort of linear version of Uryshon’s lemma: C(K) separates
points of K, K compact, Hausdorff).

3. The f in part (i) is called a norming functional for xg. It shows that |xo| = max{|{xo, g)| :
g € Bx+}. Another name for f: support functional at xog. Assume X is real, |z| =1. Then,
Bxc{reX: f(z)<1}.

Zo

Bx {reX: f(z) =1}

Figure 1: Illustration of support a functional, see the remark above. The pre-image of 1 under f
is tangent to Bx at xg.

Bidual Let X be a normed space. Then X** = (X*)* is called the bidual or second dual of X.
For z € X, we define & : X* — scalar, by Z(f) = f(x), for all f € X* (evaluation at x). Then & is
linear, and |(f)| = |f(2)| < | f] - ||, so # € X** and |&| < |z|. The map z & : X - X** is called
the canonical embedding of X into X**.

Theorem 1.4. The canonical embedding of X into X** is an isometric isomorphism into
X**,

Proof. Linearty: (Az+puy)(f) = f(Ax + py) = Af () + nf (y) = A2(f) + pg(f) for all z,y € X, A\,
scalars and fe X*
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Isometry: if = € X/{()}, then there exists norming functional f of x and so |Z|| > |Z(f)]

[f(@)] =[] 0
Remark. 1. In bracket notation: (f,z) =(x, f) (for x € X and f e X*).

2. Let X ={i:x € X}-the image of X € X*. Then, Theorem says that X = X ¢ X**. We
often identify X with X and think of X isometrically as a subspace of X**. Note that X is
complete < X is closed in X**.

3. More generally, X is a Banach space (closed in X**) containing an isometric copy of X as
a dense subspace. We thus proved that normed spaces have completions.

Definition 1.3 (Reflexivity). A normed space X is called reflexive if the canonical embed-
ding X - X** is surjective.

Examples: (Reflexivity)

1. £,,1<p<oo
Hilbert spaces
finite-dimensional normed spaces
L,(1),1 <p< oo (later!)

2. ¢9,41,0e00,L1[0,1] are not reflexive.

Remark. If X is reflexive, then X**. Note however that there exist Banach spaces X s.t. X**
but X is not reflexive.

1.1 Dual Operators

Let X,Y be normed spaces. Recall
B(X,Y)={T:X —-Y :T is linear and bounded}.
This is a normed space in the operator norm:

HT||X—>Y: sup HTJCHY
=] <1

If Y is complete, then so is (B(X,Y), || x_y). For T'e B(X,Y), the dual operator of T, is the
map T : X* > Y* T g=goT for g ¢ Y*ﬂ In the bracket notation;

(2, T"g)=(Txz,g), forxeX,geY".

T* is linear:

(z,T*(Ag+ph)) =(Tx,Ag+ ph)
MTz,g) + p{Txz,h)
Mz, T*g) + p{x, T*h)
(AT™g +pT*h)(x)
=(x,\T"g + uT*h).

T* is bounded:

IT*] = suwp |T"g]
lglly+<1
= sup sup [goT(z)]
lgllys<1 =] x<1
= sup sup |goT(z)]
Izl <1 lglly«<1
= sup |Tz||=|T]-

] x <1

Remark. If X, Y are Hilbert spaces, and identify X, Y with X* and Y™ respectively, then T :
Y — X is the adjoint of T.

2well-defined.
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Example:
1< p,q< 007% +% =1, R: 4, > £, the right shift R(z1,z2,...) = (0,21,22,...) then
R* : 4, — £, is the left shift.

Properties:
1. (Idx)* =1d%.
2. AS+pT)* =AS* +pT* for S,T e B(X,Y), and A, p scalars.

3. (ST)* =T*S* for T e B(X,Y) and S € B(Y,Z)
(ST)*(heZ*)=hoSoT =T*hoS =T*S*(h)

4. T T :B(X,Y) - B(Y",X*) is an into isometric isomorphism.
5. Let o € X then {g,173) = (I"g,) = (2,T"g) = (Tr,g) = (9.7%) for all g ¢ Y* —> T"" =

Tz. In other words, the following diagram

X —L vy
bl
X ** T y Y rE

commutes (vertical arrows are canonical embeddings).

Remark. From the (above) properties, if X ~Y then X* ~Y™.

1.2 Quotient Spaces

Let X be a normed space and Y be a closed subspace. Then the quotient space X /Y becomes
a normed space in the quotient norm:

= +Ylxy = d(,Y) = inf |z +y].

The quotient map : ¢: X - X/Y,q(x) = z+Y is linear and bounded with |g(z)| x/y < |z[y for all

r e X, s0|q| <1. It maps the open unit ball Bx = {x € X : ||z| < 1} onto Dx/y. Indeed, for z € Dx,

then [g(z)|| < |=| < 1. Conversely, if z € Bxy and z = q(z), then |z <1 = in}li [z+Y] <1 =
Yye

there exists y € Y s.t. |[z+y| <1 = xz+ye Dx and ¢(z +y) = q(x) = z. It follows that ¢ is an
open map and |¢| =1 (provided Y # X).

_If Z is another normed space, T' € B(X,Z) and Y ¢ ker(T), then there exists a unique map
T:X]Y - Z such that

)

L &

XY

commutes. Hence, T = T o ¢; moreover, T is linear and T(DX/Y) =T(q¢(Dx)) = T(Dx) and so it
follows that ||T|| =||T].
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[ Theorem 1.5. Let X be a normed space. If X* is separable, then so is X. ]

Remark. The converse is false in general. For instance, X =01, X" = lo.

Proof. Since X* is separable, then so is Sx+. Let {f, :n € N} be a dense subset of Sx+. For all n
there exists x,, € Bx s.t. fn(zy) >1/2. Let Y =span{z, : n e N}.

Claim: suffices to show Y = X.
Suppose not: Then, by Theorem we can pick g € (X/Y)* with |g| = 1, that is a norming

functional. Let f=goq (¢: X - X/Y is the quotient map). Then |f| = |g||=1 = f € Sx+. By
density, we have that there exists n e Ns.t. |f - fu| < % (something small). So

(= )@l <17 = ful - Joal < 55,
but

= )@l = ) > 5 o

a contradiction. O

[ Theorem 1.6. Let X be a separable normed space. Then X embeds isometrically into £

Proof. Let {x, :n €N} be dense in X and for all n e N let f,, € Sx» with f,(x,) = |zn]
(wlog X # {0}). Define T': X —» loo, Tz = (fn(x,)). It is clear that T is linear.

Well-defined: |fn(z)| < |fnl - =] < |z|, for all n € N which implies |Tz|,, < |z| < oo, hence
Trely

T isometric: already |Tz|., < || for all z. Also, |Tx,|,, = |zn| for all n. By density and
continuity, |Tz|,, = |z| for all x € X. O

Remark.

1. The result says {_infty is isometrically universal for the class of separable Banach spaces,

SB.

2. Dual result: every separable Banach space is a quotient of {1 (see the Example sheets).

Theorem 1.7 (Vector-valued Liouville). Let X be a complex Banach space and f:C - X
be holomorphic and bounded, then f is constant.

Proof. We have that there exists M > 0, s.t. for all 2z € C, |f(z)|| £ M. Also, for w € C,
lim M exists in X and we denote this by f'(z). Fix ¢ € X* and consider ¢o f: C - C.

Z=w

This is holomorphlc and bounded.

Bounded: [¢(f(2))| < 4] - [f(2)] <[] -]=] for all z € C.

Holomorphic:

DD [ (S oy, s w-f

Now, by scalar Liouville, ¢ o f is constant. Hence, ¢ o f(z) = ¢(f(0)) for all z € C. Fixz € C,
o(f(2)) =(f(0)), for all ¢ € X*. Since X* separates points of X, f(z) = f(0) forall ze C. O

3linearity.
4¢ is continuous.
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1.3 Locally Convex Spaces

Definition 1.4 (Locally convex space (LCS)). A locally convex space is a pair (X,P),
where X is a real/complex vector space and P is a family of semi-norms on X that separate
points of X in the sense that for all x € X + {0} there exists semi-norm Px € P s.t. Px #0.
The family P defines a topology on X :

U is open <= Vreld IneN3Ipy,...,p, €P
Je>0 st {ye X :pp(y-2)<e,1<k<n}tcU.

Remark. 1. Vector addition and scalar multiplication are continuous.
2. This topology is Hausdorff.
3 xyoxeX < forallpeP, p(x —x,)—0.

4. Let'Y be a subspace of X. Let Py = {ply : pe P}. Then the pair (Y,Py) is a LCS and its
topology is the subspace topology induced by (X, P).

5. Let P,Q be families of semi-norms on X both separating points of X. We say P,Q are
equivalent, write P ~ Q if they define the same topology on X. Then (X,P) is metrisable iff
there exists countable family Q ~ P.

Definition 1.5 (Fréchect space). AFréchet space is a complete metrisable locally convex
space.

Examples:

1. A normed space (X, [|) is a LCS (here P = {||-|})-

2. Let U ¢ C be non-empty open. Let O(U) = {f :U - C: f holomorphic}.
For K ¢ U define Px(f) = sup|f(2)|- Let P = {Px : K ¢ U,K compact}. Then
zeK

(OU),P) is a LCS. Note further that there exists K,, n € N, a sequence of compact

subsets of U s.t. U = | J K, and for all n € N K,, ¢ (Kp+1)° (a compact exhaustion
neN
of U). Montel’s Theorem from complex analysis gives that (O(U),P) is not normable:

there is no norm on O(U) that gives the same topology, that is the topology of local
uniform convergence. To see this, suppose for a contradiction that there exists norm
s.t. |-| ~ P, then for all f € Bowyy, for all p e P, p(f) < Cp-|f] = Cp < oo (since
Tp = To)) Which implies that that unit ball is compact (by the above and Montel’s
Theorem), hence sequentially compact due to the metrisability of the norm topology on
O(U). So we conclude that O(YU) is finite-dimensional, a contradition.

3. Fix d € N and a non-empty open set Q@ ¢ RY  Let C* = {f : Q - R? :
f is infinitely differentiable}. Given a multi-index, namely, a d-tuple a € N%, it de-

fines a differential operator:
[e5]) Qi
Da:(i) (i) .
8x1 6zn

For a compact set K c Q, a € N, define pi o(f) = sup{|D*f(2)|: z € K}. Let P =
{Pro : K ¢ Q, K compact, a € N9}, Then (C*(£2),P) is a LCS. It’s a Fréchet space and
non-normable.
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Lemma 1.2. Let (X, P),(Y,Q) be LCS and T : X - Y be a linear map. Then the following
are equivalent (TFAE):

(i) T is continuous.
(i) T is continuous at 0.

(iii) For all g € Q there exists neN, p1,...,pn, € P, ¢>0 s.t.

q(Tz) < C- max p(z) for all z € X.
1<k<n

\.

Proof. (i) <= (i1): translation is continuous since vector addition is continuous.

(i1) < (111): given g€ Q, let V ={y €Y : q(y) <1}. Then V is a neighbourhood of zero in

Y, so there exists a nbhd of zero in X s.t. T(X) ¢ V. Then there exists n € N, py,...,p, € P,

€>0st. wloglU ={xeX:pp(z)<e,1<k<n} Let p(z) = 1mkaxpk(33), forze X. If p(z) =1
<k<n

then p(ex) =¢ = exisinlU. So ¢(Tz) <1 = ¢q(Tx) < %p(x) by homogeneity for any z s.t.
p(x) >0. If p(z) =0 = p(Ax) =0 for all X scalars giving q(T'(Az)) < 1 for all A scalars. Hence,
q(Tx) < %p(m), concluding the proof of this equivalence.

(#i) <= (i1): Let V be a nbhd of zero in Y. Then, there exists n € N, ¢1,...,q, € Q and
e>0st wlogV={yeY :qj(y) <eforl<j<n} Foreachl<j<n, there exists m; € N,
Pj1y- - Pjmy; €P, C5>0s.t. ¢j(Tx) < Cj -  max pji(x) for all € X. Finally, let

<is<mg;

L{:{xeX:pji(m)<Cij,1§igmj,1§jgn} so then T(U) V. O

Definition 1.6. Let (X,P) be a LCS. The dual space of X is the space X* of all linear
functionals which are continuous wrt the topology (X, P).

Lemma 1.3. Let f be a linear functional on a LCS (X,P). Then f is in X* <= ker f
1s closed.

Proof. <=: ker f = f~1({0}) is closed if f is continuous.

= : If ker f = X, then f =0 is continuous.
Assume ker f # X and fix xg € X \ ker f. Since X \ ker f is open, there exists n e N;p1,...,p, € P
and €e>0s.t. {vreX :pp(r—mzp)<el<k<n}cX~kerf. LetU ={x e X :pp(z)<e, 1<k <n}.
Then U is a nbhd of zero in X, and (a0 +U) nker f = @.

Note that U is convex and, in the real case, symmetric (x € i implies —z € ). In the complex
case, balanced (z € U, |\| < 1 implies Az € U), and hence so is f(U) as f is linear. If f(U) is
not bounded, then f(U) is the whole scalar field, and hence so is f(xzo +U) = f(xo) + f(U), a
contradiction as zero is not in f(zo +U). So there exists M > 0 s.t. |f(z)| < M for all x e Y. So
given § > 0, %Z/{ is a nbhd of zero in X and f (%Z/{) c {\ scalar, A < §}. Thus, f is continuous at
zero, hence everywhere. Thus f is in X*. O

Theorem 1.8. Let (X,P) be a LCS.
(i) Given a subspace Y of X and g€ Y™, there exists f e X* s.t. fly =g.

(i1) Given a closed subspace Y of X and xg € X \Y, there exists f € X* s.t. fly =0
and f(zo) # 0.

Remark. So X* separates the points of X.

10



1.3 Locally Convex Spaces 1 HAHN-BANACH EXTENSION THEOREMS

Proof. (i) by lemma there exists n € N, p1,...,p, € P and C > 0 s.t. for all y € YV
lg(y)| < C - max pr(y). Let p(x) = Clml?x pr(x), for z € X. Then, p is a semi-norm on X
<k<n <k<n

and for all y € Y |g(y)| < p(y). By Theorem there exists a linear functional f on X s.t.
fty =gand for all x € X, |f(z)| < p(z). Now, finally observe that by lemma fisin X*.

(ii) Let Z =span(Y u{zp}) and define a linear functional g on Z by g(y + Azg) = A, for y e Y
and A scalar. Then gty =0,g(20) =1+ 0 and kerg =Y is closed, so g € Z* by lemma By

part (i), there exists f € X* s.t. flz =g and this works.
O

11



2 DUAL SPACES OF L,(u) AND C(K)

2 Dual Spaces of L,(¢) and C(K)

Let (Q,F, 1) be a measure space. For << p < oo,

L,(p) = {f : Q) - scalar : f is measurable and fQ |fIPdp < oo}

=

This is a normed space in the Lp norm | f[, = (o lfIPdp)™.

p = co: A measurable function [ : ) — scalar is essentially bounded if there is N € F, u(N) =0,
and flq.n is bounded.

Loo(p) = {f : Q — scalar : f measurable and essentially bounded}. This is again a normed
space in the L®— norm:

/] = essup f] - inf{gug F1: N € F,u(N) - o}.

The inf is attained: there exists N € F, u(N) =0, | f|., = sup |f].
QNN

In all the cases, we identify functions f, g if f =g a.e.

[ Theorem 2.1. L,(p) is complete for 1 < p < co.

Proof. Can be found in any standard reference in measure theory, see the literature provided. O

2.1 Complex Measures

Let © be a set, F a o—field on ). A complex measure on F is a countably additive function
v:F - C. For A€ F, the total variation measure |v| of v is defined as follows:

n
|v(A)] = sup { >t A=Uj_ Ay is a measurable partition of A
k=1

Then, |v|: F — [0, 0] is a positive measure. Later we see that |v| is a finite measure. The total
variation of v is |v|; = [v[(©2).

Continuity: if v is a complex measure on F and (A, ) € F, then:
(i) if Ay, € Apyq, then v(U,Ay) = lim v(4,)
(i) if Ape1 € Ay, then v(ny,) = lim v(A,).

Signed measure: €2 a set, F a o—algebra on 2.
A signed measure on F is a countably additive set function v : F — R.

Theorem 2.2 (Hahn decomposition). Let Q be a set, F a o—algebra on Q, v a signed
measure on F. Then there exists a measurable partition P U N of Q s.t. for all A € F,
A c P implies v(A) >0 and for all Ae F, Ac N implies v(A) <0.

Remark. 1. The decomposition 2 = P U N s called the Hahn decomposition of v (or of ).

2. Lets us define vt(A) = v(AnP),v (A) = -v(AnN), for A e F. Then v*,v”™ are finite
positive measures such that v =v*t - v~ and |v| = v* +v~. These determine v*, v~ uniquely
and v =v*" — v~ is the Jordan decomposition of v.

3. If v is a complex measure on F then Re(v),Im(v) are signed measures with Jordan decom-
positions vy — va + i(vs — v4)-the Jordan decomposition of v. Then vy < |v|,1 < k <4 and
[v| <v1 + v+ v+ 4. So || is a finite measure.

5Ak€f,AjﬁAk=QVj¢k.

12



2.1 Complex Measures 2 DUAL SPACES OF L,(u) AND C(K)

4. If v is a signed measure on F with Jordan decomposition v* —v~, then v*(A) = sup{v(B):
BeF,Bc A}, for Ae F.

Proof of Theorem[2.3 The strategy is to define v*(A) = sup{v(B) : B ¢ F,B c A} for A e F.
Then v* >0 and v* is finitely additive.

Key step: v*(2) > 0.

By contradiction, assume not; construct sequences (A,),(B,) with Ay = Q, v*(A,) = oo,
B, c A, and v(B,) > n. Now by the finite additivity of v*, pick A,+1 = By, or A, \ B, to ensure
the initial condition (v*(A,+1) = 00) is satisfied.

Claim: this will contradict o—additivity.

To see this, note that (A,) is by construction a decreasing sequence wrt inclusion. By
o—additivity of v, v(n,A,) = lim v(A,). Thus, it cannot be the case that A,,; = B, infinitely
n—oo

often, since v(N, A,) < oo (being a signed measure). Thus, there exists N € N s.t. for all n > N,
Api1 = Ay N By, Now, v(Ag) = v(Ak N Bi) + v(Bg) > v(Ags1) +k > v(Ags1) for k > N and so
v(Ag) <v(Ag-1) -k <v(An) -k, k - —oo, a contradiction.

Claim: there exists P € F s.t. v*(Q) = v(P).

By approximation, take (A,) s.t. ¥(4,) > v (Q) - 27". We will see that the choice
P=J () A works. Let N = Q~ P. By o-additivity of v, have that v(P) = lim 1/( N Am).

n mn n—eo m2n
Now, for j >n, consider () A,,, we first see that
n<ms<y

1/( N Am) =-v(A,UAp) +v(An) +v(Ansr)

n<ms<n+1

>-vH(Q)+207(Q) -2 -2 L s Q) -2 L
By inducting, we see that:
P
1/( N Am) >vH(Q)- > 2
n<ms<n+p m=0

and so

) (0 oo S

n<m o0 n<ms<n+p m=0

which allows us to conclude that v(P) = v* () upon taking limits.

Now, with N = Q \ P, define the set functions 7y : F - R by 7, (E) = v(E n P) and
V. (E)=v(EnN) for E€F.

Observe first that 7_ < 0. Indeed, suppose there exists F € F such that v(En N) > 0. Then,
we see that v*(Q) =v*(P)<v(EnN)+v(P)=v((EnN)uP) <v*(Q), a contradiction. Thus,
v_ is a negative measure.

Claim: v(N) =inf{v(FE): E € F}.

Suppose otherwise, then there exists E € F s.t. v(E) < v(N), which implies v(2 \ E) =
v(Q)-v(E)>-v(N)+v(Q) =v(P) and so v(Q\ E) > v(P), a contradiction.

Now, we can prove 7, > 0. Indeed, suppose there exists E € F such that v(En P) < 0. Then,

we see that v(N) < v((EnP)uN) =v(N)+v(EnP)<v(N), a contradiction. Thus, 7, is a
positive measure.

13



Lecture 6

2.1 Complex Measures 2 DUAL SPACES OF L,(u) AND C(K)

Claim: 7_(E) =inf{v(A): Ac E,Ae F}.

Suppose otherwise, then there exists E € F s.t. v(A) < v(En N), which implies v(An N) <
V(AnP)+v(AnN)=v(A)<v(EnN) and so v(AnN) <v(EnN) and so v((E~ A)nN) =
V(EnN~AnN)>0 a contradiction.

Finally, we observe that

Claim: 7, (E) =sup{v(4): Ac E,Ac F}.

Suppose otherwise, then there exists F € F s.t. v(A) > v(E n P), which implies v(E n P) <
v(A) =v(AnP)+v(AnN)<v(AnP) and so (EnP) <v(AnP) and so v((E~N A)nP) =

v(En P~ An)) <0 a contradiction, and we finally obtain the desired decomposition. O
Definition 2.1 (Absolute Continuity). Let (Q, F,u) be a measure space, and let v: F - C
be a complex measure. v is absolutely continuous wrt pu, written v << p if for all Ae F,
w(A)=0 = v(A)=0.

Remark. 1. v<<pu = |v|<<p. Soifv has Jordan decomposition v = vy —vs+i(v3—vy) and

V<<, then v, << pu,1 <k <4.
2. If v <<, then for all € >0, there exists 6 >0 s.t. for all Ae F u(A)<é = |v(A)|<e.
Example:

For f in Ly(p) define v(A) = /Afdu, A e¢ F. By the Theorem of Dominated Convergence
(DCT), v is a complex measure and pu(A) =0 = v(A) =0, i.e. v << p.

Definition 2.2. A set in F is said to be a o—finite set (wrt p) if there is a sequence

(An)nen € F s.t. A=|J Ay, and for alln e N, u(A,) < co. We say u is o—finite if Q is a
neN

o—finite set.

Theorem 2.3 (Radon-Nikodym). Let (2, F, 1) be a o—finite emasure space and v : F - C
be a complex measure s.t. v << u. Then there exists a unique f € Li(p) s.t. v(A) = [A fdu

for all A e F. Moreover, [ takes values in C/R/R* according to whether v is a complex,
signed or positive measure respectively.

Proof. Uniqueness: standard.

Existence: wlog v is a finite positive measure (Jordan decomposition) and wlog p is a finite mea-
sure (o—finiteness).

Let H = {h:Q - R*: h integrable and [, hdu <v(A)VAeF}. H+o (0eH) and hy,ho € H
implies hy Vv he = max{hy,hs} is in H. Also, if (h,,) are in H s.t. h, 1 h, then h is in H. Let

a:supf fdup,0<a<v().
heH J

Claim: there exists f € H s.t. a = [ fdu.

We construct such an f € . Take f, € H s.t. [, gndpu <v(A), for all AeF and [, fndp — .
The same holds if we replace f,, by f1 v---Vv f,, and so wlog we can assume the sequence is non-

n
decreasing. Now, by induction, there exists sets E1, ..., E, € F pairwise disjoint s.t. | Ej = Q and
k=1

n

n n

gn = . filg, and / Gndp =Y, [ fadp < > v(E; n A) = v(A). Since g, is non-decreasing,
k=1 A j=1 E;nA j=1

take the pointwise supremum to obtain fj = sup,, gn, which is in H by the above, and is seen to

14



2.2 The dual space of L, 2 DUAL SPACES OF L,(u) AND C(K)

work by inspection.

Now consider the signed measures vq,va, (Ap)nen : F = R, 8.t v =v —vo,15(A) = fA fodu and
An(A) = 11(A) - %,u(A) for all A € F. Then there exist (Hahn decomposition) (P,), (N,) in F
st. Q=P,UN,, P, =Q~NN,, st. \,(F)>0for all EeF s.t. EcP,. Now, for such FE, we have
M (E)=v1(E)-2u(E) >0and so v(E) = vi(E)+12(E) > [ fodp++ [ dp. Let fn = fo+L1(P,).
Observe that for all E € F, [, fodu = [, fodp + %jEnPn du < v(E) by the above and the fact that
w1 is a positive measure. We have by the above that fn is in H for all n e N and a < [, fndu <o
and so p(P,) =0 for all n e N. Thus, by o—additivity, u (U, Py,) = 0.

Let N = Q\|JP,, then for all E € F st. Ec N, \y(E) =v1(E) - 2u(E) <0 for all n € N

and so v1(E) <0, i.e. v(E) < 1»(F). The reverse inequality is obtained by observing that fj
is in H and so we see that v(E) = vo(E) for such E. Finally, since v << p, for all F ¢ F,
V(E)=v(EnN)=v(EnN)=w(FE) = [ fodp, which concludes the proof. O

Remark. 1. Without assuming v << u, the proof shows that there exists a decomposition
(Lebesgue decomposition) v = vy + vy, where vo(A) = [, fdu, and vy L p (orthogonal), i.e.
there exists a measurable partition Q = PUN, s.t. u(P) =0 (u(A) =0, for all Ac P),
[v2(P)| =0 (12(A) =0, for all ACN).

2. The unique f in Theorem is the Radon-Nikodym derivative of v wrt u, denoted g—z. The
result says that v(A) = [qladv = [, fdp = [, lAg—Zdz/. Hence a measurable function g is

v—integrable iff gg—/’: is p—integrable and then [, gdv = jﬂg%du.

2.2 The dual space of L,

Let (Q,F, 1) be a measure space. Let 1 <p<ooand 1< q< oo s.t. %4‘% =1. Forge L, = L,(p),
define ¢4 : L, — scalars by ¢4(f) = [, fgdp, for f € L,. By Hélder, the product fg is in Lq(p) and
log (D < IfIl, - lgll,- So ¢y is well-defined and clearly linear, also bounded with ¢, < |g], and so
¢g 1s an element of L;. So we have the map

¢: Ly~ L}
g— ¢g-

This map is linear and bounded with || < 1.

Theorem 2.4. Let (Q,F, 1),p,q,¢ be as above.

(i) If 1<p< oo, then ¢ is an isometric isomorphism. So Ly = L.

(i) If p=1 and p is a o—finite, then L] = Lo, .

Proof. Proof of (i): ¢ is isometric. Fix g € L. We know |¢g| < [g[,. Let A be a measur-
able function s.t. [A| = 1 and Ag = [g|. Let f = Ag|*". Then, |f[} = [q [fIPdu = [o |9l Vdp

» 3
= Jolgl%dp = | glg. Hence, [glg - [6g] > |64(f)] = [q l9%du = lglg. so logl 2 lglq * = I,
¢ is onto: Fix 1 € Ly. We seek g € Lg s.t. 1 = ¢4 (Idea: (1) = [, gdp).
Case 1: p is finite.

Then for A € F and 14 € L, so can define v(a) = ¢(14). It is an easy check using the DCT
that v : F - C is indeed a complex measure and v << u. If Ae F, u(A) =0, then 14 = 0 almost
everywhere (a.e.) in L,(u), so v(A) =1(14) = 0. Then v << p. By Theorem there exists
geLi(p)st. v(A)= [, gduforall Ae F. So(1a) = [ 1agdp, for A e F. Hence, ¥ (f) = [, fgdp
for all simple functions f. Now given f € Lo, (1), there exists simple f,, > f € Loo(u) (hence in
L,(p) since p is finite). So ¥(f,) — ¥(f) and fn,g — fg € L1(p), using Holder for p = 1,00. So
U(f) = Jo fgdp for all f e Lo(p). For n €N, let A, = {|g| < n} and f, = X\-14,]g|?", where
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2.2 The dual space of L, 2 DUAL SPACES OF L,(u) AND C(K)

[Al=1,Ag =1g].
Now, [, fagdu = [, l9l%du = ¥ (fa) (as fu is in Leo). ¥(fu) < |91 fall, = 11 (f4, 197)". By

monotone convergence, we deduce that ([An lg]7)* < || and hence that g is in L,. Given f € Ly,
there exists f,, — f simple in L,. So ¥(f,) = ¥(f) and f,g — fg € L1 (Holder for the pair (p,q)).
Hence, ¢ (f) = [, fgdu, concluding the case where 4 is finite.

Before we treat the more general case, observe that for A e F, let F4 ={BeF:Bc A} and
pa=plr,, (A, Fa,pa) is a measure space. Then Ly,(pa) € L,(p) (where we identify f e L,(pa)
with f-14 € L,(p); this is an isometric embedding). Let . =9 er(MA).

Claim: If A, B are in F s.t. An B is empty, then [[¢aup| = ([l + |va]?)".
Observe thatlﬂ

1
(lpal®+l1al®)®  =suplalval +blvp]:a,b,>0,a"+ b7 <1}
= Sup{aw)A(fﬂ +b|¢B(g)| 1 a, b,Z Oaap +0P < laf € BLp(p,A)ag € BLP(/,LB)}
=sup{lava(f) +b¥p(g)|:a,b,>0,aP +b" <1, f € Br,(1ia) 9 € BLp(uB)}'

Now, aa(f) +bp(g) = vaus(af +bg) (embed f,g € L,(1) be extending f,g to zero outside
A, B respectively). Now, continuing the above we obtain

=sup{|[Yaup(h)|: he BLp(uAuB)} = [ auB|

as required, concluding the proof of the finite case.
Case 2: p is o—finite.

There exists a measurable partition Q = [ J A4, of Q, s.t. u(A,) < o for all n. By Case 1, for
neN

all n € N, there exists g, € Ly(pa) st ¥a, = ¢g,, ie. (f) = [, fondp, for all f e Ly(ua,).
n n

By Claim 2, 3" gkl = X 194" = [, a.]” < [ 1f we define g on © by setting g = g, on
k=1 k=1

Ay, then g is in L,. ThJs, W(f) = y(f) for all f e L,(uy,), for all n. Hence, ¥(f) = ¢4(f) on
span{UnenLp (p1n) } = Lp(11)-

Case 3: general (.

First assume that for f e L,(u), {f # 0} is o— finite. Indeed, {f # 0} = Upen{|f| > %} and
n({If]> L) <nP- ”fHZ < 00 by Markov’s inequality.
Chose (fn) € Br, s.t. ¥(fn) = |¢]. Then A = Upen{fyn # 0} is o—finite and [ 4[ = [¢||. By the

1

claim previously established, ||| = (HwAHq + [vaual?)?. By case 2, there exists a g € Ly(pa) <
Ly(p) s.t. ¢a = ¢g. So for all feLy(p), v(f) =va(fta) +vacalfloa) = [4 flagdu = [q fgdp

(extend g in the usual sense.).

Proof of (ii) (p is o— finite).

¢ is isometric: Let g € Lo,. We know already that ||¢4] < |g|., (Holder). Fix s < ||g|.,. Then
w({lg] > s}) > 0. Since u is o—finite, there exists A € {|g| > s} s.t. 0 < p(A) < oo. Choose
a measurable function X s.t. |[A| = 1 and Ag = |g|. Then Ag is in Li(u), |Ag|; = p(A). Now,
p(A) bl 2 [6g(A1a)| = [ |9l 2 su(A). We deduce [¢g]| > s and so dg]| > s and hence [ég] > 9]

¢ is onto: Fix 1 € L]. Seek g € Lo s.t. 9 = @g.

Case 1: p is finite. Define v(A) =¥ (14) for all A € F and proceed in the same way as for p > 1.

6..q5 2\% — p2
using the fact that (£3)" = £2.
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2.3 C(K) spaces 2 DUAL SPACES OF L,(u) AND C(K)

Case 2: p is o—finite. This time we prove

Claim: If A, B are in F s.t. An B is empty, then |¢aup| = max{|vall,|¢vz]}-
Observe like before that []

max{[|[¢al, Y5} =sup{a|va] +b]¢p]:a b, >0a” +b" <1}
= Sup{ath(f)' + b|1/JB(9)| 1a,0,20,a+b< ]-7f € BL1(MA)79 € BLl(MB)}
= SUP{|G¢A(f) + b’L/}B(g)| 1a,0,20,a+b< 1, fe BL1(#A)7g € BL1(ILB)}
= Sup{|¢AuB(h)| ihe BL1(MAUB)}
=Y ausl

as required.

To conclude, proceed in an entirely analogous way using a measurable partition of Q= J A,
neN
s.t. pa, is a finite measure for all n € N. By Case 1, for all n € N, there exists g, € Loo (124, ) s.t.

Va, =g, e P(f) = [y fgndp, for all feLi(pa,). Now, by the previous claim,

[, = e oa, ) < 19

(o]

n
Z grla,
k=1

If we define g on Q by setting g = g, on A,,, then g is in Lo, with |g] . <|[¢]. Thus, ¥ (f) = ¥g(f)
for all f € Ly1(pa, ), for all n. Hence, ¥(f) = ¢4(f) on span{UpenLi(ftn)} = L1(p).

O

[ Corollary 2.4.1. For 1<p< oo, for a measure space (2, F,u) L,(u) is reflexive.

Proof. Let ¢ be in L;*. then g = t(¢,) : Ly — scalars is in L (% + % =1). By Theorem i),

there exists f € Ly, s.t. (¢g,0) = [ fodu = (f, ¢g) = (¢g, f) for all g € L,. Then ¢ = f, since
Ly={¢g:9¢€Ly}. O

2.3 C(C(K) spaces

Throughout, K is a compact, Hausdorff topological space. Define

C(K)={f:K - C: f continuous},
a complex Banach space in the sup-norm: |||, =sup|f]|
K
C*(K)={f:K —~R: f continuous, }
is a real Banach space with norm || f|., =supg |f].
C'(K)={feC(K): f>0}.

Moreover,

M(K) = C(K)",
is a complex Banach space in the operator norm.
MA(E) = {¢ e M(K) : 6(f) € R,V f e CT(K)},
is a closed, real-linear subspace of M(K).
M (K)={¢:C(K)—C:¢is lineargp(f) >0,V f e C*(K)}.

Elements of M*(K) are called positive linear functionals.

Aim: identify M(K), M®(K).

Tusing the fact that (¢2)* = £2,.
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2.3 C(K) spaces 2 DUAL SPACES OF L,(u) AND C(K)

Lemma 2.1. (i) For all ¢ € M(K), there exist unique ¢1,ds € ME(K), ¢ = 1 + i
(ii) ¢~ ¢rCR(K) : MRB(K) - (CR(K))* is an isometric isomorphism.
(iir) M*(K) ¢ M(K) and M*(K) = {¢p e M(K) : | ¢] = ¢(1k)}.

(iv) For all ¢ ¢ M®(K), there exist unique ¢*,¢~ € M*(K) s.t. ¢ = ¢* — ¢~ and
lol =lo*] + o7

Proof. (i) Let ¢ be in M(K). Define ¢ : C(K) - C, by &#(f) = ¢(f). Then, ¢ is in M(K)
and ¢ is in M*(K) < ¢= ¢}

Uniqueness: assume ¢ = ¢ + i¢o where ¢1, ¢ € MR(K). Then ¢ = ¢1 —ipa S0 ¢y = %j) ¢ =
¢-¢
5

Existence: check that the above works.

(ii) Let ¢ be in M®(K). The fact that ||¢rcma(K)|| < @l is clear. Let f be in Be(x).
Choose A € C, [\ =1 and Ap(f) = [p(f)]. So [p(f)] = ¢(Af) = ¢(Re(Af)) +ip(Im(Af)) =
d(Re(Af)) < WFCR(K)” “[Re(Af) ] < ||¢rcR(K)”-

Hence, ¢ cx(xy| > |[. Finally, given 1 € (C*(K))*, define ¢(f) = ¢y(Re(f)) + iv(Im(f)),
for f € C(k). Then ¢ is in M(K) and ¢ ['cr(xy = .

Lecture 8 (iii) M*(K) c M(K): let ¢ be in M*(K).
For f € CR*(K), |f|. <1 we have 1+ f >0, so ¢(1x = f) > 0. So ¢(f) is in R and
|H¢(”f)| S(¢(1)K)~ So ¢rCR(K) isin (C*(K))* and |¢rCR(K)” = ¢(1k). By (i), ¢ is in M(K),
ol = o(1k).

M K)={de M(K):|d| =d(1k)} (727): let ¢ be in M(K) with ||¢| = ¢(1k). Wlog,
¢l = ¢(1x) = 1. Fix f € Bez(k), let ¢(f) = a+if, with a, 3 € R.

Need: B=0. Fort € R, |¢(f +itlg)|2=a®+ (B+1)2=a2+B2+28t < |f +itlg | <1+12, so
B=0. Given f € C*(K), with 0< f <1 on K it follows that |2f - 1x| <1, so |2f — 1|, < 1.
So [p(2f —1k)| <1, i.e. =1<24(f) <1, which implies ¢(f) > 0.

(iv) Let ¢ be in M®(K). Assume ¢ = 1) — by, where 1,15 € M*(K). For f,g e C*(K) with
0<g<f, v1(f) 2¢1(9) = d(g) +12(9) 2 d(g)- So ¥1(f) >sup{e(g) : 0<g < f}. Define for

fin C(K)
" (K) =sup{p(g): 0<g< f}

Note that ¢*(f) >0, ¢*(f) < [@] - [ fles @7 (f) = &(f). Furthermore, it is easy to check that
GF(tfr+taf2) = t1d* (f1) + t2g® (f2) for all f1, fo € CY(K), t1,t2 € R*. Next, for f e C*(K),
write f = f1 — fa, both in C*(K)ﬂ and define ¢*(f) = ¢*(f1) - ¢*(f2). This is well-defined
and R-linear (check). Finally, for f in C(K), let ¢*(f) = ¢"(Ref) +i¢p"(Im f). Then
¢* is C-linear and since ¢*(f) > 0 for all f € C*(K), we have ¢* is in M*(K). Define
¢~ =¢" —¢. For feC " (K), o*(f) > ¢(f) implies that ¢~ is in M*(K) and ¢ = ¢* - ¢~
o] < 167 + 16| = 6" (1) + 6 (1xc) = 26" (1x) - (1x). Given f € C*(K) with 0< f <1,
-1<2f-1<1,5020(f) - d(1k) = ¢(2f - 1K) < |¢|. Taking the supremum over f, we
deduce that 26" (1x) - ¢(1k) = ¢(2f - 1k). So 8] = [¢7[ + 47|

Uniqueness: Assume ¢ = 91 — g, where 91,19 are in M*(K) and |@| = [[¢1] + [¢2|. From
initial observation, 11 > ¢* on C*(K) and so ¥3 = ¢ — ¢ > ¢* — ¢ = ¢~ on C*(K). Hence,
Y1 =" =1hy—¢7 is in M¥(K). By (iid), |1 =" +[¢2 =97 | = 1 (1) - 9" (1x ) + 02 (1) -
¢~ (1) = [¢ul + |2l = [o7[ = o7 = [ ¢l - [¢] = 0. Thus, 11 = ¢, 42 = ¢ -

8check!

de.g. f1=fv0,f2=(=f)VO.
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2.4 Topological Preliminaries 2 DUAL SPACES OF L,(u) AND C(K)

2.4 Topological Preliminaries

We begin with some definitions and key topological results that will be useful in obtaining the
characterisation of the dual spaces (C(K))*.

1. K being compact, Hausdorff is normal: given disjoint closed sets E, F' there exists disjoint
open setsUU,V € K s.t. EclU, F cV. Equivalently, given F cU ¢ K, FE closed, U open, there
exists V open s.t. EcV clU (use normality in E, K \U).

2. Urysohn Lemma: given disjoint closed sets E,F € K, there exists a continuous function
f:K—>[0,1]st. ftg=0and flp=1.

3. Notation: f<U means U € K open f : K — [0,1] is continuous and the support of f
supp(f) = {z € K : f(z) # 0} cU. E<U means E is a closed subset of K, f: K — [0,1]
continuous and flg = 1.

Urysohn says: FcU ¢ K, E closed, U open, then there exists a continuous function f s.t.

E<f<U(EcYcYclU,V open and apply Urysohn to E, F = K \ V).

Lemma 2.2. Let E,U; ...U, be subsets of K (neN), E closed, U; open for 1< j<n s.t.
Ec|JU;. Then

J=1

(i) there exist open sets Vj,1<j<n, s.t. V; CU; for all j and E< | JV;.
j=1

(ii) there exist f; <U;,1<j<n, st. 0< Y f<lon Kand $5_, f;=1 on E.
j=1

Proof. (i) We proceed by induction on n.
n =1: is just a restatement of normality of K.

n>1: E~U c |JU;, so by induction there exist open sets Vj,j < n, s.t. Vj € U; and
j<n
E~U, < |JV;. So Ex |V, €U, and so by normality, there exists open V,, s.t. Ex | JV; ¢

j<n j<n j<n
Vi €V EUy.
(ii) Let V; be as in part (i). By Urysohn, there exists h; s.t. V; < h; <U; for 1 < j <n, and
there exists hg s.t. K~ |JV; <hg<K\E.

j=1
Leth:ho+2hj. Then A > 1 on K. Letfj:%forallj. ThenOSijglonKand

J=1 J=1

fj =1 on E where f; <U; for all j.

s

J=1

2.5 Borel Measures

Let X be a Hausdorff space. Let G be the family of open sets in X. The Borel o—algebra of X
is B =0(G), the c—algebra generated by G. members of B are called Borel sets. A Borel measure
on X is a (positive) measure p on B. we say u is regular if

(i) w(F)<oo forall Ec X, FE compact.
(ii) wp(A)=inf{pU): AcUecG} for all AecB.
(i) p(U) =sup{u(F): E cU, E compact}.
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2.6 Integration with respect to complex measures 2 DUAL SPACES OF L,(;1) AND C(K)

A complex Borel measure v is regular if |v| is regular. If X is compact, Hausdorff, then a Borel
measure p on X is regular

< (X)) <ooand p(A) =inf{u(U): AcU G} for all AeB.
< p(X) < oo and pu(A) =sup{u(E): Ec A, E closed} for all AeB.
2.6 Integration with respect to complex measures

Let Q be a set, F a o-algebra on  and v a complex measure on F. Then v has Jordan
decomposition v = v; — v +i(v3 — 14). Say a measurable function f: Q — C is v—integrable if f is
[v|-integrable (i.e. [, |f|d|v|< 00) iff f is v,—integrable for all k. So we define

fodV=fodV1—fodl/z+iv/Qde3—i[Qfdy4.

Properties:

1. [o1adv=v(A), forall AeF.

2. Linearity: if f,g:Q — C are v—integrable, a,b € C, then af +bg is v—integrable and [, (af +
bg)dv =a [ fdv +b [, gdv.

3. Dominated Convergence (DC): let (f,)nen, f»9, be emasurable functions s.t. f, — f a.e.
(wrt [v]) and g is in Ly (|v]) and for all n |f,| < g then f is v—integrable and [, fndv — [¢, fdv
(True for vy, for all k, so true for v).

4. |fQ fdu| < [o|fldv| for all f e Li(v) (True for simple functions by 1&2 and for general f, use
DCT).

Let v be a complex Borel measure on K (compact, hausdorff). Then for f continuous, then

[ 17kl < 1),

So, f is v—integrable. Define ¢ : C(K) — C by ¢(f) = [ fdv. Then ¢ is in M(K) and |¢| <
W|(K) = v, (TV norm). If v is a signed measure, then ¢ is a member of M®(K). If v is a
positive measure, then ¢ is in M*(K).

Theorem 2.5 (Riesz Representation Theorem). For every ¢ € M*(K), there exists a
unique reqular Borel measure i on K that represents ¢, i.e. ¢(f) = [K fdu for all continuous
f. Moreover,

o] = w(K) = |pll;, TV norm of p.

Proof. Uniqueness: Assume pq, pio both represent ¢. Let E ¢ U ¢ K, where FE is closed and U is
open, then by Urysohn, there exists f continuous s.t. E < f <U. Now, u1(E) < [ fdur = ¢(f) =
Jx fdpa < pa(U). Take infemum over U open and use regularity to deduce that pq(E) < pa(E),
and by symmetry p1(F) = us(E) agree on closed sets, and we conclude that pq = ps for all Ae F
by regularity from below.

Existence: Define for U € G (i.e. U open), p*(U) = sup{e(f) : f <U}. Note that p*(U) >0,
and for Vo U, U,V € G, then pu* (V) > p*(U) and hence p* (U) < p*(K) but p*(K) = ¢(1k) (f < K
implies f < 1x and ¢ is in M*(K)). It follows that for U € G, p*(U) = inf{u*(U) : Ac U € G}.
Extend the definition of p*: for A ¢ K let pu*(A) =inf{u*(U): AcU e G}.

Claim:p* is an outer measure.

We easily have that p* (@) =0 and for all Ac Bc K pu*(A) < p*(B). It remains to show that
if for all n in N

(4,) c K, then u* ( U An) < (AL).

neN
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2.6 Integration with respect to complex measures 2 DUAL SPACES OF L,(;1) AND C(K)

To see this, first fix Uy, € G for n € N and let 4 = | JU,. Fix f < U and let E = supp f.
neN

Then E ¢ |JU,, by compactness, E ¢ | JUy for some n € N. By lemma there exist
neN k=1

h;j < U, 1 <j<n, Zh <1 on K and is equal to 1 on FE. Sof—thjandhence

Jj=1
n

¢(f)=Z¢(fh Z (U><Zu U;) as fhy < p*(U;) for all 5.

Taking the supremum of f, we deduce p*(U) < Y p*(U;). It follows easily that p* (U An) <
J=1 neN

> 11 (Ay) for arbitrary sets (just approximate using an == argument) We now let M be the set
of p*—measurable subsets of K, then M is a o—algebra and w*taq is @ measure on M.

Next we show that B ¢ 4. Enough to show that G ¢ M. Let U be in G. We need to show:
pw(A) 2w (AnU) +p*(A~U) for all Ac K. First let A=V eG. Fix f <VnlU , fix g <V \supp f.
Then f+ g <V, and thus p*(V) > o(f +g) = ¢(f) + ¢(g). Taking the supremum over g, we get
wr V) 2 o(f)+p(V~supp f) 2 ¢(f) + u*(Vnid). Now let A c K be arbitrary. Fix V € G s.t.
AcV, then p*(V) > pw*(Vnld) + w*(VnlUd) 2 p*(AnlU) + p*(ANU). Taking the infinum over all
such V, we have that p*(A) > p*(AnlU) + p*(ANU).

Now, u = p*p is a Borel measure on K. We have that u(K) = ¢(1x) = |¢] < oo and by
definition, u is regular. It remains to show that

o(f) = [ fdn

for all continuous f. It is enough to check that for all f € C®(K) and then to show that
&(f) < [ fdp (by applying the it to —f).

Fix a <beR st f(K) < [a,b]. Wlog, a >0, since ¢(1x) = [, 1xdp. Let € > 0; choose
0<yo<a<y < <yp=>bst yj <y +eforalll<j<n Let 4; = f((yj-1,95]).
Then, K = Lnj A; and this is a measurable partition. Choose closed sets E; and open sets U; s.t.
E;cA;c Z/Jljz-land w(U; ~ E5) < £ (by regularity) and f(U;) € (y;-1,y; +€). By lemma there
exist h; <Uj, 1< j<n, ihjslon K. Now ['©

j=1

o) = 20071 30y + o)

< i(yj +e)u(Uy) i Yj-1 + 2€) ( U;) + %)
< ilyj_lu(uj) +e(b+€) +2eu(K) + 26

= f Z yj—11Ede + O(E)
K3
< [y fdu+O(e).
Hence, ¢(f) < [ fdu, since € > 0 was arbitrary.

Corollary 2.5.1. For every ¢ € M(K), there exists a unique reqular complex Borel measure
v on K that represents ¢, namely, ¢(f) = [ fdv for all continuous f. Moreover, ||¢] = |v|;
and if ¢ is in MR(K), then v is a signed measure.

Proof. Existence: Apply lemma and theorem to obtain a regular complex Borel measure v
that represents ¢.

10using that f <y, <€ and h; <U; and ¢ € M*(K).
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Need: [v|, =[]
This will give uniqueness, if vy, v, represent ¢, then vy —v, represents ¢p—¢ =0, then |vy — v, =
0, hence vy = v9. |@¢| < |lv|;, was already done before Theorem Take a measurable partition
K = CJ Aj. Fix € > 0 and closed sets Ej, open sets U; s.t. Ej ¢ A; ¢ Uy, [v|(U; ~ E5) < & (||
is regjliar). Can also assume that U; ¢ KN JE;, forall 1 < j <n. Fix \; € Cs.t. [\ =1,
i

Nv(Ej) =|v(Ej)],1<j<n. By lemma there exist hj <Uj, 1<j<n, Y h;j<1on K. then for
j=1

all j E; < h;. Hence,

L=
—

1z, - ) hjld
1L, - 2 byl

< Z |1/|(Z/{] A E]) < €.
Now,

il|u<Aj>| si1|u<Ej>|+e=ilAju<Ej>+e

:fK;)\lejdy+es fK(;Ajhj)du
= ¢(z)\Jh] + 2¢

J=1
=6l [£51 At |, + 2 < o] + 2¢

using the fact the the expression in the second to last line is a convex combination of function with
sup norm equal to one. Hence, it follows that |v]; <|®]. O

+ 2¢

Corollary 2.5.2. The space of regular complex Borel measures is a complex Banach space
in the ||v|; (total variation norm) and is isometrically isomorphic M(K).

The space of regular real Borel measures is a real Banach space in the |v|, (total variation
norm) and is isometrically isomorphic M®(K).
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3 WEAK TOPOLOGIES

3 Weak Topologies

Let X be a set and F be a family of function s.t. each f € F is a function f: X — Y}, where
Y} is a topological space.

The weak topology o(X,F) on X generated by F is the smallest topology on X s.t. each f € F

is continuous (is easily see to exist).

Remark. 1. S={f"Y(U): f e F,Uc Ysopen} is a sub-base of o(X,F). SoV c X is open,
i.e. it is in o(X,F) iff for all x €V, there exist n €N, fi1,..., f, € F and open sets U; € Yy,

(open nbhds of f;(xz)) for 1< j<n s.t. x is in ﬁ f_l(Uj) cV.

j=1
2. If Sy is a sub-base in Yy, then {f*) : f e F U € St}, is a sub-base for o(X,F).

3. If Yy is Hausdorff for all f € F and F separates points in X (i.e., for all x #y, there exists
feF st f(x)+ f(y)). Then o(X,F) is Hausdorff (easy to check).

4.YeX let Fy={fly:feF}. Theno(Y,Fy)=0(X,F)ly (check!).

5. Universal property: let Z be a topological space and q : Z — X be a function. Then g is
continuous iff fog:Z — Yy is continuous for all f e F.

Examples:

1. Let X be a topological space, let Y € X and ¢: Y — X be the inclusion map. Then,
a(Y,{.}) is the subspace topology of Y.

2. let I be a set, X, a topological space for all v € I' and X = H X, = {X :
vyell
X is a function on I' s.t. Vv e I',z(y) € X,}. For z € X, v ¢ ' we often write z., for
z(y). We think of z as the "I'-tuple”, (x. ) er. For each v we have 7, : X - X,z = z,
((xs5)ser) the evaluation at v, or projection onto X,. The weak topology o(X, {m, :
«v €T'}) is called the product topology on X. V is open iff for all « = (z+)er € V, there
exist n €N, y1,...,7, € I' and open neighbourhoods U; of z, inX,, s.t.

= )yere Xy, €elj,1<j<npcV

Proposition 3.1. Let X be a set. For each n € N, let (Y,,,dw) be a metric space and
fn: X = Y, be a function s.t. F = {f, : n € N} separates points of X. Then o(X,F) is
metrisable.

Proof. Define
d(z,y) = Y min(|fa(2) - fu(y)|,1)-27", for 2,y in X.

n=1

This is a metric on X (easy to check) (F separating points implies that for = # y, d(x,y) > 0).

Fiven € € (0,1) and d(x,y) < 57, then [f,(z) - fu(y)| < €. So each f, is continuous wrt the

topology 7 induced by d. So o = o(X,F) ¢ 7. Fix x € X, then y — min(|f,(z) — fn(y)|,1)-27" is

o—continuous. By the Weierstrass M-test, > min(|f,,(z) - fn(y)],1)-27" is univormly convergent,
n=1
hence o—continuous. So, {y € X : d(y,x) < €} is c—open. Hence, 7 S0 and 7 = 0. O

Theorem 3.1 (Tychonov). The product of compact topological spaces is compact in the
product topology.
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Proof. We have X = H X, as in examples Assume each X, is compact. Let F be a family of

yel'

closed subsets of X with the finite intersection property (FIP). We need to show that (| F + @
FeF
(equivalent to compactness).

By Zorn, there exists a maximal family A of subsets of X s.t. F ¢ A and A has the FIP
(M={AcP(X): A2 F & Ahas the FIP}, and every chain has a maximal element. Check!).
We will show that (] A+ @.

AecA

Note:

1. Ay,..., A, € Aimplies that A=) A4; isin A.
i=1
Indeed, for all By,...,B, €A, st. AnByn---nB,, #2 so Au{A} has the FIP. Hence, A

is in A.
n
2. Bc X, BnA=+@for all Ae Aimplies B is in A. Indeed, for Ay,...,A, € A s.t. UAZ-;t@
i=1

and Bn|JA; # @, then Au {B} has the FIP and using maximality, we conclude that B is
i=1

in A.
Let v € I'. Then {m,(A) : A € A} has the FIP. Since X, is compact, () 7, (A4) # @. Fix
AeA
zy € () my(A) £ Let z = (2)yer and U be an open neighbourhood of z. We show that Un A # @
AcA

for all Ae A. Then z € A, for all Ae A. Wlog, U = Uw;j(uj) for n e N,vq,...,v, € F, U; is an
j=1

open neighbourhood of z.,, € X, . So U;n ﬂ;}(Aj) # @ forall Ae A, so ﬂ;]_l (U;) € A by note 2
j=1

above. By 1 above, U € A and hence, Y n A # @ for all A € A. We have thus demonstrated that for
all Ae A, z € A, which concludes the proof. O

3.1 Weak topologies on vector spaces

Let E be a real or complex vector space. Let F' be a subspace of the space of all linear function-
als on F that separates points, i.e. for all x € E,z # 0, then there exists f € F, f(x) # 0. Consider
the weak topology o(E, F). SoU ¢ E is open iff for all e U, there exists n e N, f1,..., fo e F,e>0
st. {ye E:|fj(y-2x)|<el<j<n}clU. For feFoxe E,ps(x) =|f(z)]. Let P={ps: feF}
Then (E,P) is a locally convex space (LCS) whose topology is o(E, F). So o(E, F') is Hausdorff
and vector addition and scalar multiplication are continuous.

n
Lemma 3.1. Let E be as above, ler f,g1,...,gn be linear functionals on E s.t. | Jkerg; <
j=1
ker f. Then f €span{gi,...,gn}-

Proof. Let K be the scalar field. Define T': E — K" by Tz = (g;(2)),. Then ker(T) = | J kerg; ¢
j=1
ker f and hence we have a factorisation
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3.1 Weak topologies on vector spaces 3 WEAK TOPOLOGIES

with h linear, f =hoT. Then there exists (a;(z))j., € K" s.t. h(y) = > ajy; for all y e K™. So
j=1

for all z € B, f(x) = h(Tx) = Y. a;g;(z). So f =) ajg; as required. O
j=1 J=1

Proposition 3.2. Let E, F be as above, let [ be a linear function on E. Then f iso(E, F)-
continuous iff f € F. So, (E,o(E,F))*=F.

Proof. <= : holds by definition.

= : there exists an open neighbourhood U of 0 in E s.t. for all z € U, |f(z)| < 1. Wlog,
(shrink ¢ if necessary) U = {z € E : |g;j(x)| < €,1 < j <n} for some n e N,gy,...,9, € Fe > 0. If

z € | ker g;, then ambz € U for all scalars A and hence |f(z)| = |A|-|f(x)| < 1 for all \. So f(z) = 0.
=1

j=
By lemma fespan{gi,...,gn}. -

Examples:

1. Let X be a normed space. The weak topology on X is the topology o(X,X*) on
X. (X* annihilates points of X by Hahn-Banach). We sometimes write, (X, w) for
(X,0(X,X*)). Open sets in o(X,X*) are called weak open, or w—open. U ¢ X
is w—open <= for all x € U, there exists n € N, fi,....f, € X* e > 0 s.t.
WeX: -l <e1<j<n).

2. Let X be anormed space. The weak star topology or w*-topology on X * is the topology
o(X*,X) on X*. Here, we are identifying X with its image in X** under the canonical
embedding. Open sets in o(X*, X) are called w*-open and U ¢ X* is weak-* open iff
for all f eU, there exist n € N,z1,...,2, € X,e>05s.t. {ye X" :|g(z;) - f(zj)]<e 1<
j<n}cl.

Properties:

1. (W,w) and (X*,w*) (thisis (X*,0(X*, X))) are LCS and hence Hausdorff with continuous
vector space operations.

2. o(X,X*) ¢ || -topology with equality iff dim X < oo.

3. o(X,X*)co(X*,X) c||, where equality in the first inclusion is achieved iff X is reflexive,
and for the latter iff dim X* = dim X < oo.

4. Let Y be a subspace of X. Then, (X, X*)ly =o(Y,{f € X*}) = o(Y,Y") by Hahn-Banach.
Similarly, o(X**, X*)Ix = o(X, X*). So in other words, the canonical embedding X — X**
is also a weak-to-weak-* homeomorphism between X and X.

Proposition 3.3. Let X be a normed space.

(i) A linear functional f on X is continuous in the weak topology iff f € X*. So
(X,w)*=X".

(ii) A linear functional f on X* is w*— continuous iff f € X, i.e. f =& for some
zxeX. So (X*,w*)" =X. It follows that o(X*,X) =o(X*, X**) iff X 1is reflexive.

Definition 3.1 (Weak Boundedness). Let X be a normed space, then a subset A is
weakly bounded if {f(x) : x € A} is bounded for all f € X* (iff for all w-neighbourhood
of 0 in X, there exists A>0 s.t. A< A\U).

A subset B* is weak-* bounded if {f(x) : x € B} is bounded for all x € X (iff iff for all
w*-neighbourhood of 0 in X*, there exists A>0 s.t. B< A A).
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3.2 Principle of Uniform Boundedness (PUB)
Let X be a Banach space, Y be a normed space and T ¢ B(,)). If T is pointwise bounded

(sup |Tz| for all e X), then T is uniformly bounded (Sup |7 < oo).
TeT TeT

Proposition 3.4. (i) A is weakly bounded implies that A is ||-| —bounded.

(i) B* is weak-* bounded and X is complete implies that B is |-| —bounded.

Proof. (ii) B* = B(X,scalars), B weak-* bounded says B is pointwise bounded. So done by PUB.
(i) A={z:x e A}** = B(X",scalars). A weakly bounded iff A is pointwise bounded and so can
conclude again by PUB. O

Notation: We write @, — @ if (2 )nen converges to z in the weak topology (in some normed

space). Note that z, — = in X iff (z,,f) - (z, f) for all f e X*. We write f,, — f in X* if
(fn)nen converges to f in the weak-* topology (in some dual space) iff (z, f,,) = (z, f) for all x € X.

Consequences of PUB: Let X be a Banach space, Y a normed space, (T;,) a sequence in
B(X,Y) IfT:X —-Y is a function s.t. T, > T pointwise on X (i.e. T, - Tx for all z € X),
then T e B(X, X), sup | Ty | < oo and |T'| < liminf |7}, .

neN n

7

Proposition 3.5. Let X be a normed space.

(i) If ©, — z in X, then sup |z,| < oo and ||z| < liminf |z,].
n n

(i) If fr, = f in X* and X is complete, then sup | fn| < oo and |f| < liminf | f,].

\.

Proof. (1) We have that f,, - f pointwise in X* = B(X, scalars). Result follows by PUB.
(i) Since x, — x, &, — & pointwise in X** = B(X*,scalars) and we conclude by PUB again. [

For the above, the converse is not true. We can find a sequence that converges weakly but not
in the norm topology. For instance,

th
Example: o =@y

Inf,,1<p<oo, e,=(0,...,0,1,0,...,0), e, — 0, but clearly e, u(),

3.3 Hahn-Banach Separation Theorems

Let (X,P) be a LCS. Let C be a convex subspace of X, s.t. 0 € intC. Then define uc : X —
R, pe =inf{t >0:x € tC.

1

Well-defined: %x — 0 as n — oo, so there exists n € N s.t. ~x € C. pc is the Minkowski

functional (gauge functional) of C.

Example:
If X is a normed space and C = Bx, then uc = |-|.

Lemma 3.2. pc is positive homogeneous and sub-additive. Moreover, {x : uc <1} cC c
{z:pc < 1}. The first inclusion is an equality if C open.

Proof. Positive homogeneous: for x € X, s,¢,> 0 we have sz € stC <= x € tC. Hence, uc(sz) =
spe(x). Ajso holds for s =0, since uc(0) = 0.
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Subadditivity: First an observation: uc <t implies z € tC. Indeed, there exists t' <t s.t. x € t'C.

Then, 7 = (1~ %)0 + %' -4 € C by the convexity of C.

Now, let 2,y € X. Fix s > pe(x), t > pe(y). Then x € sC, y € tC. So, x+y = (i T4 ﬁ . %) (s+

S

+
t) € (s +t)C by convexity. So pc(x +y) < s+t, and hence pe(z +y) < pe(z) + pe(y).

Next, if pc(z) < 1, then x € C by above. If C is open and z € C, then there exists n € N s.t.
<1.

(1+ )z eC, since (1+ 1)z 2%, 2 and C open. Hence, pic(x) < 1+171L

Finally, x € C implies that uc(x) < 1. Then, by homogeneity, uc((1 - %)aﬁ) < 1 for all n, so

(1- %)x e C for all n, since (1 - %)x — x, the in case C is closed z € C. O

Remark. IfC is symmetric (in real case) or balanced (in complex case)m then uc is a semi-norm.
If, in addition C is bounded, then uc is a norm.

Theorem 3.2. Hahn-Banach Separation Theorem Let (X,P) be a LCS and C be an open
convex subset of X with 0 €intC. let xg € X NC. Then there exists f € X* s.t. f(xo) > f(x)
for all x € C.(In complex case: Re(f(x0))) > Re(f(x)) for all z €C).

Remark. From now on we work with real scalars and the complex case will follow, since

frRef: X" > Xg
1s a real linear injection.
Proof. Consider pic. By lemma [3.2] C = {s: pc(z) <1} and so pe(xo) > 1. Let Y = span{zo} and
9:Y >R, g(Axg) =1< pe(xg). Hence, g < e on Y.
By Theorem [I.I] there exists linear f: X - R s.t. fly =g and f < puc on X. For all = € C,

f(x) <pe(x)<1=f(zg). We also gave f(x) <1 onC and so |f(z)| <1 on Cn(-C). Since Cn(-C)
is an open neighbourhood of 0, we have that fe X*. O

e ~

Theorem 3.3. Let (X,P) be a LCS. Let A, B + @, disjoint convex subsets of X .
(i) If A is open, there exists f € X* and a € R s.t. f(x)<a< f(y) forallze A,y e B.

(i) If A is compact, and B is closed, then there exists f € X* s.t. sup f < i%ff.
A

\. J

Proof. (i) Fix ae A;be B. Let C= A-B+b-a and 29 =b—«. Then C is open, convex, 0 €C
and zo ¢ C (An B = @). By Theorem [.2] there exists f € X* s.t. f(z) < f(wg) for all z €C.
Soforallze A,ye B f(x-y+x0) < f(x0), i.e f(x) < f(y). In particular, f # 0. Let « = inf f.
Then « < f(y) for all y € B. Since f # 0, there exists u € X s.t. f(u) > 0.Now, given x € A,
@+ ~u — z and since A is open, there exists n € Ns.t. 2+ tue A. Then f(z) < f(z+2u) <a.

(ii) Claim: there exists open, convex neighbourhood of 0 in X, s.t. (A+U)NnB =2

Indeed, for x € A, there exists open neighbourhood U, of 0 s.t. (z+U,)nB =@ (B is
closed). Since 0+0 =0 and ”+” is continuous, there exists open neighbourhood V, of 0 s.t.

Ve +Vy €U, Wlog, V, is convex and symmetric. By compactness, there exist 21,...,2, € A
n

n
st. Ac U(acZ + V). Let U = ﬂVm Given x € A, there exists i s.t. x € x; +V;,. So,
i=1 i=1
r+UCxexi+Vy, +UCx €x; + Vy, + Vo, S xi + Uy, is disjoint from B. So, A+U is disjoint
from B.

Now, apply part (4) with A+U, B to show that there exists f € X* s.t. f(z+u) < f(y) for all
xeAyyeB,uel. In particular, f # 0 so there exists z € X s.t. f(z) > 0. Also, %z %0,
so there exists n € N s.t. %z eU. So f(z)+ %f(z) < f(y) for all z € A,y € B. Tt follows that
sup f <inf f.
A B
O
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w

Theorem 3.4 (Mazur). Let C be a convex subset of a normed space X. Then C“'” =C .
In particular, C is ||| —closed iff C is weakly closed.

Proof. Wlog, C + @.

”5”'” cC"7: is true since the weak topology is weaker than the ||| ~topology.
”5”'” 2C: If x ¢ 5“.”, then apply Theorem (i) to A={z}, B= 5“ to obtain f € X* s.t.

flz) < i%ff = . Then, {y: f(y) < a} is a weakly open neighbourhood of X, disjoint from B (and
hence from C). So = ¢ C. O

Corollary 3.4.1 (Mazur). If =, 20 in a normed space X, then for all € >0, there exists
x € conv{z, :neN} s.t. |z| <e.

Proof. 0 € conv{x,:ne¢ N}u) =conv{z, :neN} by Mazur. O
Remark. It follows from this that there exist p1 < q1 < pa < g2... and convexr combinations

n
Zp = Z tiz; s.t. 2, =0 in |-].

1=pn

Lecture 13 [ Theorem 3.5 (Banach-Alaoglu). For any normed space X, (Bx+,w") is compact.

Proof. For z € X, let K, = {\: A scalar ,|)\| < |z|}. Let K = [] K, in he product topology. Let
reX
7y : K - K, be the projection (Ay)yex = Az

Note K = {\: X — scalars: [A(z)| < |z|}, so Bx+ € K.

The subspace topology on By« is o(K,{m; : € X})p,. = 0(Bx+,{m[p,. 1 v € X}) =
o(Bx+,{%|B,. 2 € X})=0(X",X)|5,., the weak-* topology. By Theorem K is compact.
So all we need to show is that Bx« is closed in K. Now,

Bx+ ={Ae K : Aggiby = arg + AV, y € X, Va,b e scalars}
= ) {XNe K :mapiny(A) = amy(N) + by (M)}

z,y,a,b

= N AN K Tagary (V) = ams (A) = by (V)7 ({0})}

z,Y,a,b

closed in K as each 7, is continuous. O

Proposition 3.6. Let X be a normed space and K be a compact, Hausdorff space.
(i) X is separable (in the |-| —top) iff (Bx+,w*) is metrisable.
(i1) C(K) is separable iff K is metrisable.

Proof. (i)” ==": Fix a dense sequence (z,,) in X. Let F = {#, [ . : n € N}. Then F separates
the points of X, so o(Bx+,F) is Hausdorff and is contained in the weak-* topology. So

Id: (Bxs,w*) > (Bx+,0(Bx+,F))

is a continuous bijection from a compact space to a Hausdorff space, and hence a homeomorphism.
So o(Bx+,F) is the weak-* topology on Bx+. This is metrisable by proposition
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(1)” =": By above, (B¢(k)~,w") is metrisable. For k € K, define 05, :— scalars by d,(f) =
f(k) for all feC(K). Then 0y € Be()~. Hence

5 > (BC(K)MU)*)
k'—>5k

§ is continuous: let f € C(K). Is f o8 continuous? For ke K, (f 0 8)(k) = 6, (f) = f(k). Then,
fod = f. This is continuous on K. By the universal property of the weak topology, d is continuous.

0 is injective: C(K') separates points of K by Urysohn.

Now, 6 : K —» (6(K),w") is a continuous bijection from compact to Hausdorff, and hence a
homeomorphism. Hence K is metrisable.

(ii)” <=": K compact metrisable, so K is separable. Fix a dense sequence (x,) in K. Let
(fn) =d(z,z,) (d is a metric inducing the topology of K). Let A be the sub-algebra of C(K') gen-
erated by f,,n €N and ¥¥g. The A is separable, A separates points of K, ¥ € A and in complex

case, closed under complex conjugate. By Stone Weierstrass, A =C(K), so C(K) is separable.

(i), <=": let K = (Bx~+,w"*). This is compact, by Theorem [3.5l Since K is metrisable,
C(K) is separable. We prove that X — C(K) isometrically. Then done. Let T : X — C(K) be
Tz =&[p,.. then T is linear and |Tz| = 2| = |=|. O

Remark. 1. If X is separable, then (Bx+,w*) is compact, metrisable and hence weak-* se-
quentially compact(+separable).

2. X is separable implies that X* is weak-* separable (X* = | nBx~ ).
neN
By mazur, X is separable iff X is weakly separable (weak closure of span of some (x,,) weakly

dense in X is |-| —closure by Mazur, since it is convex).
So X weakly separable implies X* 1is weak-* separable. The converse is not true in general

(e.g. loo).
8. The proof shows (Be(xy,w*) contains a homeomorphic copy of K.

4. Proof also shows that for every normed space X there exists compact, hausdorff K s.t. X —
C(K) isometically (K = (Bx»,w")).

Proposition 3.7. Let X be a normed space. Then X* is separable iff (Bx,w) is metrisable.

Proof. 7 ==": By proposition[3.6] (i), (Bx+,w") is metrisable. Hence, (Bx,w) = (Bx+,w*)| 5y
is metrisable.

? «<=": let d metrise (Bx,w). Then for all n € N, there exists finite F,, € X* and ¢, > 0 s.t.
Up={z e Bx :|f(x)|<eVfeF,} c{x:d(x,0) <L} Let Z=span |J F,.
neN

Claim: Z = X*, then done.

Indeed, let g € X* and fix e > 0. Then {z € Bx :|g(z)| < €} is a weak neighbourhood of 0 in Bx

and hence contains U,, for some n e N. Let Y = () ker f, then for x € By, x €U,, so, g(z) <e. So
feF,

lgty+|| <e. Now Y = [ ker f c ker(g-h), so by lemmag —hespan F, ¢ Z implies d(g,z) <€
feFy,

which gives g € Z. O

Theorem 3.6 (Goldstine). For any normed space X, Bx = Bxw (Ew 1s the closure
in (X**,w"*) of Bx).
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*

Proof. Bxs+ is weak-* closed (follows from Theorem and Bx € Bx+«+ so Bi)(w € Bxs+. Now let

¢ € X**~Bx . Apply Theorem (i) to (X**,w*), A={¢},B=Bx (show weak-* closure

of convex set is closed). Now, there exists f € X* s.t. ¢(f) > sup f (real case), [Re(o(f))] >
B

supRe(f), |¢] - [ f] >sup f. So |¢] > 1. O
B Bx

Example:

Note that X = X**. So X separable implies X* is weak-* separable. For instance, £ = ¢7*
is weak-* separable, but ¢ is NOT separable.

Indeed, we have that the map
Vil > b

T (fm 141 — scalars:y — Z wnyn)
neN

is an isometric isomorphism (in the norm topologies). It suffices to show that

* * (z) * % * % *
(eoova-(gomeeo))—)( 1 ao'(él 761))

is a homeomorphism. Observe that ¢ = (¢p™1)*, ¢! = (¥)*, both dual maps. v being an
isometric isomorphism in the norm topology implies that the same holds for ¢. By the previous
observation, it suffices to show that for all y € £7, o : (£, 0(%,, e )) — scalars is continuous.
Indeed, observe that for f e (3, , §oo(f) = d(f)(y) = (¥~ (F)(y) = FW(¥) =¥ (y)(f),
and so g o ¢ = 9~1(y), which is weak-* continuous by the universal property of the weak
topology, hence we are done.

Lecture 14

Theorem 3.7. Let X be a Banach space. Then TFAE:
(i) X is reflexive.
(ii) (Bx,w) is compact.

(iii) X* is reflexive.

\.

Proof. (i) = (ii): using the canonical embedding (a w—w* homeomorphism), (Bx,w) = (Bx=+,w*)
Byx is compact by Banach-Alaoglu (Theorem [3.5]).

(1) = (1): (Bx,w) = (BXM,w*E so By is compact in the weak-* topology of X**. So Bx
is weak-* closed in X**. By Goldstine, By« 2 Bx = Bx.

(i) = (iit): (Bx+,w) = (Bx+,w") by reflexivity and is compact by Theorem By (i1) =
(i), X* is reflexive.

(iit) = (1): By what we have just proved, X** is reflexive. By the implication (i) = (1),
(Bx*+,w) is compact. Since, X is complete, X is closed in X**, and hence weakly closed in X**
(by Mazur). Hence, Bx = X nBx« is a weakly. closed subset of Bx++ and thus weakly compacﬂ
By (#) = (i), X is reflexive. O

Remark. If X is separable and reflexive, then (Bx,w) is compact, metrisable. Hence, Bx is
weakly sequentially compact.

making the appropriate identifications, i.e. with the canonical embedding ¢ : X — X**.
2By« is weak-* compact by Banach-Alaoglu and the map ¢: (Bx,w) - (Bx,w*) is a homeomorphism.
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Lemma 3.3. Let (K,d) be a non-empty compact metric space. Then there exists a contin-
uous surjection ¢ :{0,1N - K, where {0,1} is given the product topology.

Proof. Since compact and metric imply totally bounded, that is if A € K is non-empty, closed and

n
€ >0, then there exist non-empty closed sets Bi,..., B, s.t. A=|]J B; and diam(B;) < € for all j.
j=1

Applying th there exists a non-empty closed subset K. of K for all e ¢ ¥ = [ J{0,1}" s.t.

n=1
Ky=K, K.=K.guK.; and ?a§ diam K. - 0 as n - oo. Imagine some picture like the one
e{0,1}m
below:
K
Ko K;

Koo Ko1  Kio K

Define ¢ : {0,1}" — K, ¢((€;)$2;) = the unique point in () K, ., (is well-defined by com-
n=1
pactness and nestedness of K.’s).

¢ is onto: given x € K, inductively construct €;,...,e, s.t. foralln x e K¢, ..

¢ is continuous: for € = (¢;):2, € {0,1}Y, let n € N, then for all § = (6;)%2, € {0, 1} if §; = ¢; for
all 1 <4 <, then d(¢(d),¢(€)) < diam K,

— 0 as n — oo. O

11111 €n

Remark. {0,1}" is homeomorphic to the middle third Cantor set A via the map

(€)= - i(zea 37

Theorem 3.8. Every separable Banach space X embeds isometrically into C[0,1]. So
C[0,1] is isometrically universal for the class of separable Banach spaces (SB).

Proof. From the proof of propositionthat X - C(K) isometrically where K = (Bxx,w*). Since
X is separable, K is metrisable. By lemma there exists a continuous surjection ¢ : A - K.
Hence, C(K) — C(A) isometrically via f = fo¢. Also have C(A) = C([0,1]) isometrically via
[ fi

Write [0,1]\ A as a disjoint union | J (ay,b,). Then flta = f forall n, f is linear on [an,bp] with

n=1

f(an):f(an)af(bn):f(bn) O

13at each branching point € € ¥, can cover K. by balls of diameter diam K./2, ’shedding balls’ until only the
intersection with one remains, hence halving the diameter in a finite depth and proceed like so recursively.
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4 CONVEXITY

4 Convexity

Let X be a real or complex vector space and K € X be a convex set. A point z € K is an
extreme point of K if whenever x = (1 -t)y +tz for ¢t € (0,1), y,z € K, we have y = z = 2. Let
Ext K be the set of extreme points of K.

Examples:

2 2
AR AR

Ext(Bz) = {+e1, tea} Ext(By) = Sy

(a) Byz (b) Bz

2

Figure 2: Above are displayed balls and their extreme points in £2, /2 respectively.

Furthermore, for the sequence space cg, have that Ext(B,,) = @.

Indeed, given z = (2,) € Be,. Fix N e Ns.t. |zy|< 3. Let 45, = 2, =2, for all n# N € N and
YN = TN + %,zN =xrN - % Then y = (Yn)neN, 2 = (2n)nen € B, and x = %y+ %z,y +T,2#T.

Theorem 4.1 (Krein-Milman). Let (X,P) be a LCS. Let K be a compact, convex subset
of X. Then K =conv(Ext K). In particular, Ext K # @ provided K + @.

Corollary 4.1.1. If X is a normed space, then Bx« = conv® (Ext K) and Ext Bx+ + &.
Note cq is not a dual spce isometrically, i.e. there exists mo normed space X s.t. cg 2 X*.

Definition 4.1. Let K be a compact convez set in a LCS (X, P). A face of K is a non-
empty, compact convex set EC K s.t. if y,ze K, te(0,1), (1-t)y+tzeE, theny,z€E.

Examples:

1. K is a face of K. For z € K, x e Ext K <= {z} is a face of K.
2. let feX* a=supf, E={zxeK: f(z)=a} is a face.
K
(E + @, convex, compact and if y,z € K, t € (0,1) and (1 -t)y +tz € E, then o =
f((1=-t)y+tz)=(1-t)f(y) +tf(2) > a giving equality, hence f(y) = f(z) = «, hence
y,z€E).

[In the complex case, use Re f. From now on, we only use real scalars.]

3. Let E be a face of K. If F' is a face of F/, then F' is a face of K. So if x € Ext E, then
reExt K.

Proof. Proof of Theorem [{.1] Let E be a face of K. We show Ext E # @.
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Lecture 15

4 CONVEXITY

By Zorn, lemma [I.1] there exists a minimal (wrt inclusion) face F of E. If |F| > 1, then pick
x+yeF and fe X* st. f(z)> f(y) (by Hahn-Banach). Then G = {z € F : f(2) =sup f} is a face
F

of F,y¢ G so G¢F, a contradiction. So F' is a singleton which means Ext E # &.
Now, let L = convExt K. then L # @&, convex, compact, L € K. Assume zg € K \ L. By
Theorem there exists f € X* s.t. f(ao) >supf. Let a =sup f, then E = {z e K : f(z) = a}
L K

is a face of K. So there’s an extreme point z of K with X € E. Since a > f(xp), ENnL # @, a
contradiction. So z ¢ L. O

Lemma 4.1. let (X, P) be a LCS, let K be compact and xo € K. Then for a neighbourhood
V of xzg in X, there exist fi,...,fn € X*, a1,...,a, €R s.t. zpe{xeX: fi(z) <a;,1<i<
nfnKcy.

Proof. let 7 be the topology of X defined by P let o = o(X,X*). Then Id : (K,7) - (K,0)
is a continuous bijection (o € 7) from compact to Hausdorff (as X* separates points of X by

Hahn-Banach), so it is a homeomorphism, i.e. 0 =7 on K.
O

Lemma 4.2. let (X,P) be a LCS, let K be compact and convex. xo € Ext K. Then for a
neighbourhood V of xg in X, there exists f € X*, a €eR s.t. zpe{re X : f(z)<a}nKcV.

Proof. Let n, f1,...,fn € X*, ai,...,a, be as in lemma and Ky = {x ¢ K : fi(z) > a;}.

n
This is compact and convex. Observe | JK; 2 KNV and z¢ ¢ |JK;. Also, conv|JK; =
i=1 i=1 i=1
n n ! ’ n ’
{Ztﬂi rxy e Kt >0, Zti = 1}. Since zo is an extreme point of K, xg ¢ conv UKi (the case
i=1 i i=1
n =2 is true by definition, and use induction to arrive at the general case).

n
Furthermore, Ky x... K, x {(tl) eR™:¢; > 0V1, Zti = 1} is compact and (z1,...,Zn, (£;)1) —
i=1
n

Ztixi is continuous (algebraic operaitons ”+,x” are continuous in LCS), so the image B =
i=1

coanK is compact. By Theorem (3.2} there exists f € X* s.t. f(xg) < 1nff Choose o € R
with f(;co) <a< mff Then zg € {z € X : f(x) <a} n K, which is disjoint from B and hence from

U K; and so is contained in V. O
i=1

(a) Hlustration of lemma (b) Hlustration of lemma

Figure 3
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4 CONVEXITY

Theorem 4.2. Let (X,P) be a locally convex space, K compact, conver and S € K. If
K =convs, then S 2 Ext K.

Remark. The closure is necessary. For instance, let S be a dense subset of Seg- Then COHVS[% =
Bg% and Ext B[% = S@% .

Also, Ext K need not be closed. E.g. in R3,

no longer

an extreme point

.

every other point

on Sy is extreme

Figure 4: Illustration of extreme points of a double cone in R (which include top and bottom
vertices).

Proof. Proof of TheoremAssume zo € Ext K\'S. Apply lemmawith Y=X\S. So, fe X",
aeRst ape{reX: f(r)<a}nKcV. Then, L ={zx e K : f(x) 2 a} is compact, convex with
L2 S. Hence, L 2convS = K, a contradiction since xg ¢ L. Thus, g € S. O

Remark. One can show that Ext Be(gy = {A = [N = 1,k € K} (0x(f) = f(k)), where K is
compact, Hausdorff. Can use Theorem[[.4 for "c”.

Theorem 4.3 (Banach-Stone). Let K, L be compact, Hausdorff spaces, then C(K) =C(L)
<= L and K are homeomorphic.

Proof. 7 <=": If ¢ : K - L is a homeomorphism then
¢*:C(L)2C(K)
frfed
is an isometric isomorphism.
"=":1let T:C(L) 2 C(K) be an isometric isomorphism. Then so is its dual 7% : C(K)*

C(L)*. So T*(Bc¢(k)+) = Be(ry- and T (Ext Be )+ ) = Ext Be(py«. Thus, for each k e K, T* ()
A(k) - 0y for some scalar A(k),[A(k)| =1 and some ¢(k) € L. So we have functions

1R

A : K — scalars
¢:K—L

Now, for all k € K, A\(k) = T*(0x)(11) = T(1)(k), which means A\ = T(11) € C(K), so A is
continuous. Recall, § : K — (C(L)*,w*) is continuous (indeed, it is a homeomorphism between K
and §(K)). Also, T* : C(K)* - C(L)" is w * —w" continuous. hence, h + (k) - T (0r) = 0p(k) *

. . . T st - .
K - (C(L)*,w*) is continuous. Since ¢ : K — (§(L),w*) — L is a composition of continuous
maps, hence continuous.

¢ is into: Assume ¢ (k1) = ¢(k2). So M(k)-T*(6,) = M(k) - T* (1, ). Evaluate at T7'(1x) to
get A(k1) = A(k2) and so dx, =0k, (as T* is injective) which finally gives k; = ko.

¢ is onto: Given [ € L, since T is onto, there exists a scalar u, |u| =1,k € K s.t. T*(udg) = ;. So
pA(k)0p(ry = 01 Evaluate at 17, to get pA(k) =1 and so ¢(k) = 1. O
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5 BANACH ALGEBRAS

5 Banach Algebras

A real or complex algebra is a real or resp. complex vector space A with multiplication Ax A :—
A, (a,b) = a-bs.t.

(i)  a(bec) = (adb)c

(ii)) a(b+c)=ab+ac, (a+b)-c=ac+bc

(ifi)  A(ab) = (Aa)b = a(\b)

for all a,b,c e A,b scalar.

A is unital if there exists 1€ A s.t. 1#0 and for all z € A 1a = al = a. This element is unique,
called the unit of A.

An algebra norm on A is a norm on A s.t. for all a,be A, |ab| < |al- |b]|. A normed algebra is
an algebra with an algebra norm. note that multiplication is continuous (as well as addition and
scalar multiplication). A Banach algebra (BA) is a complete normed algebra.

A unital normed algebra is a normed algebra, A with an element 1 € A s.t. for all x € A,
la=al=aandst. 1] =1 (|1 <||1]-[1] and 1 < |1])). If A is a normed algebra which is also
a unital algebra (but not assuming 1| = 1), then [|a|| = sup{|ab| : |b] < 1} defines an equivalent
norm on A that makes A a unital normed algebra.

A unital Banach algebra is a complete unital normed algebra. A linear map 6 : A — B between
algebras is a homomorphism if for all a,b € A 0(ab) = 0(a)-0(b). If in addition A and B are unital
with units 14 and 15 and 6(14) = 1p, then 6 is a unital homomorphism. In the category of
normed algebras, an isomorpism will mean a continuous homomorphism with continuous inverse.
BUT, homomorphisms are not assumed continuous.

Lecture 16 Note: from now on, the scalar field is C.
Examples:

1. C(K), K compact Hausdorff, is a commutative, unital BA with pointwise multiplication
in the uniform norm.

2. Let K be compact, Hausdorff, A uniform algebra on K is a closed sub-algebra of C(K)
that separates points of K and contains the constant functions.

3. The disk algebra A(A) = {f € C(A) : f holomorphic on the interior of A},
A={zeC:|z|<1}.

More generally, let K ¢ C,K # @ compact. We have the following uniform alge-
bras on K : P(K) ¢ R(K) ¢ O(K) ¢ A(K) ¢ C(K), where P(K),R(K),O(K) are
the closures in C(K) of respectively, polynomials, rational functions with no pole in
K, functions holomorphic on some open neighbourhood of K. A(K) = {f € C(K) :
f holomorphic on int(K)}. Later, R(K) = O(K) say, R(K) = R(K) if and only of
C\ K is connected. In general A(K) + O(K), A(K)=C(K) < int(K) =2.

4. Ly (R) with the Lj—norm and convolution f*g(z) = fR f(y)g(x-y)dy is a commutative

Banach algebra without a unit (Riemann-Lebesgue lemma).

5. If X is a Banach space, then B(X) with composition an operator norm is a unital
Banach algebra. It is not commutative if dimX > 1.

special case: if X is a Hilbert space, then B(X) is a C*—algebra (see later).
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5.0.1 Elementary constructions

1. If A is a unital algebra with unit 1, then a unital sub-algebra is a sub-algebra B of A s.t.
1€ B. If A is a normed algebra, then the closure of a sub-algebra of A is a sub-algebra of A.

2. Unitisation: The unitisation of an algebra A is the vector space direct sum A, = A@ C with
multiplication (a, ) - (b,u) = (ab+ Ab+ pa, A\, ). Then A, is a unital algebra with unit
1=(0,1).

The ideal {(a,0) : a € A} is isomorphic to A and will always be identified with A/ We can
weite A={a+Al:ae A XAeC}. If Aisanormed algebra, then A, becomes a unital normed
algebra with |a+ A1| = ||a| +|\|. Then A is a closed ideal of A,. If A is a Banach algebra,
then A, is a unital Banach algebra.

3. The closure of an ideal of a normed algebra is an ideal. If J is a closed ideal of the normed
algebra of A, then A\ 7 is a normed algebra in the quotient norm. If A is a unital normed
algebra and J is a proper closed ideal of A(J # A), then A\ 7 is a unital normed algebra
with 1+7 (J1+J| <|1] =1 and |1+ J| > 1 from an earlier observation).

4. let A be the Banach space completion of a normed algebra. Then A is a Banach algebra
with the following multiplication: given a,b € A, choose sequences (a,), (b,) in A s.t. a, —
a,b,, - b and define a-b:T}i_{ann-bn.

5. Let A be a unital Banach algebra. Let X = A thought of as a Banach space. For a € A,
define L, : X - X, Lo(z) =a-2. Then L, € B(X) and |L,| = |a|. The map L: A - B(X),
a+~ Lg, is an isometric unital HM (homomorphism).

Lemma 5.1. Let A be a unital Banach algebra and a € A. Ift |1 - a| < 1, then a is invertible

(there exists be A s.t. ab=ba =1) and Ha_ln < m

Proof. For allneN, [|(1-a)"| <|1-a]™ so > [(1-a)"|<oo. Hence, > (1-a)"™ converges
n=0 n=0
(1-a)°=1).

Let b= Y (1-a)". Then (1-a)b=b(1-a)= ) (1-a)" =b-1, and so ab = ba = 1. So,

n=0 n=1
b=a'and || =b| <Let b= (1-a)". Then (1-a)b=b(1-a)= Y (1-a)"=b-1, and so
n=0 n=1
ab=ba=1.So,b=a'and |a'| =[] < > [(1-a)"[ <> [1-a|" = # O
= = 1-]1-af

Notation: we let G(A) denote the group of invertibles of a unital algebra A.

Corollary 5.0.1. Let A be a unital Banach algebra.
(i) G(A) is open in A.

(ii) x v+ x7! is a continuous function on G(A).

(iii) Assume (x,) € G(A), v, >x € ANG(A). Then ||:z:,‘11H —> 00 4§ M — 0.

(i) If v € 0G(A) = G(A) N G(A), then there exists (z,) in A s.t. ||z,| =1 for all n and
Zn-x =0 and x -z, as n — oco. It follows that x has no left or right inverse in A, not
even in any unital algebra B containing A as a (not necessarily unital) sub-algebra.

\. J

Proof. (i) Let z € G(A). Ifye A and |y-z| < % then |1-z7'y| = |27 (z-y)| <

B

|z |z - y| < 1. Hence, by 1emma 271y € G(A), which implies that y = z- 27 'y € G(A).
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(ii) Let us fix z € G(A). ForyeG(A) yt-at =y Ha-y)r~! so Hy’l - x’lu < Hy’l” : Hx’lH .
le -yl If |z -y| < ﬁ, then ||ly~*| - =7 | < 2- ”35_1”2 Jz-y| >0asy—>umx.

1

(iii) From proof of (i), if |z - 2,| < X, then z € G(A), a contradiction. So |z —z,| > -

Since, ||z = x| — 0, the result follows.

(iv) Given z € 0G(A), there exists a sequence (z,) € G(A), z, - x. By part (iil) |z, | — oo,
-1

let z, = Ll\l’ for all n € N. Then z,x = z,z, + 2, (z - x,) = HT;HI + zp(x — ) = 0, by the

[

above and since |z, (x — z,)| < |20 ] - |# = 2| = 0. Similarly, zz, — 0.

Assume that B is a unital BA and A is a sub-algebra of B. If y € A and yx = 15, then
Yrzn = zn. S0 |znll = 1 = |yzzn| < |yl - |x2n ], n = o0, a contradiction. Similarly, there is no
yeB st xy=1p.

O

Definition 5.1. Let A be an algebra (always complez) and let = € A.  The
spectrum o a(x) of x in A is defined as follows: if A is unital, then ca(x) ={Ae C: A\1-x ¢
G(A)} and if A is non-unital then o4(x) =04, ().

Examples:

1. A=M,(C), x € A, oga(x) is the set of eigenvalues (evals) of z.
2. A=C(K), K compact Hausdorff, f € A, ca(f) = f(K).

3. X a Banach space, A=B(X), T € A, then
ca(T)={\eC: \Id-T not an isomorphism}.

Theorem 5.1. Let A be a Banach algebra, x € A. Then oa(x) is a non-empty, compact
subset of {AeC: |\ < |z|}.

Proof. Wlog, A is a unital Banach algebra. If [A| > |z, then |z| < 1, so by lemma 1-{eG(A)
and so A1-z = A(1-5) € G(A). Hence, o4(x) € {A e C: |\ < [z]}. Also, 0.4(x) is the inverse image
of the closed set A\ G(A) (corollary [5.0.1[7)) under the continuous function A » C - A: A\1 -z
and hence o 4(x) is closed. It follows that o4 (x) is compact.

04(z) is non-empty: consider f: C\oa(z) > A, f(A) = (A1 -z). By corollary [5.0.1(i) f is
continuous and for A # u:

FO) = f () = F) (1 = 2) = (A1 - 2)) f (1)

= f)(r =) f(p)
= (=N f(p).

So W =—f(N)f(u) » —f(p)? as A - p because f is continuous. Thus, f is holomorphic. If
- 1 -1 11 1 .

AI> || then A1 -z € G(A) and [(A1-2)7 ] = & H(1 o) H < Ry = e~ 0 as A - oo

If 04(x) where empty, then f is a bounded entire function, so by vector-valued Liouville, f is

constant, and since f(A) - 0 as |\| - oo, f =0, a contradiction. O

Corollary 5.1.1 (Gelfand-Mazur). A complex unital normed division (G(A) = A~ {0})
algebra is isometrically isomorphic to C.

Proof. Let us define the map 6 : C - A, (\). = A-1. then # is an isomtric homomorphism. To
show that it is onto, fix any x € A. Let B be the completion of A. Then B is a unital Banach
algebra. Then by Theorem op(z) is non-empty which implies that there exists A € C s.t.
Al -z is NOT invertible in B, hence A1 -z is not in G(A) which means that A1 —2 = 0 and so
O(N) = . O

37



5 BANACH ALGEBRAS

Definition 5.2 (Spectral radius). Let A be a Banach algebra and z € A. The
spectral radius ra(x) of x in A is ra(x) = sup{|\|: A e oa(x)}. From Theorem ra(z)
is well-defined and ra(x) < |z.

Note: let z,y be comuting elements of a unital algebra A. Then x-y € G(A) <= x € G(A)
and y € G(A) (use the fact that z(zy) = (xy)z =1 gives yzx = yza - yxz = yrz = 1).

7

Lemma 5.2 (Spectral Mapping Theorem for polynomials). Let A be a unital Banach

algebra and x € A. Then for a complex polynomial p = Z arz® we have
k=0

oa(p(x)) = {p(A) : Aeoa(x)} =p(oa(z))

n
where p(z) =y apz® and 2% =14.
k=0

n

Proof. Wlog n # 1 and a, # 0 (04(A1) = {A\}). Fix p e C. Write p—p(z) = ¢- [[(Mx - 2) for
k=1
some ¢, A1,..., A, € C, ¢ # 0. note that {A: p(A\) = u} = {A\,...;\n}. Now p ¢ oa(p(z)) =

n
pl = p(z) = [J(Al - ) is invertible <= A, — zA;1 -z is invertible (use previous note on
k=1
commutativity and invertibility) <= there exists no A € o4(x) s.t. p(A) = u. The result now
follows. O

Theorem 5.2 (Beurling-Gelfand Spectral Radius Formula (SRF)). Let A be a unital Ba-
nach algebra, © € A. Then

ra(z) = lim |z”|" = inf |z"|" .
n—>oo neN

Proof. Wlog A is unital. By lemma[5.2] if A € 04(z) and n € N, then A" € o(z"). By Theorem
1 1
A" < ™| and |A] < || ™. It thus follows that ra(x) < infpey [2™] ™.

Consider f:C~oa(x) = A, f(A) = (M -z)7!, by the proof of Theorem f is holomorphic.
Note that Cxoa(z) 2 {|A| > ra(z)} 2 {X: [A| > |z[}. If[A| > |2, then f(X) = + (1 - f)_l =+ f\—n
(by the proof of lemma [5.1). )

Fix ¢ € A* (Banach space dual). Then ¢ o f is holomorphic on C \ g4(x) and if |A| > |z|,
then o f(A) = 1 Zo % This Laurent expansion must also be valid on {|\| > r4(z)}. So for
Al >74(z) and for ¢ € A, gb(i—:) -0 asn — oo. So for |A| > ra(z), % 2 0. By proposition
there exists M >0 s.t. for all n € N, ||§—:|| < M and so limsup Hx”H% < |A]. We have thus proved

that r4(z) < inf Hm””% < liminf Hm””% < limsup Hx””% <ra(z). O
neN neN neN

Theorem 5.3. Let A be a unital Banach algebra and B be a closed, unital sub-algebra of
A. Let x € B. Then, og(x) 2 oa(x) and dop(x) € oga(x). It follows that op(x) is the
union of oa(x) and some of the bounded components of C\ o4(x).

Before we proceed with the proof of the above, we prove a topological lemma.

Lemma 5.3. Suppose V and W are open sets in some topological space X s.t. V €W and
W contains non boundary points of V. Then V is a union of components of W.
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Proof. Let Q be a component of W that intersects V. Let U be the complement of V. Since W
contains no boundary point of V, € is the union of two disjoint open sets 2n) and Q2 nY. Since
Q) is connected, QN is empty and so it follows that Q c V. O

Proof of Theorem[5.3 op(x) 2 oa(x) holds since an element invertible in B is also invertible in
A. Let X € dog(x). then, there exist (\,) € C\op(x) s.t. Ay > A\ So \,1 -2z € G(B) and
Anl -z > Al -z € B\ G(B), which means A1 -z € dG(B). By corollary [5.0.1(i), A1 - z is not
invertible in A, that is A € 04 ().

To conclude, let 24,Qp be the complements in C of 04(x),op(x) respectively. The preceding
discussion implies that 0Q2p € 04 (x) and so can use the topological lemma with V = Qp, W = Q4.

Thus, Qp is the union of components of Q4. This means that op(x) is the union of o4(z) and
some bounded components of Q4 =o4(x) \ oa(x). O

()

C_ D
()

(a) oa() (b) on(x)
Figure 5: Illustration of Thheorem for a sub-algebra Bc A, z € B.

Proposition 5.1. Let A be a unital Banach algebra and C' a maximal commutative sub-
algebra of A (wrt inclusion). Then C is a unital closed sub-algebra of A. Moreover, for all
zeC, oc(z)=0a(z).

Proof. C is a commutative sub-algebra of A. C' 2 C and by maximality C = C' is closed.

C +C-1 is a commutative sub-algebra of A contains C, so by maximality C =C+C-1,i.e. 1€C.
Fix z € C. We know that oc(z) 2 04(2). Assume Ae C\o4(x)/ Let y= (A1 -2)7! (in A). Have
for all z € C, 2(A1 -—z) = (A1 -x)z as C' is commutative and hence yz = zy. It follows that the
sub-algebra generated by C'u {y} is commutative, so by maximality it is in C' and so y € C and
A ¢ oc(x). Hence, oc(x) Coa(x). O

' ")

Definition 5.3. A non-zero homomorphism ¢ : A — C on an algebra A is called
a character on A. Let ® 4 be the set of all characters on A. If A is unital, then ¢(14) =1
for all characters ¢.

Lemma 5.4. Let A be a Banach algebra and ¢ € ® 4. Then ¢ is continuous and |¢| < 1.
Moreover, if A is a unital Banach algebra, then |¢| = 1.

\.

Proof. Wlog, A is a unital Banach algebra: can define ¢, : A, - C by ¢,(a + A1) = ¢(a) + A
Then ¢, € ®4, and ¢,l4 = ¢. Now assume that A is a unital Banach algebra and ¢ € ®4.
Let z € A and assume ¢(z) > |z|. By Theorem d(x) ¢ oa(x). So ¢(x)l -z € G(A). So
1=¢(z) = p((p(x)1-2)-(¢(x)1-2)7!) = (¢(x)1-x) = 0, a contradiction. So |¢p(x)| < | X, giving
|#] < 1. In fact |¢| =1 since ¢(1) = 1. O

Lemma 5.5. Let A be a unital Banach algebra and J be a proper ideal of A. Then J is
also a proper ideal. In particular, maximal ideals are closed.
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Proof. Since J is proper, JnG(A) is empty. By corollary G(A) is open giving that 7nG(A)
is empty, hence J is proper. We have shown that if M is a maximal ideal of A, then M is proper
and hence so is M. By maximality, M = J is closed. O

Notation: For an algebra A, we let M 4 be the set of all maximal ideals of A.

Theorem 5.4. Let A be a commutative unital Banach algebra. Then the map

Dy > My
¢ — ker ¢

s a bijection.

\.

Proof. Well-defined: let ¢ € ® 4. Since ¢ is a homomorphism, ker ¢ is an ideal of A. Since ¢ is a
non-zero linear functional, ker ¢ is a 1-codimensional sub-space. So ker ¢ is a maximal ideal.

Injective: assume ¢, € @4 and ker ¢ = ker ). For z € A, ¢(x)1-x € ker ¢ = ker ¢, which implies
(P(z)1 - ) =0 giving ¢(z) - ¥ (1) = () = ().

Surjective: let M € M 4. By lemma M is closed, so AN M is a unital Banach algebra in the
quotient norm. From algebra, A\ M is a field, so a division algebra. By corollary (Galfand-
Mazur), AN M = C. So the quotient map g: A - A~ M ”is” a character and ker g = M. O

7

Corollary 5.4.1. Let A be a commutative unital Banach algebra and x € A. Then
(i) xeG(A) < forallpe P4, ¢p(z) +0.
(ii) oa(z) ={¢(x): peDa}.
(iii) ra(z) =sup{|p(z)|: pe a}

Proof. (i) If z € G(A), then for all characters ¢, 1 = ¢(1) = ¢(z-271) = ¢(x)-(é(x)) ™! implying
that ¢(x) # 0.
Assume that z ¢ G(A), then J = 2A = {za:a € A} is a proper ideal of A, and so is contained
in a maximal ideal which is ker ¢ for some character ¢ by Theorem So ¢(x) = 0 since
z e J ckero.

(ii) Aeoa(z) < (A1-z)¢G(A) < (by (4i)) there exists ¢ € D4 s.t. (A1 -2) =0, i.e.
A=¢(x).

(iii) Is immediate from ().

Corollary 5.4.2. Let x,y be commuting elements of a Banach algebra A. Then

ra(z+y) <ra(z)+ra(y)
ra(z-y) <ra(x)-raly).

Proof. Wlog, A is a commutative unital Banach Algebra. (A — A, if necesary and then replace
A by a maximal commutative sub-algebra containing z,y and use proposition . Then for all
characters ¢, |[¢p(z+y)| < |¢(x)|+|p(y)| < ra(z)+ra(y) by corollary Taking supremum over all
characters ¢ gives r4(z +y) <ra(z) +r4(y). Argue analogously for the remaining inequality. [

Examples:

1. A=C(K), K compact, Hausdorff. ®4 = {8y : k € K} (6x(f) = f(k)). 72" is easy to
check.
7c”: let M e My, Seek k€ K s.t. M = kerd,. Assume there is non such A. Then
for all k € K, there exist fr € M s.t. fr(k) # 0. By continuity, there exists open
neighbourhoods Uy, of k s.t. fily, # 0. By compactness, there exist k1,...,k, € K s.t.
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UJUy, = K. Then g :]Z::l|fkj|2 >0 on K. So % € C(K). Also, g = J;fkj .fkj eM, a
contradiction.

2. Let K ¢ C, K compact and non-empty. Then ®x (k) = {0y :w e K}.
3. ®a(ay = {0w 1w e A} where A(A) is the disc algebra.

4. Wiener algebra: W = {f € C(T) : Z|fn| < oo}, where T = {z € C : |z| = 1},

nez

~ ™ . .
.= i / f (ew)e_medﬁ. W is a commutative unital Banach algebra with pointwise
-7

operations in the norm | f||; = >’ | ful- [Tt is isometrically isomorphic to £;(Z) which is a
nez
Banach algebra in the ¢;—norm and convolution product. That is for a = (ay),b = (b,),
(a *b), = Z agbj,n € Z. The isomorphism is given by f — (fn), € Z]. Have
Jj+k=n
Dy = {0y :weT}, so ow(f)=f(T). Soif feC(T) has absolutely convergence Fourier
series and is nowhere zero, then % e W and so has an absolutely convergence Fourier

series and is nowhere zero (Wiener’s Theorem).

Lecture 19 Definition 5.4. Let A be a commutative unital Banach algebra. Then

4 ={peBa::6(ab) = 6(a)g(b)Va,be A, §(14 =1}
= By« (ab-a-b)"1({0}) n 131 ({1})

is weak-* closed. (Here for x € A, & € A** is its canonical image in A**). Hence,
Dy is w*—compact. The w* — topology on P4 is called the Gelfand topology. P4
with the Gelfand topology is the spectrum of A OR the character space of A OR the
mazimal ideal space of A. For x € A, &lo, is continuous on ®4 wrt the Gelfand topol-
ogy; we denote &le, by Z. So & € C(P4)-called the Gelfand transform of x. The map

A—>C(Pa)

T T

is the Gelfand map.

Theorem 5.5 (Gelfand Representation Theorem). Let A be a commutative unital Banach
algebra, then the Gelfand map is a continuous unital homomorphism A - C(®4). Forxz e A

(1) 2] =ra(@) < 2.
(i) oc(@,4)(2) =0 ().
(iii) z e G(A) —> &eG(C(D)).

Proof. The Gelfand map is linear since x - & : A > A** is linear.
Homomorphism: for z,y € A 7g(¢) = ¢(zy) = ¢(z)d(y) =& - ¢ for all ¢ € D4, so Ty = .
Unital: 14(¢) =¢(1a)=1forall pe Py, s01y = i(I,A.

Continuity: follows once we prove (7).

(i) 4], = sup{|#(9)] ¢ € @4} C7EEI 1y 1) TR g

=b(z) o5 4.1((i
(i) oeqnp (@) = {|2(O): g e @A} Vo a(2).
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(iii) Immediate.
O
Note: the Gelfand map need not be injective or surjective. Using Theorem, its kernel is
quasi-nilpotent=0
{reA:o4(x)={0}} ={xecA: lim H:c"||% }
= () ker d)nﬁoo

PP 4

= N M
MEMA

—_—
Jacobson radical of A,J(A)

Say A is semi-simple if J(A) = {0}.

6 Holomorphic Functional Calculus (HFC)

Recall For a non-empty open set U € C, O(U) = {f : U - C: f holomorphic} is a LCS with the
topology of local uniform convergence induce by the family of semi-nnorms: f || f|| = sup|f]|
K

for non-empty compact K € U. O(U) is also an algebra with pointwise multiplication which is

cotinuous wrt the topology of O(U) [a Fréchet algebral.

Notation: Define e,u € O(U) by e(z) =1 and u(z) = z for all z € C. O(U) is a untial algebra
with unit e.

Theorem 6.1 (Holomorphic Function Calculus). Let A be a commutative unital Banach
algebra, x € A, U € C open and o o(x) CU. Then there exists a unique unital homomorphism
O, : OU) - A s.t. Oy(u) =x. Moreover, ¢p(0,(f)) = f(d(x)) for all p € D4, f e OWU)
and 04 (0:(f)) = {f(A): Aeoa(z)}.

Note: Think of ©, as "evaluation as a”-write f(x) for ©,(f). Then e(z) =1, u(x) =z. If pis
n n

a polynomial, there exist n € N,aq,...,a, € C s.t. for all z € C, p(z) = Z aiz®, then p = Z apul.
k=0 k=0

So ©,(p) =p(z) = Zn: ax (04(u))" = zn: arz® = p(x) as defined in lemma 5.2
k=0 k=0
Also, ¢(f(x)) = f(p(z)) for all feOWU), pe Py and oa(f) ={f(N): Aeoa(x)} = f(oa(x)).

7~

Theorem 6.2 (Runge’s Approximation Theorem). Let K be non-emptly and compact.
Then O(K) = R(K), i.e. if f is a function holomorphic on some open neighbourhood of
K then for all € >0, there exists ration function r with no poles in K s.t. |f —r|x <e.

More precisely, given a set A consisting of one point from each bounded component of C\ K,
r can be chosen s.t. all its poles are in A. If C\ K is connected, then A is empty so in fact
we get O(K) =P(K).

6.1 Vector-valued integration

b
Let a < b in R, X be a Banach space and f : [a,b] — X continuous. We define ”f f)de.

We choose dissections D, = a = tén) < t&") <eee < t,(cn) =bs.t. D, = max (tg.")—t;fi) - 0asn — oo.
<j<kn

Since f is uniformly continuous, the limit of
ST OO
Z f(tj )(tj - tj—l)
J=0
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b
exists and is independent of (D,,). We define / f(t)dt to be this limit. It follows that for all

¢pe X
b b
o [ 1) - [ stsana

b
Taking ¢ to be a norming functional for [ f)dt, we get

H f " ()t

Let v be a path in C (continuously differentiable), f: [v] = X be continuouﬂ Define

< [M1r@la aol<n.

[s@= [ iawn o
Given a chain T' = (74, ... ,'yn)lﬂ and continuous f :[y] = X define
Jor@a==% [ 16wy o

and have for all ¢ € X*

o( [ 1e1z) = [[o(s)a

e

Theorem 6.3 (Vector-valued Cauchy’s Theorem). Let U € C be open, T’ a cycleﬂ mU, s.t.
1
(T, w) = 5= / dz=0 for allw¢U and f:U - X holomorphic. Then
v 2

) w
/ f(z)dz=0.
r

®a cycle is a chain I" = (1, ...,7n),n € N of paths v; : [a;,b;] - C s.t. there exists a permutation p € Sp,
s.t. v;(bj) = Vo(i)(ap(sy) forall j=1,...,n.

and

<{(T) - sup [ f(2)]-

z€e[v]

\

Proof. For ¢ € X*, apply the scalar version of Cauchy’s Theorem to deduce

¢([Ff(2)d2)=0, for all pe X*

and then apply Hahn-Banach to conclude. O

Lemma 6.1. Let K be a non-empty compact s.t. K <U, U < C open. Then there is a cycle
I' such that
1, wekK

(T’ w) :{0 w U,

Proof. Note that K being compact means that dist(K, C\U) = § > 0. Thus, there exists an n € NEL
s.t. K is covered by finitely many (by compactness) boxes in the dyadic lattice 27"Z? where any
adjacent to them boxes are also € U, see figure @ More precisely, A = {(x,y) € Z? : [x-27", 2-27" +
27" x[y27", y-27"+27"|nK # @}. Have |A| < co. Now, define B = Au{(z+1,y=1) € Z%: (x,y) € A)}.
Let T be the boundary of the boxes above, that is

=0 Y [z-27"x-27"+27" | x[y-27"y-27" +27"]
(z,y)eB

14[4] denotes the path itself in C.
15any finite collection of paths defined as above.

16for instance, take n € N s.t. 2227 < %
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oriented counter-clockwise (black curve in figure @, and note that ' c U \ K.

Now, for any w € K, w is either in the interior of a box or the interior of the union of boxes
adjacent to it. Regardless, one computes the winding number around such a curve T' (red in
ﬁgur, which is seen to be the same as the winding number of I' around w, by homotopy invariance

(Cauchy’s Theorem). One argues similarly for w € C\U to obtain n(T",w) = 0. O
u
27‘”,22
4
D 4
K ]
| —
/1_ — 1 =
/ |k K
T r
T w ~—1 —
\ »>
\

Figure 6: Illustration of proof of Lemma where n e Nyw € K and K,U,T (in black) as in in the
lemma.

Lemma 6.2. Let A,x,U be as in Theorem . K =c4(x) and fix a cycle (guaranteed to
exists by Lemma I'inUNK s.t.

1, weK

(T, w) :{0 wdU.

Define the map

Then,
(i) Oy is well-defined, linear, continuous.

(ii) For a rational function r with no poles in U, O (r) = r(x) in the usual sense.

(iii) ¢(0:(f)) = F($(x)) for all ¢ € Ba,f € OWU) and 04 (Oa(f)) = {F(N) : A ¢

UA(.T)}.

Remark. So we can think of the HFC as a Banach algebra valued Cauchy integral formula. Lemma
almost proves the theorem . It remains to show that ©, is a homomorphism and it is
unique.

Proof. (i) If z € [['] then z ¢ K = 0a(x). So z1 -z € G(A). By the proof of Theorem
the map 2 ~ (21 -2z)7! is continuous (indeed, holomorphic). So, O, is well-defined. It’s also
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linear by linearity of integration. We also have the estimate
1 _
192(A)] < 54T - sup | f(2)]- [(z1-2)7.
™ ze[v]

Since the map z ~ |[(21 - z)7*|| is continuous on the compact set [I'], it is bounded. So there
exists M >0 s.t. for all fe OWU) [O(f)| <M -|flr)

By Lemma O, is continuous.

(ii) First we show O,(e) = 1.

Fix R > |z| and let -y be the anticlockwise boundary of D(0, R). Then v and T" are homologous
in C\ K. So, by Cauchy’s Theorem and the proof of Lemma [5.1]

0. (e) :ﬁf(,ﬂ-x)*ldz
Y
1& (z\"
1
LI
Y2 p=0 \% "
1z
_yoe 1
_ZHZOﬁﬁgzn+ld2

sum conv. absolutely and uniformly on
= :I’O = 1

Let r € O(K) be a rational function. So r = 57 for polynomials p,q s.t. for all z € U,

=K
q(z) # 0. By Lemma oa(q(z)) = {qg(N) : A eoa(xz)} and so 0 ¢ c4(q(z)). We define
r(z) = p(x) - q(z)™! ("usual sense”). For z,w € C, r(2) - r(w) = ¢(2)q(w)  (q(w)p(z) -
q(2)p(w)) = q(2) q(w) t(2~w)s(z,w), where s is a polynomial in z,w. Hence, r(2)1-r(z) =
q(2)tq(w)™ (21 - w)s(z,w) and
O.(r) = 2%” . 7;(/2_)/ (21 -2z)tdz
r(z)1-r(z)+r(z)
= %[yq(z)_lq(w)_ls(z,w)dz+ﬁ f’y(zl—x)_l)dzw(x)

=0 by Cauchy

=r(x)-0,(e) =r(x).

(iii) ¢ (©.(f)) = 2%” [f(z)(zl —x)'dz = f(¢(x)) by Cauchy’s integral formula. and so
2!

=f(¢(x))
04 (0.()) B4 (0,(f)): e ®al = {f(N) : Aeoa(2)}.

O

Proof. Proof of Theorem Let A =R(K). Let z € A be the element z(z) = z for all z € K.
oa(z) ={AeC:Aeou(z)} = K (for A\ ¢ K, s is the inverse to A1 - z).

Let f be holomorphic on some open set U 2 K. Let O, : O(U) - A be given by Lemma

0, (f)(w) = 60 (0.(f)) = F(Bu(x)) = f(w) for all w € K. So ©,(f) = flx € R(K). So
O(K) = R(K).

Let us now fix A as in the statement of Theorem Let B be the closed sub-algebra of A
generated by 1,z, (A —z)™}, A e A. So B = closure in C(K) of rational functions with poles in A.
By Theorem op(z) is the union of o4(z) and some of the bounded components of C \ K.
Since for any such component D there exists Ae AnD,so A-1-x€G(A). So op(z)=0a(x). So
O, (f) takes values in B, i.e. flk € B. O
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Corollary 6.3.1. Let LetU c C be non-empty and open. Then the algebra R(U) of rational
functions with no poles in U 1is dense in O(U).

Proof. Let f e O(U) and V be a neighbourhood of f in O(U). We need VN R(U) + @.

Wlog, V={geOWU): |g-flx <€} for some non-empty, compact K €U and ¢ > 0. Let K be
the union of K and those bounded components D of C \ K that are combined in U.

If D is a bounded component of C\ K, then D is a bounded component of C\ K s.t. D\U + &
so we can fix A\g € D\NU. Let A be the set of all these \y’s. By Theorem there exists rational
function r s.t. |r - f| x < € and the poles of r are in A. Hence, r ¢ V nR(K). O

Combining the above results, we can now embark on a proof of Theorem [6.1] which we started
this section with.

Proof. Let ©, be as in lemma Then for all f,g € R(U), O,(fg) LemmdB2ii) (f - 9)(z)
= f(x)g(z) = 0,(f)-O.(g) and conclude by density of R(U) in O(U) and continuity that O, is a

homomorphism.
For uniqueness, assume ¥ : O(U) - A is a continuous unital homomorphism and ¢ (x) = x.

Then for all polynomials p, ¥(p) = p(x) = ©,(p) and so for all rational r e R(U) ¥(r) = r(z) =
O.(r) and hence ¥ = ©, by density and continuity. O
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7 (*-algebras

A C*- algebra is a complex algebra A with an involution: a map A - A,z — z* s.t.

() QAz+py)* =A™ +ny*
(ii)  (ay)* =y*a*

(i) ==z

for all x,y € A, A\, u e C. If A is unital, then 1* = 1. A C*-algebra is a Banach algebra with an
involution s.t. the C*-equation holds:

|la*z| = |lz|®, forall zeA.

A complete algebra norm on a *-algebra that satisfies the C*—equation is a C*—norm. So a
C*-algebra is a *-algebra with a C*—norm on it.

Lecture 21 Remark.
1. If Ais a C*—algebra, and x € A, then |z*| = |z| (|z|? = |#*z| < |z*| - |=| so |z| < |=*| and
hence |x*| < |z**|| = ||| ). So the involution is continuous.
A Banach algebra with an involution s.t. |z*| = |z| for all x.

2. If A is a C*—algebra and if A 2has a multiplicative identity 1 # 0, then automatically A is a
unital C*=agebra, 1] =1 (1] = [171] = [1]).

Definition 7.1. A *-sub-algebra of a *-algebra A is a sub-algebra B of A s.t. for all v € B,
x* € B. A C*-sub-algebra of a C*—algebra is a closed *-algebra. So a C*-sub-algebra of a
C*—algebra is a C*—algebra. The closure of a *-algebra of a C*—algebra is a *-sub-algebra,
so a C*—algebra.

A *-homomorphism between *-algebras is a homomorphism 6 : A —» B s.t. (z*) = 6(x)*
for all z e A. A *isomorphism is a bijective *-homomorphism.

Examples:

1. C(K), K compact Hausdorff, is a commutative, unital C*-algebra with involution f
f*, where f*(k) = f(k) for all ke K, f e C(K).

2. B(H), H Hilbert space is a unital C*-algebra with involution T+~ T* where T* is the
adjoint.

3. Any C*-sub-algebra of B(H), (H any Hilbert space) is a C*-algebra.

... And that’s all folks!

Remark. the Gelfand-Naimark Theorem says that if A is a C*—algebra then there exists a Hilbert
space H s.t. A is isometrically *-isomorphic to some C*-sub-algebra of B(H). We will prove the
commutative version.

Definition 7.2. Let A be a C*—algebra and x € A. We say x is
(i) hermitian or self-adjoint if x* = x

(i1) unitary if (A is unital and) v*x = xx* =1

(i1i) normal if x*x = xa*
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Examples:

1. 1 is both hermitian and unitary. In general, hermitian and unitary are normal.

2. feC(K) is Hermitian < f(K) ¢ R and unitary <= f(K) cT. (Recall: f(K) =
UC(K)(f))-

Remark. 1. If A is a C*—algebra and v € A. Then Jthere exist unique hermitian h,k € A s.t.
x=h+ik. [If x = h+ik then * = h—ik, so h = ¥5~ k= 5 and conversely, this choice for
h, k works].

2. If A is a unital C*—algebra and x € A, then x € G(A) <= z* € G(A) and in this case
(@) = ().
It follows that ca(z*) = {A: Aeoa(z)} M -2eG(A) <= (M -z)*=X-1-2"ecG(A))
so ga(z*)=0a(x).

[ Lemma 7.1. Let A be a C*—algebra and x € A. Then ra(zx) = ||| provided x is normal.

on

Proof. Assume z is hermitian. Then |z|* = |22| and inductively, ||1’H2n = |#*"| for all n. By the

spectral radius formula (Theorem , ra(z) = lim er ||Tn = ||z

If x is normal, then |z*z| = ra(x*z) because x*z is hermitian.

(c 7’
Now, ra(e*e) <ra(ws)ra(e) < |o*]-|]. But |z* = |+*2]. So we have equality through-
out and so |z| = ra(z). O

[ Lemma 7.2. Let A be a unital C*—algebra and x € A. Then ¢(x*) = ¢(x) for all pe Py. ]

Proof. Wlog we can assume that x is hermitian. [For general x, write x = h + ik, h, k hermitian.
Then ¢(z*) = ¢p(h-ik) = p(h) —ip(k) = d(x) (¢(h), d(k) real)]. Now assume x is hermitian ¢ € ® 4
and write ¢(x) = a +1ib, a,beR.

Need: For t e R,

|p(z +it1)|> =l|a+i(b+1t)|?
=a?+ (b+t)?=a®+b%+2bt +12
<z +itd|? = |(z+it)* (z +it)|
= |[(z—it)*(z +it)| = |22 +t21|| < ||ac2|| + 12,

Hence, b = 0. O

Corollary 7.0.1. Let A be a unital C*—algebra.
(i) If x € A is hermitian, then o4(xz) S R.
(i1) If x € A is unitary, then o(x) € T.

(i11) If B is a unital C*-sub-algebra of A and x € B is normal then op(x) = o4(x).

Proof. (i) Let B = C*-algebra generated by 1,z (check *-sub-alg) p(z) : p poly . B is com-
mutative, so 0)B(z) = {¢(z) : ¢ € p}. By Lemma[7.2) o4(z) cop(z) cR.
(ii) Let B = C*-algebra generated by by 1,z,2* = {p(z,z*) : p poly in two variables }. B is

commutative, so op(z) = {¢(z) : ¢ € 5}. By Lemmal|7.2l 1 = ¢(1) = ¢(2*z) = ¢(2)d(2),
hence |¢p(x)[> =1. So oa(x) cop(x) cT.
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(iii) For the last part, assume « € B is hermitian. Then o4(z) € R, so C\o4(x) is connected.
So it follows by Theorem [5.3|that o4 (x) = op(x).

Now assume x € B is normal. Then for A € C we have

M -—2eG(A) <= AN -zeG(A)& (A1 -2)"cG(A)
commutéiflements ()\1 B ,7;‘)()\]_ B x)* c g(A)
hermitian

S (AL - 2) (ML - 2)* € G(B)

commuting elements N —ze Q(B) & ()\1 _ .’b)* c g(B)
<~ AN -zeG(B).

O

Remark. T € B(H), T hermitian or unitary, then o(T) = do(T) € 04,(T) = set of approzimate
evals. So o(T') = 04,(T) (also holds for normal operators).

Theorem 7.1. Let A be a commutative unital C*—algebra. Then there exists compact,
Hausdorff K s.t. A is isometrically isomorphic to C(K). In particular, the Gelfand map

A—-C(Pa)

a3 (=> 48

is an isometric *-isomorphism.

\.

Proof. By Theorem the Gelfand map G : A - C(®4) where G(z) = &lg,, is a unital homo-
morphism. It remains to check the following three properties:

G is a *-homomorphism: z*(¢) = ¢(z*) Lemgmm = i(¢) = (&)*(¢) for all ¢ € Phiy.

G is isometric: |G(z)| = 2], o R ra(x) A commutative Lemmallll g o) 4 ¢ A,

G is surjective: let A be the image of G. So A = {#:2 € A}. SInce G is an isometric unital *-

homomorphism, it follows that A is a closed sub-algebra of C (®4) containing the constant functions
and closed under conjugation. Also A separates points of ®4: if ¢ # ¢ in @4, then there exists
zeAst. ¢(x) = Y(z), e (@) % 2(¢). By Stone-Weierstrass, A=C(P4). O

Applications:

1. Let A be a unital C*-algebra and let € A. Say z is positive if z is hermitain and
oa(z) € [0,00). We show there exists a unique positive y € A s.t. y? = x, called the
square root of x, denoted 22,

Existence: B = C*—sub-algebra generated by by 1,z = {p(z) : p poly }. B is a commutative
unital C*-algebra. By Theorem [7.1] the Gelfand map

B —C(®p)
w - W

ColE T i
ou) O'B(Z‘) ColZ0]

is an *-isomorphism. Now, we compute o¢(q,,)(Z) =""oa(x) c[0,00).

The map ¢ € P, ¢ — /i(¢) € C(Pp), so there exists a y € B s.t. §(¢p) = /Z(¢p) for all
pedp. y* =(§)* =V =& = 3. The Gelfand map is injective, so y* = y, i.e. y is hermitian.
Now, 04(y) = o5(y) = oc(@,)(9) € [0,00), so y is positive. Finally, y? = (§)? = &, so y* = .
Note that y is a limit of sequence of polynomials in z.
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3

Uniqueness: Assume z € A is positive and 22 = . Have zx = zz = 23, so zp(z) = p(z)z for
b

all polynomials p, so yz = zy. Let B = C*—sub-algebra generated by 1,y,z. Then Bis a

commutative unital C*-algebra containing y, z, 2 = % = 22. Theorem gives that the

B-C(®p)

w W

is an isometric *-isomorphism. o¢c (e ,)(9) = 05(y) = 0a(y) € [0, 00). Also, 22o2ogog2=
92 and hence ¢ = 2 and thus y = z.

This applies to a positive operator T € B(H ), where H is a Hilbert space (T is positive <
for all z € H{Tx,z) >0).

. Polar decomposition: let H be a Hilbert space, and T € B(H) invertible. Then there exists
unique operators R,U s.t. R is positive, U is unitary and T = RU.

Existence: TT* is positive ((T'T*z,z) = |[T*z|* > 0). Let R = (IT*)2. So R® = TT* is
invertible, and hence so is R (being the product of R, R, commuting elements is invertible

R2
< R). Let U =R'T. Then U is invertible and UU* = RITT*(R1)* R TT* R™! =1d.

Uniqueness: if T'= RU, R positive, U unitary, then TT* = RUU*R = R? so R =/TT* and
U=R1T.
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8 BOREL FUNCTIONAL CALCULUS AND SPECTRAL THEORY

8 Borel Functional Calculus and Spectral Theory

Throughout we fix:
H non-zero, complex Hilbert space.
B(H) a bounded linear operator on H.
K compact, Hausdorff.
B Borel o-field on K.

8.1 Operator-valued measures

7

Definition 8.1 (A resolution of the identity of H over K).
A resolution of the identity of H over K (roti of H over K ) is a map P: B - B(H) s.t.

(i) P(2)=0 and P(K) =1d.

(ii) For all E € B P(E) is an orthogonal profection.

(iii) For all E,F ¢ B P(EnF)=P(E)oP(F)=P(F)o P(E).
(iv) For oll E,F =@&. Then, P(EUF)=P(E)+P(F).

(v) For all x,y € H the map P, , : B - C defined by P, ,(F) = (P(E)x,y), E€B, is a
regqular complex Borel measure.

Example:
H-= L2[07 l]a K= [Oa 1]7 P(E)f = 1Ef

Simple Properties:

(i) Forall E,FeB P(EnE),P(F) commute (directly follows from (i) above).

(ii) If EnF = @, then P(E)(H) L P(F)(H). That is for all z,y € H (P(E)z, P(F)y) =
(P(F)- P(E)z,y)(P (E1 F) 2.y) = 0.

(iii) For z € H, P, is a positive measure of total mass Py »(K) = |2]*. (Pp.o(E) = (P(E)z,z) =
(P(E)%z,z) (P(E)x, P(E)x) = |[P(E)z|* > 0, which equals |z|* if E = K).

(iv) p is finitely additive and for z € H, E — P(E)x : B - H is countably additive. That is, for
E,eBneN E,nE, =@ for all m #n,

(%P(Em;/) - SAPE )= T Pay(E)
—P,y(UneNE) < (UneNEn)x7y)

for all y € H so

S P(E,)x = P(U En)x

neN neN
Note that Y |P(E) | < |z|? be Bessel's inequality since (P (Upex E,)x), . are pairwise

neN
orthogonal.

(v) P need not be countably additive, but if P(E,) =0 for all n € N then P (U,ey Er) = 0.

n-1
(vi) For (E,)nen C B, consider the sequence Fy = Ey, F,, = E, \ | E;, for n> 1, then
i=1
P(U En)x:P(U Fn)m: > P(F,)z=0, forallxzeH.
neN neN neN
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Definition 8.2 (The algebra Lo (P)). Let P be a resolution of H over K. Say a Borel
function f: K — C is called P—essentially bounded if there exists E € B s.t. P(E) =0 and
f bounded on K \ E.

Then define

which is attained (check!).

Let Lo (P) be the set of all P-essentially bounded Borel functions f: K — C. This is a
commutative, unital C*—algebra with pointwise operations and |-|., [As usual, we identify
fig€ Loo(P) P-a.e., if there exists E€ B s.t. P(E)=0, f=g on K\ EJ.

| floe = mf{|f o : E € B, P(E) =0},

Lemma 8.1. Let P be as above. Then there exists an isometric, unital *-homomorphism
®:Lo(P)— B(H) s.t.

(i) (®(f)z,y) = fosz,y for all f € Loo(P) for all x,y € H.

(ii) |®(f)z|? = fK|f|2de,w for all f € Lo (P) for all x,y € H.

(i1i) For S e B(H), S commutes with all ®(f), f € Loo(P) < S commutes with all
P(E), EeB.

Note: ®(f) is uniquely determined by (7). We denote ®(f) by /K fdP. So it says

< fK fdPa:,y>= fK fdP,.,.

Proof. Sketch Define ®(1g) = [, 1gdP = P(E).

For simple functions s = )" a;1g,, ®(s) = f sdP =Y a;P(E}).
K

J=1 J=1

® is an isometric *-isomorphism, unital, on simple functions. Extend by density. O

Definition 8.3. let Lo, (K) be the set of all bounded Borel functions f : K — C. This
is a commutative unital C*—algebra with pointwise operations and the sup-norm | f| ; =
sup|f(2)|. If P is a resolution of the identity of H over K, then Lo (K) S Loo(P) and the
zeK

inclusion is a norm decreasing unital *~homomorphism.

Theorem 8.1 (Spectral Theorem for commutative C*-algebras). Let A ¢ B(H) be a
commutative unital C*—algebra of B(H). Let K = ® 4. Then there exists a unique resolution
of the identity of H over K, s.t.

Moreover,

f TAP=T, for aliT ¢ A.
K

(i) P(U) +@ for any + @, open U € K.
(11) S € B(H) commutes with all T € A < S commutes with all P(E), E € B.

Proof. By Theorem [7.1] the Gelfand map

A—-C(K)

T T
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is an isometric *-isomorphism and hence so is its inverse

g_1:C(K)—>A
TwT.

We see a roti P over K which represents G™': G~1(T') = f TdP.
K
This is an operator version of the Riesz Representation Theorem, Theorem

Uniqueness: T = fK TdP for all T means

(Tx,y):fKTdPI,y, for all T e A, z,y € H.

By uniqueness in the Riesz Representation Theorem (RRT), P, , is uniquely determined for all
z,y € H. Since P, ,(E) = (P(E)z,y), P(E) is uniquely determined for all E € 5.

Existence: For z,y € H, T — (Txz,y) : C(K) - C is in M(K) = C(K)* with norm at most
||| |y|. By RRT, there exists a unique fi,, € M(K) s.t.

(Tz,y) = [ Tdpy,,, forall T e A.
K

|z - lyl. Now, by linearity

:/\/Tdm /Td ..
" N,+K Hy,

By uniqueness in the RRT, pagty,> = Aa z + fhy 2. 1f T is real-valued, then T is hermitian, so

”ﬂx,y| 1 <

ﬁ(fdﬂz,y = (Ty,ﬂf) = <Txay> = Lfdﬂz,y

By uniqueness in the RRT, f1y, 5 = iz -
Fix f e Loo(K). Then ©: Hx HxC, O(x,y) = f fdps,y is a sesquilinear form and |©(z, y)| <
K

17l oy < 171 LTyl So there exists W(F) € BH) s.t. (6(f)av) = O(w,9) = [ Fdp,
and [0 ()] = 0] < | f1 -

We now have a map U: Lo (K) — B(H) s.t.
W is linear: clear by the linearity of [K fdpg y.

W is bounded: [[W(f)| <[ f] -

¥ is a *-map:

@) = [ Tdpen = [y

=(U(f)y,z) = (z, ¥(f)y)
=(U*(f)x,y), forallx,ye H.

So W((f)) =¥(f)"
Ulexy =G " have (U(T)z,y) = fKTduLy = (Tx,y) for all z,y. So W(T)=T=G".

U is multiplicative: for S,T € A.

fSTdﬂw,y :/ gi-‘d,uz,y
K K
=(STx,y)
:f Sdurs,. SeA
K
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By uniqueness in RRT, pox,y = duTs,y as measures. Hence,

L{ffdﬂ:c,y =f fdpraey = (U(f)Tx,y)
— (T, 9(f)*y) /Tduw(f) vyr forall TeA, feLo(K).

By uniqueness in RRT, fdp,,y = dpg w(f)+y. Finally, for g € Lo, (K),

dpig
ngfﬂyy

= /Kgd:uac,‘ll(f)*y

=(¥(gf)z,y)

=(W(g)z, ¥(f)"y)
=(U(f)¥(9)z,y), forallz,yeH.

So W(fg)=V(f) ¥(g).

Define P(E) = ¥(1g). Easy to check P is a roti of H over K. P, .(FE) = (P(E)z,y) =
f 15dfia.y = fia.y(E) for all E€B. So Py = pig.y. Also,

Tdp, fTP
([ ran) - [ 7on,

=(U(T)z,y)
=(Tz,y).

So fKTdP =T. (Without Lemma could define fodP =U(f) for f e Lo (K)).

(i) Fix Y € K, U open. By Urysohn, there exists f : K — [0,1] continuous, s.t. supp f €U,
f=#0.
There exists T € A, \/f =T. Then T # 0 so there exists z € H s.t. Tz #0. 0 < |Tz|?

(T2, ) f T2dP, , = f fdPy.y < Pyo(U) = (P(Uz),z). So P(U) % 0.
(ii) Let S ¢ B(H). (STx,y):(Tx,S*y):fKTdPLS*y and (Tsx,y):fKTdPSW

So

ST=TSforallTeA <= P,gs+y=Psy, forall x,yecH.
«— (P(E)x,S*y) =(P(E)Sx,y) for all z,y e H F € B.
<= SP(FE)=P(E)S for all FeB.

O
Lecture 24 Let A be a united Banach algebra and z € A. We define e” = ) x—' (z° = 1) (converges
n=0 1
absolutely, so converges in A). If xy = yx in A, then e = ¢® - e¥.
Lemma 8.2 (Fugledo-Putman-Rosenblum). Let A be a unital C*—algebra, x,y,z € A with
z,y normal. If xz = zy, then x*z = zy~.
Proof. None given. O

7

Theorem 8.2 (Spectral Theorem for normal operators). Let T € B(H) be normal. Then
there exists a unique resolution of the identity of H over o(T) = opg)(T), P s.t. T =

f(T) AP (i.e. the spectral decomposition of T'). Moreover, S € B(H) commutes with T

spectral projections

<= S commutes with all P(E) , EeB.
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Proof. Let A be the unital C*—sub-algebra of B(H) generated by T

So A = {p(T,T*) : p poly in two variables}. T normal implies that A is a commutative C*—-sub-
algebra. g4 (T) = o(T) by Corollary By Lemma every ¢ € ® 4 is uniquely determined

by ¢(T). [6(T*) = ¢(T), ¢(p(T,T")) = p(&(T), (T"))]. Thus, the map

Dy —o(T)
¢~ o(T)

is a continuous bijection (Corollary D and thus a homeomorphism. 7', T* in C (®4) correspond
to A= A, A= Xin C(o(T)) respectively.

Existence of P: follows from Theorem

Uniqueness: if T' = f(T) AP, then p(T,T*) = f(T)p()\,X)dP (Lemma. So (p(T,T*)x,y) =
f(T)p()\,X)de,y. Since, A = p(\,A) are dense in C(c(T)), by uniqueness in RRT, P, , are

uniquely determined and hence so is P.

If ST =TS, then ST* = T*S by Lemma [8.2] Finally, ST =TS <= S commutes with all
elements of A, «<= S commutes with P(E), for all in E € B (Theorem [8.1)). O

7~

Theorem 8.3 (Borel Functional Calculus). Let T be a normal operator, let K =o(T') and
P be the roti of H over K given by Theorem[8.4 The map

Loo(K) — B(H)
fog@y= [ P
has the following properties:
(i) it is a unital *-homomorphism s.t. z(T) =T (where z(\) = X for all A€ K ).
(id) [ f(T) < | fll 5 for all f € Loo(K) with equality if f € C(K).
(iii) For S e B(H), ST =TS <= Sf(T) = f(T)S for all f € Loy(K).
() o(f(T)) < f(K) for all f € Loo(K).

Proof. Everything follows from Lemma Theorems and (Note that f(T) = ¥(f) from
Theorenfs.1). For (iv), o(f(T)) € o1 i) (f) = F(K). O

Theorem 8.4 (Polar Decomposition). Let T € B(H) be normal. Then, there exists a
positive operator R, unitary U s.t. T =RU. Also, T,R,U pointwise commute.

Proof. Define r,u on o(T):

2 X0
r) =N, uld) = {fl itA=0¢co(T)

Then, r,u € Lo (o(T)) and ru =z (2(A) = Aorall A\ e o(T)) let R =r(T),U. Then T = Z(T) = RU.
r is positive, u is unitary in Lo, (o(T)) and hence R is positive, U is unitary in B(H). Since Lo, (K)
is commutative, R,U,T must commute. O]

Theorem 8.5 (Unitaries as exponentials). Let U € B(H) be unitary. Then there exists
hermitian Q s.t. U = '
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Proof. By Corollary [7.0.1) o(u) € T. Let f:T —» R be in Lo (T) s.t. /() =¢ for all t € T. Let
Q@ = f(U). Then @ is hermitian since f is hermitian in Lo, (K).

Zf(t))’“

—t, uniformly on T.

>k

ie. U=e9. O

Theorem 8.6 (Connectedness of G(B(H))). Fix T € G(B(H)). T = RU, R positive, U
unitary (Theorem[8.4]) where R,U € G(B(H)).

Proof. Since R is invertible, o(R) € (0,00). Let S =log(R) = f( )log AdP (P is a roti of H over
a(R
K).

— uniformly on o(R)

_lmz( )k_l Z(log’\) (R) =2(R) = R.

n—oo n— 00

So T =¢S5, The map [0,1] = G(B(H)) : t = €' - €? is a continuous path from Id to 7. Hence
G(B(H)) is connected. O
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