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1 Conditional Expectation

1.1 Basic definitions

Let (Q, F,P) be a probability space. Remember the following definitions

Definition 1.1 (Sigma algebra). F is a sigma algebra if and only if: (F € PQ)
1. Qe F
2. Ae F = A°e F
3. (A)wen S F = | JAneF

neN

Definition 1.2 (Probability measure). P is a probability measure if
1. P: F—[0,1] (i-e. a set function)
2. P(Y) =1, and P(7) =0

e}
3. (Apn)nen pairwise disjoint = P (U An> = Z P(A,).
n=1

neN

Definition 1.3 (Random Variable). X : O — R is a random variable if for all B open in
R, X~ Y(B) e F.

Remark. Observe that the sigma algebra G = {B < R: X(B) e F} 2 0 = G 2 B(R), the
former being the collection of open sets in R and the latter the Borel sigma algebra on R with the
usual topology, namely, () (see below for the notation).

Let A be a collection of subsets of 2. We define

o(A) = smallest sigma algebra containing A
= ﬂ{T : T sigma algebra containing A}.

Definition 1.4 (Borel sigma algebra on R). Let O = {open setsR}. Then, the Borel
sigma algebra B(R)(:= B) is defined as above, namely,

Let (X;)ier be a family of random variables, then o(X; : i € I) = the smallest sigma al-
gebra that makes them all measurable. We also have the characterisation o(X; : i € I) =
oc({{weQ: X;(w)e B},ie I,Be B[R)}).

X7 HB)

i

1.2 Expectation
Note we use the following for the indicator function on some event A

1, zeA

1(A)(z) =1(z € A) = 0 z¢A

}7 Ae F.

We now begin the construction of the expectation of generic random variables.

n

Positive simple random variables: X = Z 1(A;),c; 20,4, € F..
i=1

E[X] := Z ciP(A;).
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Non-negative random variables: (X > 0). We proceed by approximation. Namely, let X, (w) =
27727 X(w)] Ant X(w),n — . Now, by monotone convergence,

E[X] =1 lim E[X,] = supE[X].

n—o0

General random variables: Have the decomposition X = X+ — X~ where X*T =X v 0, X~ =
—X A 0. If one of E[X+],E[X~] < o0 then set

E[X] :=E[X '] -E[X ]

Definition 1.5. X is called integrable if E[|X|] < co.

Definition 1.6. Let B € F with P(B) > 0. Then for all A e F, set

P(A|B) = W

Now for an integer-valued random variable X, we set:

_ E[X-1p]

E[X|B] := ~PE

1.3 Conditional expectation with respect to countably generated sigma
algebras

Lecture 2 We now extend the definition of the conditional expectation for a countably generated sigma algebra.
Let (2, F,P) be a probability space. We call the sigma algebra G countably generated if there ex-
ists a collection (B,,)nen of pairwise disjoint events such that U B,, = Q with (I countable) and

nel

G=o(B;:iel).
Let X be an integrable random variable. We want to define E[X|G].
Define X'(w) = E[X|B;], whenever w € B;, i.e.
X' =Y1(B;) - E[X|Bi].
i€l

We make the convention that E[X|B;] = 0 if P(B;) = 0. It is easy to check that X’ is
G—measurable. We also have that

G= {U Bj:Jc I}
jE
and X' satisfies for all G € GE[X - 1g] = E[X’ - 1¢] and

E[|X']] <E lz |E[X|B:]1(B:)
el
= ZP(Bi) - |E[X]B]
< iP(Bi) ‘E[X - 1(B;)]
——
P(B;)

el

E[|X]] < o0.

1.4 General case

We say A € F happens a.s. if P(A) = 1. Recall (from measure theory and basic functional
analysis):
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Theorem 1.1 (Monotone Convergence Theorem (MCT)). Let (X,,)nen be such that
X, = 0, X be random variables such that X,, 1 X as n — c0. Then, E[X,,] 1 E[X] as n — o0.

Theorem 1.2 (Dominanted Convergenec Theorem (DCT)). Let (X,,)nen be random
variables such that X,, — X a.s. asn — o and |X,| < Y as. for all n € N, where Y is
integrable, then E[X,,] — E[X], as n — .

Let 1 < p < o0 and f a measurable function, then set || f||, == (E[||f[|"])".

f p = oo, then set
| fll, = inf{X: [f| < A a.s.}. Recall for all p, the Lebesgue spaces, LP(Q, F {f

IP’) = Hfll < o0}

Theorem 1.3. £2(2, F,P) is a Hilbert space, with inner product (u,v)s = E[u - v]. Further-

more, for any closed subspace H, if f € £?, there exists a unique g € H s.t. ||f — gl 2 =

}iln7f{ ||f = hl|l;2 and {f —g,h) =0, for all h € H. We say that g is the orthogonal projection of
€

fin H.

We now construct the conditional expectation in the general case, for any integrably random
variable with respect to an arbitrary sigma algebras.

Theorem 1.4 (Conditional Expectation). Let (2, 7,P) be a probability space, G < F
a sub-sigma algebra, X € £(Q, F,P). Then there exists an integrable random variable Y
satisfying:

1. Y is G—measurable
2. for all G € G,E[X - 1(G)] = E[Y - 1(G)].

Moreover, Y unique in the sense that if Y’ also satisfies the above 1),2), then Y = Y’ a.s..
We call Y a version of the conditional expectation of X given G. We write Y = E[X ] a.s.
If G = 0(Z), where Z is a random variable, then we write E[Z] = E[X|G].

Remark. 2) could be replaced by E[X - Z] = E[Y - Z] for all Z bounded G—measurable random
variables.

We now state and prove the main theorem of this section:

Proof. (Theorem Uniqueness: Let Y, Y’ satisfy 1),2). Let A= {Y > Y’} € G. Then 2)

= E[Y - 1(4)] =E[Y"-1(4)] = E[X - 1(4)]
= E[(Y -Y')-1(4 )]—0

= PA)=PY >Y")=0

— Y <Y as.

We similarly obtain Y > Y” a.s., hence we deduce that Y =Y’ a.s.
Existence: three steps.

1. Assume that X € £2(Q, F,P). Observe that £2(Q,G,P) is a closed subspace of £2(Q, F,P).
Hence, Theorem we have the decomposition £2(Q2, F,P) = L3(Q,G,P) ® L2(Q,G,P)*+
Then, we have the corresponding decomposition X = Y + Z, where Y € £2%(Q,G,P) and
Z € L%(Q,G,P) respectively. Define E[XG] := Y, Y is G—measurable and for all A € G,
E[X - 1(A)E[Y - 1(A)] = E[Z - 1(A)] since Z € L2(Q, G, P)*.

Claim: If X > 0, a.s. then Y > 0 a.s. Indeed, let A = {Y < 0} € G. Then observe that
0<E[X -1(A)] =E[Y -1(A)] <0. Hence E[Y - 1(A)] = 0 and so P(A) = 0, gibing Y =0
a.s.

2. Assume X = 0.
Define X,, = X A n < n, meaning X,, is bounded for all n € N. So X,, € £L%(Q, F,P). Let
Y, = E[X,] as.. (Xn)neN is an increasing sequence. By the claim above, so is (Y, )nen a.s.
Define Y = lim squ meaning Y is G—measurable and Y =1 hm Y, a.s. Now, we have

that for all A e g E[X, -1(A)] = E[Y, -1(A)]. Thus, by theorem- (MCT), E[X -1(A)] =
Tim E[X, - 1(4)] - lim E[Y, - 1(4)] = E[Y - 1(4)]
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3. X general in £!.
Decompose as before X = X+ — X ™. Define, E[XG] = E[XT|G] — E[X~|G].

O

Remark. From the second step of the proof of Theorem we see that we can define E[X|G] for
all X > 0, not necessarily integrable. It satisfies all conditions 1),2) except for the integrability
one.

Definition 1.7. G{,Gs,... < F. We call them independent if whenever G; € G; and
[ — —_—
sigma algebras
i1 <...i for some k € N, then P(Gi, n---n G,) = [ [P(G;)).
j=1

Moreover, let X be a random variable and G a sigma algebra, then they are said to be int
if 0(X) is independent of G.

Properties of conditional expectations: Fix X,y e L', G € F.

1. E[E[XG]] = E[X] (take A = Q)

2. If X is G—measurable, then E[XG] = X a.s.
3. If X is independent of G, then E[XG] = E[X]
4. f X >0 a.s., then E[XG] = 0 a.s.

5. For a, 8 € R E[aX + 8Y|G] = «E[X] + SE[Y]
6. E[X|G]| < E[|X]|F] a-s.

Below we proved:we expansions of useful measure theoretic results for the expectation to their
corresponding conditional counterparts. First recall:

Lemma 1.1 (Fatou’s Lemma). Let X,, > 0 for all n € N. Then

E[liminf X,,] < liminf E[X,,] a.s

Theorem 1.5 (Jensen’s Inequality). If X is integrable and ¢ : R — R is a convex function,
then

O(E[X]) < E[¢(X)] as.

Now the results themselves:

Theorem 1.6 (Conditional Monotone Convergence theorem (MCT)). Let G — F be
sigma algebras, X;, > 0 a.a. and X,, 1 X, as n — o a.s. Then

E[X,|G] 1 E[X|G] a.s.

Proof. Theorem Set Y,, = E[X,,G] a.s. Observe that Y, is a.s. increasing. Set Y = limsupY,,.
Y,, is G—measurable, hence, so is Y (as a limsup of G—measurable random variables) is also

G—measurable. Also, Y = lim Y,, a.s.
n—0o0

Need to show: E[Y - 1(A)]E[X - 1(A)] for all A € G. Indeed,

E[Y - 1(4)] =E[lim Y, - 1(4)] "<" lim E[Y, - 1(4)]

= Jii%;f[xn 1(4)] = B[X “1(4)]
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Proof. Theoremlim inf X,, = lim <inf X k) , the limit of an increasing sequence. By Theorem
n

n—oo \ k=n
[I.1] we have
lim E[}igf X,|G] = E[liminf X,|G]

n—o0
and a.s.
E[inf X|G] < inf ]E[Xk\g]
k=n k=n

which gives the result
E[liminf X, ] < liminf E[X,,] a.s.

Theorem 1.7 (Conditional Dominated Convergence Theorem). SUppose X, — X
a.s. n — o and | X,| <Y as. for all n € N with YV integrable. Then E[X,,G] — E[X{] a.s.
as n — 0.

Proof. From —Y < X, <Y, we have X,, + Y >0 for all ne Nand Y — X,, > Oa.s. By Theorem

L1

E[X +YG] = E[liminf(X, + Y)|G]
< liminf E[X,, + Y|G] = liminf E[X,.G] + E[X]

Thus,
E[|X —Y||G] =E[Y —liminf X,,|G]
< E[Y] + liminf E[X,,|G]
Hence,
limsup E[X,|G] < E[X|G]
and

lim inf E[X,,|G] = E[X|G]

a.s., concluding the proof.

Theorem 1.8 (Conditional Jensen). Let X € £1(Q2, F,P), ¢ : R — R be a convex function
s.t. ¢(X) is integrable or ¢(X) = 0

S(E[X]G]) < E[¢(X)|9] a.s.

Proof. Claim: (true for any convex function, no proof given) ¢(x) = sup(a;z +b;), a;b; € R. Thus,
ieN

E[¢(X)|G] = ¢;E[X|G] +b; forall i e N.
Taking the supremum gives E|

E[¢(X)IG] = sup (a;E[X|G] + b;)

— H(E[XIG]) as.

Corollary 1.8.1. For all 1 < p < o ||E[X|G]|, < [|X]],.

Proof. Apply conditional Jensen. O

1
2

can take the infinum due to countability that preserves a.s.
can take the supremum due to countability which again preserves a.s.
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Proposition 1.1 (Tower Property). Let X be integrable and H < G sigma algebras. Then

E[E[X|G]|H] = E[X|H] as.

Proof. (a) E[X|H] is H—measurable.

(b) For all A e H NTS:
E[E[X|G] - 1(A)] = E[E[X|#] - 1(A)]

Indeed, both terms above are equal to E[X - 1(A)] since A€ G € H.

Proposition 1.2. Let X € £, G € F, Y bounded G—measurable. Then

E[X -Y|G] = Y - E[X|G].

Proof. (a) RHS is clearly G—measurable.

(b) For all AeG:
E[X Y 1(4)] E[Y -E[XG]-1(A4)]
E[X - (Y -1(A))] =E[E[X|G] Y -1(A)] = RHS.
—_——

G-meas. and bounded
(Also observe that by a monotone class argument, we have for any integrable function f : Q —

R, E[X - f] = E[E[X]|]] - f]) O

We are building towards the Theorem

Theorem 1.9. X € £}, G, H < F. Assume o(G,H) L H, Then

E[X|o(G,H)] = E[X|G] as.

We begin with a definition

Definition 1.8. Let A be a collection of sts. It is called a m—system if for all A, B € A, we
also have An Be A.

Theorem 1.10 (Uniquenes of extension). Let (E,{)be a measurable space and let A
be a m—system generating the sigma algebra . Let u,v be two measures on (F, &) with
w(E) =v(E) <. If p =von A, then u =v on &.

Proof. (Theorem NTS: for all F € 0(G,H)
E[X - 1r] = E[E[X]|F] - 1F]

Now, set A ={AnB:Ae G, BeH} Itiseasy tocheck that A is a m—system generating (G, H).
If F=An B for some A€ G and B € H, Then
E[X-1(An B)] =E[X 1(A)-1(B)]
Hlo(GH
= E[X - 1(4)]-E[1(B)] " EELX|G] - 1(4 0 B))
Now assume X > 0; in the general case, decompose X = X+ — X~ and apply same argument
to both X*. Define the measures p(F) = E[X - 1(F)] and v(F) = E[X - 1(F)] for all F € 0(G,H).

Observe that u(Q) = v(Q) = E[X] < oo and we have shown that u = v on A. Thus, u = v on
o(G, M) which finally implies the result

E[X|0(G, H)] = E[X|G] as.
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Examples:

Definition 1.9 (Gaussian). (X1, Xo, -, X,,) € R” has the Gaussian distribution
if and only if for all scalars a1, as,- - ,a, € R, a1 X7 + -+ a,X,, has the Gaussian
distrubition in R.

A stochastic process (more on that later) (X;):>o is a Gaussian process if for all t; <
to < ---ty the vector (X, Xy, -+, X, ) is Gaussian.

Let (X,Y) be a Gaussian vector in R%. We compute E[X|Y].

Let X’ = E[X|Y]. Looking for f a Borel measurable function s.t. E[X|Y] = f(Y)
a.s. Let f(y) = ay + b for some a,b € R to be determined. Now, X' = aY + b,
E[X'] = E[X] = aE[Y] + b and E[X’ - Y] = E[X - Y] — E[(X — X)- Y] = 0. Thus
Cov(X — X',Y) =0 = Cov(X,Y) = a*Var(Y).

Need to check: that for all Z bounded o(Y)—measurable, E[(X — X’) - Z] = 0.
Indeed, observe that (X — X’,Y) is a Gaussian vector and since Cov(X — X', Y) =
00— X-X'1Y — (X -X')LZ

2. Let (X,Y) be a random vector with density in R? with joint density function fx y :
R? - R. Let h : R — R be a Borel function such that h(X) is integrable. We now
compute E[h(X)|Y].

We have for all g bounded oY —measurable functions.

JRQ h(z)g(y) fxy(z,y)dedy =E[R(X)g(Y)]
=E[ E[h(X ] Y)] = E[¢(Y)g(Y)]

Il
%

where fy(y) = i fxy(z,y)dz and ¢ : R — R is some Borel measurable function.
Hence,

fxy(@,y)
J}R h(x)w ddz, fy(y) >0

0, otherwise

P(y) =

can be seen to work. Thus, we obtain

E[A(X)|Y] = (V) as.

2 Discrete Time Martingales

Definition 2.1 (Filtration). Let (2, 7,P) be a probability space. A filtration is a se-
quences of increasing sigma sub-algebras of F, (Fp)nen, Fn S Fn41 for all n € N. We
call (2, F, (Fp)nen) a filtered probability space.

Let X = (X,,)nen be a sequence of random variables/a stochastic process. Then it induces
(FX)nen, where FX := 0(X.x<n) for all n € N: the canonical filtration associated to X.
We call X adapted to a filtration (F,)nen if Xis F,—measurable for all n € N.X is called
integrable if X, is integrable for all n € N.

Definition 2.2 (Martingale discrete time). Let (Q, F, (F,,)nen, P) be a filtered probability
space. Let X = (X, )nenbe an integrable and adapted process.

e X is called a martingale if E[X,,|F,,] = X, a.s. for all n = m.
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e X is called a super-martingale if E[X,,|F,,] < X, a.s. for all n = m.

e X is called a sub-martingale if E[X,,|F,,] = X,, a.s. for all n = m.

Remark. If X is a (super/sub)martingale with respect to (Fy,)nen, then it is also a martingale
with respect to (FX)nen. To see this, one has to use the tower property FX c F, for all

n

n € N implies E[X,,|FX] = E[E[X,,|Fn]|FX] (since E[X,,|F] a.s.).
Examples:

1. Let (&)ien be iid. s.t. E[§] = 0 for all i € N and define X = (X,,)pey by X, =
&4+ & forallneN, Xg =0. X is a martingales with respect to (F5),en-

2. Let (&)ien be iid. s.t. E[§] =1 for all i € N and define X = (X,)nen by X, = ngz
i=1

for all n € N, Xo = 1. X is again a martingales with respect to (F5)nen.

Let (Q, F, (Fr)nen, P) be a filtered probability space.

Definition 2.3 (Stopping time discrete time). A stopping time 7T is a random variable
T:Q—7Zyvu{wo}st {T <n}eF, for all n € N. Equivalently, if {f =n} e F, foralln e N
since

{(T=n}={T<n}\{T'<n—-1}€eF,.

—_——
Fn, }-n—l(:]:n
and .
{T'<n}= U{T:k}e}'kc}'n.
k=1
Examples:

1. Constant time are trivially stopping times.

2. Let X = (X,,)nen be a stochastic process taking values in R and A € B(R) (X adapted).
Define
Ty = {n =>0: XnEA}~

Then {Th < n} = U {Xkea} € Fy for all n € N (with convention inf & = o).
k=0

3. Ly=sup{n >0: X,ca} is NOT a stopping time.

Properties: S, T, (T}, )nen stopping times. Then SAT, Sv T, inf T,,,sup T}, liminf 7},, lim sup T,

are also stopping times.

Definition 2.4 (Stopping time sigma algerbra). It T'is a stopping time, define
Fr={AeF: An{T <t} e F}

Let (X, )n=0 be a process. Write X7 (w) = Xp()(w) for w € Q whenever T'(w) < c0. Define
the stopped process: X/ = X7 ..

Proposition 2.1. Let S and T be stopping times, and let X be an adapted process, then:
1. If § < T, then Fg € Fr.
2. Xp- is Fr—measurable.

3. X7 is adapted.

10
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4. If X is integrable, then the stopped process iss integrable.

Proof. 1. Immediate from definition.
2. Let A € B(R). Need to show:
{(Xrl(T <o)} n{T <t}e A, forallt=0.

Indeed, we have that
t
{X71(T < )} U A}m{T_s}eft

5—=0 ~——
Ry 7

3. XtT = Xr ¢, this being Fr.;—measurable € F;—measurable by 1), so we conclude it is
JFi—measurable.

E[IX{] [|XT/\t|]

E[|Xs[- 1T = )] + E[|X:| - LT = 1)]

Il
M\

@
Il
o

)
b1~

E[[X]] =%

X is integrable

)
Il
o

We now state and prove a fundamental theorem in Martingale theory:

Theorem 2.1 (Optional Stopping Theorem discrete time). Let (X,, be a martingale.

1. If T is a stopping time, then the stopped process X7 is also a martingale. In particular
for all ¢t > 0:

E[X7ae] = E[Xo].
2. It S < T are bounded stopping times, then
E[Xr|Fs] = Xr, as.
and hence E[X7]E[Xs].

3. It there exists an integrable random variable Y such that |X,, < Y| for all n > 0 and T'
is finite, then E[X7] = E[X,].

4. Tf there exists M = 0 such that |X,,11 — X,,| < M for all n € N and T is a stopping time
with E[T] < oo, then E[X 1] = E[X].

Proof. 1. NTS: for all t = 0, E[ X1 A¢|Fi—1] = X7t a.s. Indeed,

E[ X7 Ae| Fic1] = 2 E[ X, L(T = 8)|F—1]E[X — —t] - 1(T = )| F=1]

t—1

=Y 1T =5)- X+ X1 LT >1) as.
s=0

—2 X+ X4 1 1(T>t—-1) as.

= XTAt 1 a.s.
2. S<T <n,neN fixed. Let Ae Fg. NTS: E[ X7 -1(A4)] = [Xs - 1(A4)]. We compute
Xr—Xs =(Xr—Xr—1)+- -+ (Xs41 — Xs)

= Z (Xpg1 — Xp) - 1(S <k <T).
k=0

11
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Thus,

(Ae]-' )

E[X7 - 1(A)] E[Xs - 1(A 2 E[(Xpt1 — Xi)-1(S <k <T)-1(A)]

Have, An{S < k} € Fj, and An{T > k} € F}. Thus, 1(S <k <T)-1(A) is Fr—measurable.

Using E[X41|Fk] = Xk a.s. we deduce that
0

E[(Xpi1 — Xi) - 1(S <k <T]-1(A)] =E[E[(X OIF] - 1(S <k < T] - 1(A)]
=0

Thus, E[X7|Fs] = Xgs a.s.
3. By the Optional Stopping Theorem applied to (X1 n)n=0, we have
E[X7An] = E[Xo] foralln > 0.
Now, T being finite a.s. implies that X = hm X7 nan a.s. By assumption, have | X7, ,| <
a.s. for all n € N and so can apply DCT to conclude

4. Observe that for alln > 1

n—1

Xran—Xo = Y (X = Xo) - LT = k) + (X5, — Xo)1(T > n)
k=0

Hence, we have the bound (using that | X1 — Xi| < M as. for all k£ > 0)

n—1
[ Xran— Xo| <M Y EL(T = k) +nl(T >n)
k=0
<E[T] <o as.
Now, E[T] < oo gives T' < o0 a.s. and so can deduce as before that X = lim Xr,., and
n—o0

use the DCT to conclude the argument.

O
Corollary 2.1.1. Let X be a positive superartingale, T" a stopping time such that 7" < o
a.s., then
E[Xr] < E[X0].
Proof. Use Fatou E[lirtn inf X7 .¢] < hm 1nfE[XTAt] E[X0]. O

Simple random walk on Z

Let (&;)i=0 be iid Bernoulli random variables with success probability 1/2. Define the process
(Xn)n=o0 by setting X,, = & + -+ &, for all n > 1 and Xg = 0. Furthermore, let T =
inf{n > 0: X,, = 1}. Using the analysis below, we will see that P(T' < c0) = 1. The Optional
Stopping Theorem gives E[X7,:] = 0 for all ¢ = 0. Yet, 1 = E[X)r] # 0. We thus see that
the condition E[T] < oo in 4) is necessary, since E[T] = .

12 X1 1/2

-3 -2 -1 0 1 2 3

000000 0
Xo=0

Figure 1: Illustration of simple random walk (first step) on Z.

Lecture 6
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We consider again the example of the simple random walk [2| (X}, )nen and define the stopping
times
T.=infn>0:X,_., ceZ

Set T =T_, A Ty for ab € Z. We now ask what is P(T_, A Tp)?

To answer this, note first that X! = Xr,, is a martingale by the Optional Stopping Theorem
and we also have the bounded differences | X411 — X,| < 1 for all n > 1.

Claim: E[T] < o0.
To show this, we will stochastically dominate T be a geometric random variable, which automati-
cally has a finite expectation and then conclude using the non-negativity of 7. Now we have that
for the sequence &1, &, -« -, Eqtp the probability that they all are either +1 or —1 is 2 - 2—(@+b) by
independence, call this event A;. The same is true for the shifted sequence &(a45)+1** Ek+1)(atb)
for all k € N, where we call the corresponding event Ay.

Thus, we can bound T by the random variable
Z(w)=inf{n =2 0:we A,}

which has the distribution Z ~ Geom(2 - 27(@*9). Thus, E[T] < E[Z] < (a + b) - 2°+b~1 < o0,
Thus, we conclude by the OST that E[Xr] = E[X,] = 0. Hence, —aP(T, < T)+bP(Tp < T—,) =0
b

and so a quick computation yields that P(T_, < Tp) = P

3 Martingale Convergence Theorem

Theorem 3.1 (Almost sure martingale convergence theorem). Let X be a super-
martingale bounded in £!, i.e. satisfying supE[|X,|] < oo. Then, there exists X, €
n

LYFp), Foo = 0(Fn : n = 0) such that X,, =5 X, a.s.

Before we embark on the proof of this theorem, we need so me supporting results. First we
have a result from analysis and we set up some notation. Let x — (z,1en) be a real sequence and
let a < b be reals. We proceed to define the number of upcrossings of the sequence before time
n € N. Wec constructrecursively the sequence of times:

T(J(.'IJ) =0
Sk+1(z) =inf{n = Ti(x) : x, < a}
Tiv1(x) =inf{n = Sgyi(x) : z, = b}

and
Ny, ([a,b], X) = sup{k = 0: Ti(z) < n}

Observe that as n — o, N,([a,b],z) T N([a,b],x) = sup{kgeq0 : Ti(z) < oo} (see figure [2] for an
illustration).

Lemma 3.1. Let X = (X,,) be a real sequence. Then X converges in R = R U {£o0} if and
on ly if for all a < b, a,b e Q, N([a,b], X) < o0.

Proof. = : Suppose x converges, if a < b such that N([a,b],z) = o0, then liminfz, < a < b <
n

lim sup x,,, a contradiction.
n
< :if not, then lim inf x,, < lim sup x,, which implies that there exists a < bin Q with liminf z,, <
n n n

a < b < limsup z,, and hence N([a,n],z) = o0, a contradiction. O
n

Now we state it Doob’s upcrossing Inequality

13
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Lemma 3.2 (Doob’s upcrossing inequality). Let X be a supermartingale, then for all
neN:

(b—a)-E[Nn([a,b], X)] < E[(X\ —a)7]

Proof. Tt is not hard to check that the sequences of times in [3] are stopping times. Now we have:

Z (XTkAn - XSk /\n)
=1

=

n

= ) (X1, — Xg,) +(Xpn — Xsy, 1)1(SN,+1 < n)

k=1
—_—
>Nn'(b_a)

Since Ty an = Skan, the OST gives E[ X1, an] < E[Xs, an]. Note:
Xn—Xsy, 11 1(Sn,+1 < n).
(X ) MO ()
Thus, taking expectations on both sides gives:
0= (b—a) E[N,] —E[(X,—a)"]
thus concluding the proof. O

Figure 2: Tllustration of upcrossings for the process (X, )nen-

Now we proceed to the proof of the martingale convergence theorem:
Proof. (Theorem Fix a < b, in Q. Have
]E[Nn([a,b],X)] < (b - a)_ E[(Xn - a)_]
(S
<E[|Xn|+a]
< (b—a)” | supE[|X,|] +a
—

n=0
<o

Also have N, ([a,b], X) 1 N([a,b], X) as n — 0. By monotone convergence: E[N([a,b], X)] < co.
Set
Qo= () {N(ab],X)<o}eFy
a<ba,b,eQ
and P(Qp) = 1. On g, X converges. set

lim X,, on Qg
X = { n—©
0, on NQp.

. n—ao0
So, X4 is Fyn—measurable, X,, — X, a.s. and

E[|X»|] = E[liminf | X,,|] < liminf < oo.
n B[Xn]

14
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Corollary 3.1.1. Let B be a upermaartingale. Then, X converges a.s.

Proof. E[|X,|] = E[X,] < E[Xo]. Apply the martingale convergence theorem to conclude. O

4 Doob’s inequalities

Theorem 4.1 (Doob’s maximal inequality). Let X be a non-negative submartingale and
set X¥ = sup Xy . Then for all A >0,

0<k<n

Proof. Let T = inf{k = 0 : X}, > A} (it is a stopping time). Then {X}* > A} = {T' < n}. Also have
that X7 ,., is a submartingale by the OST. Then E[X7,,] < E[X,,]. Now,

E[XT/\n] = E[XT : 1(T < n)]

+E[X, - 1(T > n)]
=M\ ]P)(T < ’I”L) +E[Xn ) 1(T > n)]

<E[X,]

Theorem 4.2 (Doob’s £! inequality). Lte p > 1 and let X be a martingale or a non-

negative submartingale. Set X* = sup |Xj|. Then
o<ks<n
131, < 5 1%l
nllp = p— 1 e

Proof. By Jensen, it is enough to prove for a non-negative submartingale. Now, observe that

b
0 k
k) = [ a1y = ) do = Bl (o7 12060) o
k 0
k
prPIP(XF > 1)
Cpr R > )

k
<E J prP=2 . 1(XF >x)dm~Xn]
0

Fubini dz
- <LE[X, 1(XE2)]

—E {2 (X5 A k)Pt X, |
Holder p % p—1
< E I Xall, I Xy A Kl

—1 . . .
So we proved [ X;¥ A kl[p < 525 [ Xall, - 1X% A K[lp ™, which implies | X3 A K[, < ;25 - [ X,
Now take k — o0 and use monotone convergence to conclude the argument. O

Theorem 4.3 (LP-convergence theorem). Let X be a martingale and 1 < p < oo, then
the following are equivalent:

1. X is bounded in LV, i.e. sup || X, ||, < .
n=0

2. X converges 'underlinealmost surely and in £? to a limit X, € LP.

15
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’ 3. There exists Z € LP s.t. X,, = E[Z|F,] a.s.

Proof. 1) = 2): X bounded in £P implies X is bounded in £!. So there exists X, such that
X, =% Xy as.

Fatou
Also, E[|X "] = E [liminf \Xn|”] <" limint < o0, Thus, X € £7.

Now, let X* = sup |Xg|, X% = sup|Xk|. Thus,
0<k<n keN
|Xn - XOO| < 2Xo*o

for all n € N. Thus, it is enough to show by DCT that X% e L£P. By Doob’s £P—inequality,
1Xz0, = 35 - supliXall, < oo By MCT (X7 1 X2): X2, < 52 supllXnll, < oo Thus,
X e LP.

2) = 3): X,, =% X, as. and in £P. Set Z = X. Need to show: X,, = E[Xy|F,] for all
n e N.

”Xn - E[X00|}—n]||p e ”E [Xm - XOO|-7:n] |p

contraction (Jensen)
< HXm—XOO||p—>O, m — 0.
3) = 1): By conditional Jensen, we can conclude. O

Definition 4.1. A martingale of the form X, = E[Z|F,], Z € LP is called a martingale
closed in LP.

Corollary 4.3.1. Let Z € £P, X,, = E[Z|F,] a.s. Then X,, =3 E[Z|F,] a.s. and in L?
where Fy, = 0(X,,n = 0).

Proof. By theorem we have X,, =% X, a.s. And in £P. Now, we need to show:
w =E[Z|Fsn] as.
Now, we have that X is Foo—measurable (being the point wise limit of X,,,n > 0) and for all
Ae Fpo, E[Z-1(A)] =E[Xy - 1(A)]. Fix A€ U Fn, a m—system generating Fo,. There exists
n=0

N € N such that A€ Fy. Let n > N, now

E[Z-1(A)] = E[X, - 1(4)] "= E[X.c - 1(4)].

Definition 4.2 (Uniform integrability). A collection of variables (X;);cr is called uni-
formly integrable (UI) if
M—00

sup E [|X;] - 1(].X;] > M)] —" 0.

el

Equivalently, (X;)ics is UL if (X;) is bounded in £! and for all € > 0, there exists § > 0 such
that for all A e F with P(A) < 4,

supE[|X;] - 1(4;)] <e.

iel
e A UI family is bounded in £!.

e If a family (X;) is bounded in £P, p > 1, then it is also UL

16
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Lemma 4.1. Let (X,,)nen, X be in £! and X, "Z% X a.s. Then X,, =5 in £! if and only
if (Xp,)nen is UL

Theorem 4.4. Let X € £!. The family {E[X|G : G = F|} is uniformly integrable (UT).

Proof. Need to show for all € > 0, there exists A large enough such that for all G ¢ F

E[[[E[XG] - L(E[XG]| > N] <e
<E[E[|X]|g]-1(] E[X|G]] [>M].
——

—measurable

Since X € L!, for all ¢ > 0, there exists mo "SR that if A e F, P(A) < 4, then
E[|X]-1(4)] < e. Now,

P(E[XG]| > ) & ELELXAI)
< el _ s

Take \ = M, then we are done. O

Definition 4.3. X = (X,,)nen is called UI (super/sub) martingale if it is a (super/sub)
martingale and (X,,)n>0 is UL

Examples:

Let X1, Xo,--- be an iid sequence with P(X; = 0) =P(X; =2) =1/2. Set Y,, = Xq2----- X,,,
which can be seen to be a martingale. Also have E[Y,] =1 for allne N and Y, 28 Y =0
a.s. by the martingale convergence theorem, not not in £! (because it is not UI).

Theorem 4.5. Let X be a martingale. Then the following are equivalent:

1. X is UL

2. X converges a.s. and in £ to X, as n — c0.

3. There exists Z € £! such that X,, = E[Z|F,] for all n > 0.

Proof. 1) = 2): X is bounded in £ implies (by the martingale convergence theorem), X, —
a.s. Since X, is U, then X,, — X, in L.

2) = 3): Set Z = X. Need to show: X,, = E[Xy|F,] a.s. Indeed,
m=n
HXn_]E[XOO‘}—n]Hl = ”E[Xm_pr;n]”l
< X — Xoolly =00,

3) = 1): The tower property implies (X,)nen is a martingale and the previous theorem
implies that (X, nen) is UL O

Remark. 1. We get as before, Xo, = E[Z|F] a.s., where Fo, = 0(X,, : n = 0).

>sub
2. Tt X were a Ul super/sub martingale, then we would get E [X|F,] < X, (check!).
X is Ul implies X,, —» X in £! and a.s. Now let T be a stopping time. We can then define

[e¢]
Xr =) Xp LT =n)+ Xo - T = 0).
n=0

17
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Theorem 4.6 (Optional stopping theorem for UI martingales). Let X be a UI mar-
tingale and let S, T be stopping times with S < T. Then

E [XT|J:S:| = XS a.s.

Proof. We know that X,, = E[X,F,] a.s. since X is UL It suffices to prove that for any stopping
times T, E[Xy|Fr] = Xr a.s. Indeed, E [X7|Fs] = E[E[Xw|Fr]|Fs] and since S < T'we have
Fs € Fr and hence the tower property would give:

E[X7|Fs] = E[X|Fs] = Xs
a.s. Thus, we need to show: for all T' stopping times, E [Xo|Fr] = X1 a.s.

1. NTS: Xp e £l

as X, € £1. Tt is also not hard to check that Xp is Fr—measurable.

2. NTS: for all B e Fr: E[X,, - 1(B)] = E[X7 - 1(B)]

0
E[Xr-1(B)] =Y E| X, 1T =n) 1(B)
n—0 —_—
€Fn
+E [ X
1(T = ©) - 1(B)
0
= Y E[Xy - 1(T =n)-1(B)]
n=0
=E[Xx  1(B)]
O
Definition 4.4 (Backwards martinagles). Let --- € G 5 € G_; S Gy be a decreasing
family of sub sigma algebras of F. We call X = (X,,)n<0 a backwards martingale if X, € £!
and for all n < —1 E[X,,41]|G,] = X, a.s. By the tower property, E[X(|G.] = X,, for all
n < 0. Since Xy € £, a backwards martingale is automatically UL
Theorem 4.7 ( LP/a.s. backwards martingale convergence theorem). Let X be a
backwards martingale with Xy € £P, 1 < p < 0. Then X,, > X_,, as m — —o0 a.s. and in
LP and X_o = E[X,|G_s] a.s., where G_o, = ﬂ G-
n<0
Proof. Set Fr. = G_n+k, 0 < k < n. This is an increasing filtration and (X_,+x)o<k<n 18

Fr—martingale. Let N_,([a,b], X) be the number of upcrossings of the interval [a, b] between
—n and 0. Doob’s upcrossing inequality gives:

(b—a)-E[N_([a.5], X)] <E[(X, —a)].

18
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As before, we get that X,, > X_o, as n — —o0 a.s. We also have X_is G_,—measurable. Also
observe that nX, € £P implies X,, € L? for all n < 0.

X, = E[X,|G.] a.s. (backwards martingale). If X, € £P, pe [1,0) X,,,x__ a.s. n —> —©
a.s. and X_o is G_o = ﬂ G,,—measurable.

n<0

O

Observe we have that X,, € LP by conditional Jensen and using Fatou, we obtain X_,, € LP.
Now we need to show that X,, — X_,, in £P. Indeed,

X = X P = [E[X0|Gn] —E[X ]G] P
= E[Xo-x_,10.] 7
Jensen

<" E[1Xo — X_olP[Ga] .

UI family

Hence, (| X, — X_o|P)n<o is UL hence giving £ convergence.
NTS: X_o = E[X,|G_o0] as.
Let Ae G_o = ﬂ G,, implies that A € G,, for all n < 0. Hence, E[X,, - 1(4)] = E[X, - 1(4)],
n=0

for all n < 0. Take n — —oo and use £ convergence to get E[X_o - 1(A4)] = E[X,-1(A4)] to
conclude.

5 Applications of martingales

sec: applications of mgs

Theorem 5.1 (Kolmogorov’s 0 — 1 law). Let (X;) be iid and for all n € N, F,, = o(X}, :
k=n), Fop = ﬂ Fn. Then, Fy, is trivial, i.e. for all A"in'F,, P(A) € {0,1}.

n=0

Proof. Let A € Fy. Define G\ =o(X\ : || <\) and G = 0(Gn,n =). Now, we have that
E[1(A)|G,] is a martingale and

E[1(A)[G,] " E[1(A)|G] a.s.

Now, A € Fy implies that A € F,,41 and also have G, L F, 41 and E[1(A4)|G,] = P(A) as.,
E[1(A)|Gx] = 1(A) a.s. since Fo, S Gy implies that A € Go,. So P(A) = 1(A) a.s. finally giving
P(A) € {0,1}. O

Theorem 5.2 (Strong law of large numbers). Let (X;);c; be an iid sequence in £ with

E[X;1]. Define S,, = X7 + -+ X,,. Then ST;” converges a.s. and in £! to u as n — oo a.s.

Proof. Define G = o(Sy, Spe1-++) = 0(Sn, Xnt1,--+). Forn < =1, M"™ = ‘i;n We will show
that (M,,)n<—1 is a backwards martingale with respect to (G_,n<—1)- Indeed,
E[Muyu1|G-m] =M_, as. form<-—1
I EE S P
- —m - n

—m—1 n—1

=E Sn-1 |Sn717Xn+1 . ]

n—1

= S“_iann]

n—1

— Sy [ XS,

n—1 n—

Now since S,, = X+ i +X,, we have that E[X|S,] = E[X1]] S» and so Sjl - (S—") =

n n—1 n

— Q0 . .
% (%) = Sn Hence % "% Y as. and in L'measurable for all & > 0. Thus Y is
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ﬂO'(Xk+1, o) —measurable. So there exists ¢ € R such that P(Y =¢) = 1. So % =
k

Kolmogorov 0-1 law = trivial

in £! and hence ¢ = E[Y] = lim; o, E [%] = p and so finally ¢ = p. O

Theorem 5.3 (Radon-Nikodym Theorem). Let P and Q be two probability measures
on the space (2, F,P). Suppose that F is countable generated, i.e. there exists a sequence
(F)nen such that F = o(F,, : n € N). Then the following are equivalent:

1. For all Ae F, P(A) = 0 implies Q(A) = 0. (Q << P).
2. For all € > 0, there exists § > 0 such that if A€ F with P(A) < §, then Q(A) <e.

3. There exists a non-negative random variable X such that Q(A4) = E[X - 1(A4)], for all
AeF.

Remark. X is called a version of the Radon-Nikodym derivative of () with respect to P, or X = %
on F a.s.

Proof. 1) = 2): Suppose 2) does not hold, then there exists an ¢ > 0 such that for all n € N|

e}
there exist 4, with P(4,) < 25 and Q(4,) > e. Now, since Z P(A,) < o Borel-Cantelli implies
n=1

P(A,, i.0) =0 and so Q(A,) = 0. However,

{Anio} =, Uisn A = Q(An i0)

a contradiction.
3) = 1) : trivial.

2) = 3): Let A, = {Hin---nH, : H = F;or Ff for all i}. In other words A, =
{Fl,Fg7 S F Uisn Fk}. Let Fy = o(A,), so F, is a filtration.

Now defined A
Xn(w) = > gEA; ‘1(we A).

AE.A\

FrnCFni

Thus, for all AlinF,, E[X, -1(A)] = Q(4) E[Xnt1-1(A)]. So (Xy)nen is indeed a
martingale. Furthermore E [X,,] = Q(2) = 1 (and since X,, > 0 for all n > 0), we have that X, is
an £' bounded martingale. Thus, X,, "=> X, a.s.

Now we show that (X,,)nen is UL

P(X,>)) <1l/A<w
<6

using Markov’s inequality and taking A = 1/§. Thus, E [X,, - 1(X,, = \)] = Q(X,, = \) < epsilon.
Thus (X, )nex is Ul and so X, — X in L1,

Now define Q(A) = E[X, - 1(4)]. Want to show: (Q)(A) = Q(A) for all A € F. Indeed, we
have X,, = Xy|F,. Now if we let for a moment A € | J, -, Fn, there exists some N € N such that
A e Fy. Thus,

n=0

E[Xy 1(4)] = E[X, - 1(4)].

o

=Q(4) =Q(A)

Hence, ) = Q on a m—system, (|J,, Fn), that generates F, and by the extension theorem we
have that @ = @Q everywhere. O
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6 Continuous Time processes

Let X = (X, )nen be a process, that is for all n € N X, is a random variable on some underlying
probability space (Q, F,P)). X can also be viewed as the map
X (w,n) —» X, (w).

and observe that this map is FQP(N) = o ({Ax{k} : A€ F,k € N}) as long as X,, is F—measurable
for all n € N. Now we consider random variables taking values in the spaces R?, d > 1.

Definition 6.1 (Stochastic process). The family (X;)er, is called a stochastic process if
for all ¢ positive X; is a random variable.

Remark. The map X : (w,t) — X;(w) need not be F ® B(R,)—measurable.

Claim: If for all w € Q, — Xi(w) is a continuous function for ¢ € (0,1], then the map
X (w,t) = Xi(w) is F ® B(R;)—measurable.

Indeed, by continuity we can write

for all nthis sum isF®B((0,1]) —meas.

~

2n 1
Xy(w) = lim YT 1(te (k-27" (k+1)-27"]) Xj0-n (w)
n—0o0 P
Thus X is measurable with as a limit of measurable functions.

From now onwards, we will always (unless otherwise stated) assume that X is right-continuous
and admits left limits, almost everywhere. We call such processes cadlag.

We now revisit some of the earlier definition we have made in the discrete setting and extend
the to the continuous case. A filtration is an increasing family of sigma algebras (F;)ier, when-
ever t < t'. We say X is adapted to the filtration above if X; if F;—measurable for all ¢ € R.
A random variable T : Q — [0, 00] is called a stopping time if for all ¢, {T" < t} € F;. Define
Fr = {AlinF : An{T < t} € F for all t} and AlinB(R). Furthermore, T4 = _inf is not

t=0:X,€A

always a stopping time.

{Ta <t} = | J{X, € 4}

s<t

an uncountable union so not immediately clear whether it in F;.

Examples:
_f1, with probability%
Let J = {—1, with probability and
_[t, te]0,1] 21
Xt(w) - {1 + J(t — 1), t>1. 1__—.;:_’:'””

Let (]:t)t;o = (]:tX)tgo and fix A € (1,2). Then {TA < 1} | 1 2 t

inF1 = 12,9}, since {Ta < 1} = {7 = 1}. Figure 3: Ilustration of X.

Again, we say X! = X7, X7(w) = X7(u)(w) whenever T'(w) < 0.

Proposition 6.1. Let S, T be stopping times and X a cadlag adapted process. Then
1. If S < T, then Fg € Fr.
2. S AT is a stopping time.

3. Xr-1(T < w) is Fr—measurable.
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’ 4. X7 is adapted. ‘

Proof. 1),2) are clear (check!) and 4) is immediate from 3), since X7, if Fr.;—measurable and
Frat © Fi.

proof of 3): Claim: a random variable Z is Fr.;—measurable if and only if Z - 1(T < t) is
Fi—measurable for all £ > 0. Indeed,

<= ): is true by definition.

= ):if Z =c-1(A), A€ F, then A € Fr which means that Z is Fr—measurable. Now, if
Z = Z ¢i - 1(A;), a finite sum with ¢; > 0, A; € F, then Z is Fp—measurable.

Z general (= 0): let Z,, 1 Z, where
Zn=2""2"Z] An, forallneN.

Observe that Z,, are simple for all n and so by the previous steps Z,, is Fp—measurable and hence
so is Z, being an a.s. pointwise limit of measurable functions.

The case for completely general Z follows by decomposing Z = Z* —Z~, ZT = Zv,Z~ =
(—=Z) v 0 and apply the previous case to Z+, 7.

Now, by the above claim, it suffice to show: X - 1(T < ¢) if F; measurable for all t. We have
Xrl(T <t)=Xr - 1(T <t)+ X;-1(T =t). Hence, it suffices to show that X - 1(T < ¢t) if F}
measurable for all ¢.

Define T,, = 27 "[2"T|, stopping times since
(T.<t) —{2'T] <2)
= {2"T < |2"t]} = {T < 27"|2"T|}
S fQ—WLLQnTJ c ft.

Also, T;, | T, as n — o. Now by the cadlag property of X,
Xr- 1(T < t) = limn_,go XTn/\t . 1(T < t)

Furthermore, T;, takes values in D,, = {k-27", k € N}. Now,
Fi—meas.

Xpoae AT <t) = > Xg-1(T =d) LT <t)
deD,, ,d<t
+X, - 1T, =t)-1(T < t).

Hence, Xr - 1(T < o0) is F;—measurable as a limit of F;—measurable functions.
O

Proposition 6.2. Let X be a continuous and adapted process and let A be a closed set. Then
Ty ={t>0:X; € A} is a stopping time.

Proof. 1\Ieedtoshow:{TA<t}—{ in d(XS,A)—O}.

seQ,s<t
(©) : d(x, A) =distance of x from A. Let T4 = s < t, then there exists a sequence s, | s, such
that Xg, € A. Since A is closed, we have d(X,, A) = 0 and X, — X, as n — . Again A being
closed implies that d(Xs, A) = 0. The continuity of X and d(-, A) means that there exists another
sequence (gn)nen < Q such that g, 1 s such that d(X,, , A) — 0 hence inf.eq <t d(Xs, A) = 0.

(2): If infeeq,s<t d(Xs, A) = 0, then there exists a sequence (s,)nen such that s, < ¢ for all
n and d(X;s, a4 — 0) as n — c0. Then by compactness, there exists a convergent subsequence of
S, — s (without relabelling), such that s < ¢ and d(X,, 4) — 0 as n — 0 and by continuity we
obtain d(Xs, A) = 0, hence X5 € A and so T4 < t.

O
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Definition 6.2. Given a filtration (F;)¢>0, we define Fy+ = (),., Fs, for all t = 0. Observe
that (Fi+)e=o is a filtration. If for all ¢ > 0, Fy+, we say (Fy)i=o is right-continuous.

Proposition 6.3. Let X be a continuous process, and A be an open set. Then

Ta =inf{t > 0: X; € A}

is a stopping time with respect to the filtration (Fy+)¢>0.

Proof. Need to show: for all ¢t > 0, {Ta <t} € F;+. Have,

{Ty<s} = U X,eAeFy
qeQ,q<s e F.
1
{Ta <t} :mn{TA<t+g}€ft+'
—_—
eF, 1

O

Let (X;):=0 be a stochastic process. It can be viewed, as a random element in the space of
functions {f : R, — E} endowed with the product sigma-algebra making all projections measur-
able. Further, let C(R4, E) be the space of all continuous functions and D(R,, F) the space of
all cad lag functions. Endow the spaces C,D with the sigma algebra that makes all projections
7t . [ — f; measurable for all t > 0. This sigma algebra is generated by the cylinder sets

{ﬂ{fs €A, :forall T € Ry, finite, A, € B(E)}} .

seJ

For A in the product sigma algebra, we write u(A) = P(X € A) and we call p the law of X.
(“X4P = p“). For every J finite subset of Ry, write py for the law of (X;)ies. The measures
(ny) are called the finite dimensional marginals of X. The u; completely characterise the law of
1. This follows because the sets above form a w—system that generates the sigma fields previously
mentioned.

Examples:

Let X =0 forall te[0,1] and U ~ [0,1] (uniform) and Xy = 1(U = t) for t € [0, 1]. Both of
them have the same finite dimensional distributions which are Dirac masses at zero, but the
processes are not equal.

P(X,=0forallte[0,1])) =1
P(X; =0forallt <1) =0. But,
P(X; = X)) =1 forallte]0,1].

Definition 6.3. Let X and X’ be two processes on (2, F,P), we say X’ is a version of X if
(X: = X a.s.) for all t. That is

For allt > 0: P(X; = X}) = 1.

Definition 6.4. Fix a filtered probability space (Q, F, (Ft)i=0,P). Set N to be the collection
of sets of measure zero. Furthermore, set

]:-t:o'(]:tvj\[)

for all t > 0. If for all t, F; = .7-'t, we say that (F;):>o satisfies the usual conditions.
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Theorem 6.1 (Martingale regularisation theorem). Let (X;);>o be a martingale wrt
(Ft)t=0. Then, there exists a cadlag process (X;):=>o satisfying for all ¢ > 0:

X, =E [Xt\]-'t] a.s.

and X is a martingale with respect to the augmented filtration (.7:',5),5>o. If (Fy,., satisfies the

usual conditions, then X is a version of X.

We start with a Lemma

Lemma 6.1. Let f: Q; — R such that for all I < Q. bounded, f is bounded on I and for
any a < b,a,b,€ Q, for all I bounded and suppose

N([a,b],I,f) =sup{n > 0: there exists 0 < s1 <ty <+ < $p < Iy,
si,ti € Ist. f(s;) <a, f(t; >b)} < o0.

Then, for all t > 0, the limits

li li
ofteQs f(s), slineQs 1(s)

exist and are finite.

Proof. Let s, | t, the sequence (f(s,)) will converge by the finite upcrossing property (see lemma
. Now suppose t, | t is another such sequence, then combining them (by selecting elements
from each sequence in an alternating fashion exploiting convergence) we get a decreasing sequence
converging to t to conclude lim, o f(s,) = lim, o f(t,). Finally, f being bounded gives that
both limits are equal and finite. O

Goal: To define X; = lim, 1t,seQ, X on a set of measure 1, and zero otherwise. We now outline
below the main steps in the proof of Theorem
Steps:

1. Show that the limit exists and is finite on a set of measure one.

2. Show that X is F;—measurable and satisfies E [f(t\]-}] a.s. for all ¢ > 0.

3. X is a (Fi)¢=0 martingale.
4. X is cadlag.
Proof. (Theorem [6.1)

1. Let I be a bounded subset of Q.. Need to show that P (sup | X:| < oo) = 1. Observe that

tel

sup | X¢| =  sup  sup|Xy|.
tel J<1I,J finite teJ

Now, let J = {j1, -+ ,jn} © I with j; < ---j, and k > supl. Then (X;)tes is a discrete
time martingale. Hence the maximal inequality in [4.]] gives

A-P(sup [Xi| = A) < E[1XG, [] < E[|Xk]

teJ

by the martingale property and Jensen. Now taking the limit as J 1 I,

AP (sup|xt| > A) <E[IX;,]] < E[IXx]

tel

So, P <sup | X:| = )\> = 1. Now for M € N define Iy = Q4 n [0, M], then by the above,

tel
P ﬂ {sup | X¢| <oo} =1
MeN \t€lm
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and on the above event, X; is bounded on bounded intervals of Q.
Let a <b, a,be Qy, I € Q4, bounded. Observe that

N([a7b]7]7X): sSup N([avb]aJaX)

IcI,J finite

Now, let J = {j1, -+ ,jnt S I with j; < ---j, and k > supI. Then (X;);cs is a discrete
time martingale. Now, Doob’s upcrossing inequality from gives

(b—a)-E[N([a,b], J, X)] <E[( o —a)”]
[(Xk—a) I.

By monotone convergence, we get
(b—a)-E[N([a,b],],X)] <
Let M e N, Inf = Q4 n [0, M] and

Qo = ﬁ( ﬂ {N([a,b], In, X) <oo}U{sup|Xt|<oo}>

meN \a<b,a,beQ telm

On g, from lemma lim);x, exists and we have P(£y) = 1. Now, define

X _ hmslt,sEQ+ Xs, on QQ
‘ 0, otherwise.

Recall F, = o(F,N) for all t > 0. From the definition definition, we see that X is
F—adapted.

It remains to show that X; = E [)Zﬂ]—"t] a.s. and X is cadlag and a martingale.

. Let t,,1, trheq, , then

Xt = lim Xt

n—ao0
a.s. Observe that (X;,) is a backwards martingale with respect to the filtration (F,)nen-
So (X, ) converges a.s. and in £!. In other words, X; = in £!. So X; = E [ti:t] a.s.

. We now prove that X is a martingale. Let s < ¢, we need to show that E [Xt|fs] =’ tilde X,

a.s.

Claim: E[X;|F;+] = X, a.s. Indeed, first observe that for Y any random variable and G a
sigma algebra it follows that

E[Y|0G, )] = E[X|]]

which is clear because the conditional expectation is defined almost surely and A only con-
tains sets of measure zero.

Now, fix s < t and let s, | s, s, € Q, sg < t. We have by the tower property that
(E[X¢|Fs, ])nen is a backwards martingale and so it converges a.s. and in £ to E [X;|F+].
But E[X;|F, ] = X, as. and X, — X, a.s. as n'ton. So X, = E[X;|F,+].

. Finally, we show that X is a cadlag. First we show that X is right continuous. Suppose not.

Then, there exists w € Qo and some t > 0 such that X (w) is not right continuous at t. That
is there exists a sequence s, | t such that | X, — X;| = ¢ > 0 (for some positive €). By the
definition of X, there exists another sequence s, > sp, for all n € N and s/n It s eQy
such that | X, — Xg | <5 So|Xy — X = 5, a contradiction since s, | ¢, s;, € Q;. The
argument for left continuity is entirely analogous.

O
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Examples:
Let &, m be independent iid symmetric Bernoulli with success probability 1/2. Define

0, t<1
Xi=1¢&, t=1
E+m, t>1.

and let F; = 0(X,,s <<) for all t > 0. Observe that X is an (F;);>o martingale. Also, X
satisfies X; = E [XA}}] where

5 0, t<1
Xt={§+77, t>1.

Furthermore, F; = o(¢) and F; = o(&,n) for all t > 1, X is cadlag with respect to F. Observe
finally that Fi+ = o(&,n) and so the filtration F is not right continuous and X is not a version
of X. We thus see that the right-continuity of (F;):>o is necessary in Theorem

Theorem 6.2 (Almost sure martingale convergence theorem). Let X be a cadlag
martingale bounded in £'. Then X; — Xy a.s. with Xo € £1(Fo).

Proof. Let Iny = Q4 n [0, M]. Then Doob’s upcrossing inequality from the discrete setting
and a monotone convergence argument give for a < b,a,b € Q4

(b—a) -E[N([a,b],In, X)] < a+supE[|X,]].

t=0

Taking M — oo gives N ([a,b],Q4, X) < o0 a.s. Hence, for the event

QO: ﬂ {N([a7b]aQ+7X)<OO}

a<b,a,beQ+

we have P(€) = 1 and on €, limg e e, X, exists and is finite. We thus have X, =
limg o0 e, Xg on Q. Now for all € > 0, there exists go such that [X,, — X,| < § for all
q > qo, ¢ € Q4. Now let t > go. Then there exists some ¢ > ¢, ¢ € Q4 such that [X; — Xy| < § by
right continuity of X. So | X; — X | < e.

O
Theorem 6.3 (Doob’s maximal inequality). Let X be a cadlag martingale, X;* = sup | X,]|.
s<t
Then for all A > 0,
A PXF =N <E[|X]-1(X) = N] <E[|X]].
Proof. Have
sup |Xs| = sSup |Xs‘
s<t se{t}u(Q+n[0,t])
and use the beginning of the proof of theorem [6.1 O

Theorem 6.4 (Optional stopping theorem for cadlag UI martingales). Let X be a
cadlag Ul martingale, then for all § < T stopping times

E[XT|]:5] = XS a.s.

Proof. Let T,, = 27™|2"T| and S,, = 27™[2"S]. Both are stopping times and T;, | T, S, | S as
n — . need to show: for A € Fg, then E[Xp - 1(A)] = E[Xs -1(A4)]. Indeed, X7, — Xp and
Xgs, — Xgs a.s. asn — o (X is right continuous).

Now, by the discrete optional stopping theorem applied to the martingale (Xj.5-n)ken with
respect to the filtration (Fg.o-n)gen, X1, = E[Xo|Fr, ], so X7, is Ul (since T,, take values in
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27".N). Thus, X7, — X7 in £!, and the same holds for X5, — X using the exact same argument.
By the discrete optional stopping theorem, we have that E[X1 |Fs,] = Xg, a.s. Now for A € Fg,
we have that A € Fg, for all n € Nsince S,, = S. So E[ X, - 1(A)] = E[Xg, - 1(4)]. O

Theorem 6.5 (Kolmogorov’s continuity criterion). Let D,, = {K -27" : 0 < k < 2"}
and D = U D,,. Let (X¢)iep be a stochastic process taking real values. Suppose there exists

n=0
some € > 0 p > 0, such that

E[|X; — X,P] <c-|t—s|'T¢, foralls,teD

where ¢ is a positive constant. Then for all « € (0, ¢/p), the process is a—Hoélder continuous,
that is there exists a random variable K, < oo such that

| X — X| < Ko - [t—s|%, forall s,teD.

Proof.
Markov 4+ assumption
P (‘Xk._Q—n - X(K+1).27n| 2 2777,&) < C- 27nap . 27”(14’6)'
Thus,
e union bound napne €
P max [Xpo-n — X(xi1)2-n] =2 < c-2 , ae(0,-).
0<k<2 p

By Borel-Cantelli,

max |Xpo-n —X o-n| <27
oskszn' k-2 (K+12mn] <

for all n € N sufficiently large. Thus,

Xpo-n — X 9-n
sup max | X2 (K+1)-2 \<2,m

< Mw) <o
n200<k<2n 2—na = ( )

a.s. For some random variable M.
Need to show: there exists some M’ such that |X; — X | < M’ - |t — s|* for all s,t € D.

Let s < t, s,t € D and let r be the unique integer such that 2=+ < ¢ — s < 2", Then there
exists some k € N such that s < k-2~ 0+ < ¢. Now, observe that t — o < 27" so

0

T
t—a= Z 2—;, zj € {0,1}

j=r+1

and
a—s= E 2—;, y; € {0,1}.

j=r+1

Observe that [s,t) is a disjoint union of dyadic intervals each of them having length 27" with
n = r + 1 and each interval of length will appear at most twice. Thus, we get the bound

d,n is the endpoint of a dyadic interval in the decomposition of [s,t) of length 27"

~
|Xe — Xs| < DX~ Xgyo-n]
T ————

<2—na»1\4

oM - 2-(r+De oM

o8]
<2-M. 9-na
2 1-2a  ~1_2a

n=r+1

[t — s|.
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7 Weak Convergence

We fix (M, d) a metric space endowed with its Borel sigma algebra.

Definition 7.1. Let (uy,)nen be a sequence of probability measures on M. We say (i )neN
converges weakly to p and write p,, = p asn — o if

i (f) 1= fM F(@)pin(dz) =F fM F(@)ulde) = p(f)

for any f continuous and bounded.

Examples:

1. Let 2, — = as n — oo in (M,d) then §,, =5 &, ,since &, (f) = f(zn) =5 f(z) =

2. Let M = [0,1], with the Euclidean metric and its Borel sigma algebra. Let p, =
% Z Ok/n- Then p, converges weakly to the Lebesgue measure. Indeed, p,(f) =

0<k<n
Lf(k/n) =% § f(z) dz, being Riemann sums.

3. pn =01 == dp, as n — 0. Notice however that for A = (0,1), p,(A) =foralln >0
and so v, (A)#6,(A) = 0.

Theorem 7.1. Let (u,)nen be a sequence of probability measures on (M,d). Then the
following are equivalent:

1wy = p.
2. For all G open, liminf u,(G) = u(G).

3. For all A closed, limsup p, (A) < p(A).
n

4. For all A with u(0A) =0, then p,(A) — p(A).

Proof. 1 = 2: Let G be open with G¢ # ¢J. Let M > 0 and set fp(z) = L(Md(z,G°)) < L(xz €
G). Observe that fy(x) T 1(z € G) as M — o, fur is bounded and continuous for all M. So
tn(far) = 1(far) as n — oo for all M. Thus,

monotone convergence
= (@)

hminfﬂn(G) = hminfﬂn(fhf) = /J’(fM)

2 = 3: follows from the previous case by taking complements. 2,3 = 4: 0 = pu(0A) =

p(A\int A), hence p(A) = p(A) = p(int A). 2 :lim inf ,u(J A) = p(int A) = p(A). 3:limsup p,(A4) <
u(A) = u(A).

4 = 1: Need to show for any f continuous and bounded, u,(f) — wu(f). We can assume
further that f > 0. Fix K > sup f. Have,

| ra@matan) - fM ( | BIE f(x))dt> fin ()

Fugini S(I]( ,Un(f > t) dt

It suffices to show p,(f =t) — pu(f =1t) as n — oo. Since then we can conclude using dominated
convergence. Thus it suffices to show that p(d{f = t}) = 0. Indeed,

Hf =ty {f =1t
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since f is continuous and {f > ¢} is open and < {{f > t}. Also observe that there exists an at
most countable number of ¢ such that p(f =¢) > 0. Thus,

1
. = = . = > — .
{t:p(f=1)>0} Lnj {t:u{f =1}) >~}
#<n
Thus, 0{f > t} is countable and has Lebesgue measure zero. O

Now, let M = R. Let u be a probability measure on R. We define the distribution function of
p to be the function F), : & — pu((—o0,z]), F,R — [0,1].

Proposition 7.1. Let (pn)nen. be a sequence of probability measures on R. Then the
following are equivalent:

Ly —> p,asn — o0.F, ()=% F,(x) for all z € R continuity points of F),.

Hn

. Proof. 1 = 2: Let x be a continuity point of F,. Have F), (x) = ,((—o0,z]) and

n(0(—w0,z]) =
—0,z]) — limy o0 p((—00,z — 1])
= F,(z) —limy—o Fu(d— 1) =0

n

since x is a continuity point of F},. O

2 = 1: Let G be an open set in R. Then G = U(ak, bi), a union of disjoint open intervals.

n
Now,

liminf p,(G) = lim ian tn (ak, bg)
%

Fat

> Zliminf,un(ak,bk).
= n
= +d
So it suffices to show that liminf u,,(a,b) = p(a,b) for all a < be R.

Indeed, We have p,((a,b)) = F,, (b—) — F,,, (a) and since F), is non-decreasing and has at most
countably many discontinuities, there exist o',V continuity points of F,. Hence, F),, (a’) s

F,(a') and F, (V) =3 F,(b'). This means that

lin}linfun((a, b)) = F,(t') — Fu(a").

By the density of continuity points, there exist (b, )men, such that b, 1 ¥ and (al,)men, a,, | @
all continuity points. Thus,

m

= Fu(b-) — Fu(a) = p((a.b)).

lim inf p,((a,b)) =supF,, (b,,) — F.(a,,)

Definition 7.2. Let (X, )neny be a sequence of random variables taking values in (M, d),
defined on probability spaces (€, Fn,P,). We say that (X,,)nen converges weakly (or in

distribution) to a random variable X defined on (2, F,P) if £(X,) = L(X) (i.e. the laws
converge weakly).

Remark. Equivalently, X, wig X if for all F' continuous and bounded, Ep, [f(X,)] — Ep [f(X)],
as n — oo.
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Proposition 7.2. 1. If X,, —> X asn — o0, then X,, —= X asn — .

d P
2. If X,, = ¢, c a constant, then X,, = ¢

Examples: (CLT)
Let (X,.)nen be iid and E[X;] = m and 0% = Var(X;). Then with S,, = Z X;
i=1

S, —n-m
2

4 N(0,1)

no

as n — 0.

Definition 7.3 (Tightness). Let (M, d) be a metric space. A sequence of probability mea-
sures (f4n)nen on M is called tight if for all e > 0, there exists a compact set K < M such
that

sup f(M\K) < e.

n=0

Remark. It M is compact, then all sequences of probability measures are tight.

Theorem 7.2 (Prohorov). Let (u,)neny be a tight sequence of probability measures, then
there exists a subsequence (g, )ken and a probability measure u such that

d
fn, = W, ask — 0.

Proof. We focus on the case M = R. Let Q = {z1, 2, -} be an enumeration of Q and F,, = F, .
Then, the sequence (F,(71))nen in [0,1] has a convergent subsequence F ) (z1) =g F(z1) by
k
compactness. So does (an (22))ken. Thus, continuing so inductively, we obtain for all ¢ € N that
k
there exist sequences (n,(;)) ren such that
F7l§f)(xj) ps F(z;), foralll<j<i.

Thus, we can extract a diagonal sequence (mg)ken, where my = n,ik) for all k£ € N and Have

Fp,.(2) oo F(z), forallxzeQ.
Observe now that the functions F),, are non-decreasing, and so F' is non-decreasing, so for z € R
define F(z) = limg 4eq F'(g). Thus, F' is right continuous, non-decreasing and so F' has left-limits.

Let 2 € R be a continuity point of F. We need to show that F,, () =3 F(z). Indeed, for
any € > 0, there exist $1 < & < sq, 8; € Q such that F(s;) — F(z)| < ¢/2 (since F is continuous at
x). We now have the chain of inequalities

conv. in Q

F(e) — € < F(s1) = & < Fr (1) < Py () < Fu (s < Flso) + 5 < Fa) + ¢

N

for all k € N sufficiently large.

Finally, it remains to show that there exists some probability measure p such that F' = F),.
Indeed, by tightness, we have that for all € > 0, there exists N € R large enough so that (with £+ N
being continuity points of F')

sup fin ([~ N, NJ%) < e.

n=0

Thus, F(—N) < e and 1 — F(N) < e. This guarantees that
lim F(z)=0, lim F(z)=1.

r——00 T—00
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Finally, define define p((a,b]) = F(b) — F'(a). Then, u can be extended to the Borel sigma algebra
by Calathea dory’s extension theorem. O

Definition 7.4. Let X be a random variables with values in R?. The characteristic function
of X is defined as

ox(u)=E [ei<“’X>] , ueR%

Properties of ¢x:

1. ¢x is continuous on R? and ¢x(0) = 1.

2. ¢x completely determines the law of X, that is if ¢x(u) = ¢y (u) for all u € R? then
L(X)=L(Y).

Theorem 7.3 (Lévy’s convergence theorem). Let (X}, )nen, X be random variables taking
values in R%. Then

1. £L(X,) = L(X) as k — o, then ¢x, (u) =3 ¢x(u) for all u e R?.

2. Suppose there exists 1 : R? — C such that ¢ (0) = 1, v is continuous at zero and

bx, (1) =3 1p(u) for all u e RY. Then there exists a random variable X with charac-
teristic function ¢ = ¢x and L(X,) = L(X).

Before we proceed with the proof of the theorem, we state a Lemma

Lemma 7.1. Let X be a random variable in R?. Then, for all K > 0,

P(IX]0) <O (f;)f[ (1 - bx () du

where C' = (1 — sin(1))~%.

Proof. Fix A > 0 and let p = £(X). Then,

ox (u) du :j J e™i%iy(da) | du
J[—A,A]d x() AA]E \ R n
Fubml L e
= dz J. e du;
J-Rd 2 )H ( [=AA] J)

j=1

‘[ (d ) d (eimj)\ _ e—irj)\>
Rd e 1T
d

- (2)\)jd_JRdj1:[1 <2 : Si;g“ﬂ) (dz)

Thus,
(1= oxtau = 2n? [ ] (1= 2002 g
J[A)\]d fRd < AT

Now, let f(u) = ﬁ (25111(%)) f:R? >R,

j=1 Ui
sin(x)

Claim: not hard to see that if = > 1, then |— n(1). Hence, if |lul|,, = 1, then |f(u)| <
sin(1). So 1(J|ull, =>1) < C- (1 = f(u)), where C (1 in(1))~!. Hence,

P(IX], > k) < C- ]E[l f< )]

w
»—-
U)/-\
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and by simple scaling, one can conclude for the general case. O

Proof. (Theorem [7.3)

f(z) = €<** is continuous and bounded so by bounded convergence, have

¢x, (u) = E[f(Xn)] = E[f(X)]
as n — o0.

1. First we prove that £(X,,))nen is tight. By Lemma[7.1] have that

) <o (5 [ICET LY

and |1 — ¢x, (u)| < 2 for all uw € R? n e N. Thus, by dominated convergence,

J[ (1= ¢x, () du "= (1 —4(u)) du.

_%7 ]d [_ 1%](1

-
==

Since 1) is continuous at zero and ¥(0) = 1, taking K large enough we get

f[ v < K

T KK

Thus, P(|| Xy ||, = K) < € for all n € N sufficiently large. Taking K possibly even larger, we
conclude that

sup P([| X1l,, = K) <,

n=0

hence showing that (L£,,)nen is tight. By Pro horror, there exists a subsequence (ny)gen such
that

n—o0

L(Xn,) = L(X)
and so ¢x, (u) — ¢x(u) for all u e R?. Thus, ¢ = ¢.

Suppose for a contradiction that Lx,, does not converge. Then there exists f continuous and
bounded and a subsequence my such that

B, [f (X )] = E[Lf(X)]]| = €

for all £ 5 N. Now, since (£(Xm, ))ren is tight, there exist a subsequence, without relabelling,
such that (£(X,,,)) converges weakly, a contradiction. Thus, the limit must also be X.

O

Now, we briefly embark on a discussion of the theory of large deviations.
8 Large deviations

Let X1, Xo, -+ beiid ~ A (0,1) random variables. Let S, = i Z X; ~N(0,1/n). Let § > 0,
i=1
we by the weak law of large numbers that

1.
P(|S,| = &) =3 0.

~ interval o J 1 22
A

P(ValSal e A7) 5 | e T da
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d+/n 1 2

x

e 2 dz.

P(|S,| = 0) = 1-[
—5yn V 2
In other words,
log P(|Sy,| = 9) noowo 9
n 2
Observe that Sn, the “typical “ value is of the order ﬁ and it can take relatively large values

52n

(= 6 > 0) with very small probability €~z . Furthermore, 1,2 are universal but 3 depends on the
distribution. We shall focus on quantifying 3 for an appropriate class of random variables.

Let X1, X5,--+ be an iid family of random variables, such that E[X;] =%, S, = X1 + X2 +
---+ X,,. Let a € R. Now

independence
P(Sp4m = a(n + m)) > P(S, = an) - P(Sim>a,, )-

Now, with b, = —logP(S, = an) for all n € N, have that b,,, < b, + b,,. This is called
sub-additive sequence. Actually, for such sequences one has
b b,
lim — = inf =,
n—ow N n - n

Sub-additive sequences

. . .. b . .
To quickly see this, suppose first that inf — > —oco. Fix any € > 0, then there exists some
n n

b
m € N such that bﬁ < inf == + €. Hence, for any k > m, we have by Euclidean division that
n n

there exists some ¢ € Z; and r € [0, m) N N such that k = ¢gm + r. Thus, the sub-additivity
of (by)nen implies that

by _ bgmyr < q-brm +br

& T gm+r = gmtr
1.b, 0
< it +%/b"/
n n qgm +r
. by .
as k — o0. The case where inf — = —o0 can be dealt with similarly.
non

So, we have that
1 nes
——logP(S, = a,) =% I(a).
n
Also,

A>0

P(S,, = an) P > eran)

Maékov o [eAS”] Le—mAa _ | [8>‘Xl] Le—Aan

Define M(X) = E [e*X1], ¢(X) = log M(X), A € R. In other words, we have
P(S, = an) < exp(—n(ia — ¥(N))).

Furthermore, let ¥*(a) = sup(Aa — ¢¥(A)) = 0. So P(S,, = an) < exp(—ny*(a)) and so have

A=0
obtained log P(S )
— 10g nzan
—— T > ¢ (a).
n
Theorem 8.1 (Cramer’s Theorem). Let X7, X5, -+ be an iid sequence of random variables
n

with E[X1] = Z. Let S, = )| X;. Then,

i=1

! log P(S,, = an) =5 1 * (a)
n
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for all @ > T where ¢*(a) = sup(Aalpha — psi(\)), ¥(A) = logE [e*¥1] (¢* is known as the
A=0
Legendre transform).

We collect some basic facts about the function M(A) = E[e**1], A e R.

Lemma 8.1. The functions M and v are continuous on D = {: M (\) < co} and differentiable
in int D with M'(A) = E[X..ax, ] and /(\) = LA N e D.

Proof. Continuity: Fix a sequence X\, —> X € D. Then, pointwise, e*X1 "=5 AX1 and take
n € N such that for all n = N, e?X1 < VX1 4 X0 e £ (which holds by since Ay < A, < A for
n possible larger). Thus, can conclude by dominated convergence that 1(,,) "= 1)(\).

Differentiability: Fix n € int D. We can now bound

€ €

‘M(n%)*M(n)‘ _ ‘]E e<"+e>-xl_en-xl]

. €1_1q
< e

Now, let § > 0 sufficiently small such that (n — d,n + ) < int D. Now, for all € € (=6, 0)

el — ]| comparing power series €6|X1\ —1
< -

€ 0

So
ente) X1 _ onXa eOlXal _q
- O e R
~
€ )

Now, since X1 . 21Xl < X1 . (9% 4 ¢=9X1) € £ since 7 € int D and we can thus conclude by
dominated convergence. O

Proof. (Theorem From the previously derived Chernoff bound, we have

lim & logP(S,, = an) = ¥*(a).
n

n—0oo0

It suffices to show now that

1
lim —=1logP(S, = an) < ¢¥*(a), foralla>T7.
n—w n

Observe that we can replace each X; by X; = X; — a and define S,, = Z X; and
i=1
M(\) =E [eM2 ] — e~ M (), where $()) = Y(\) — a), A e R. 0
Thus we can restate the original inequality as follows

lim —llogIP’(Sn > an) = lim ! log P(S,, = 0) < 9*(0)
n

n—0o0 n n—00

where 1*(\) = sup(—t())). Thus, without loss of generality, it suffices to show that
A0

1
Lo 1 >0)> i 7
nh—r»Ialo n log P(Sn = 0) ig% v(A)
when 7 < 0.

For the remainder of the proof, we let y = £(X) and break the proof into several cases.

Case 1: M(A) < o for all Ae R.
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Define a new measure pg for all § > 0, absolutely continuous with respect to p and radon-

Nikodym derivative
dua €0X1

dp — M(9)

We compute

e f(x
B 0] = | @) ().

r M(0)
Now, if Xq,---, X, are iid ~ pu. Then

By [F(X1,- - 7Xn)]:JF(X17"' ’X”)ﬁ e

Ox U
Set g(0) = Eg [X1] = § 24557 du = Jgt = ¥/(0).
Seek: 6 such that g(f) = ¢’ (0) = 0.
If P(X; > 0) =0, then P(S,, = 0) = (P(X; = 0))™ by independence. Thus,
1

and
inf < lim ¢()) = lim E[X] P20 lim E[e1(X, = 0)] = P(X; = 0).
—00 —00

A=0 A—00

We can now focus on the case where P(X; > 0) > 0. Now, there exists an N € N such that
P(X1 > %) > 0. We deduce that

0 1
lim () = lim E[e’*'] > lim E [eNl <X1 > )] = .

0—0 60— 6—0 N
Thus, there exists some 7 > 0 such that /i\r;%w()\) = (n) and ¥'(n) = 0. Now,
P(S, =0) =P(S, €[0,en]) = E[e"5»~1"1(S, € [0, en])]
= e ""(M(n))" - Py (Sy € [0,€n])

where P, (X7 € -) = py(-). Now, since E, [X7] = 0, we claim that we can use the CLT on iid copies
of Xy with law u,, to deduce

n—w 1

P(Sn € [O,ETL]) —&;J 5

Proof of claim

This is a little messy, be warned! Fix any ¢ > 0. We have by the triangle inequality

1 1
P, (S, € [0,en]) — 3| < P, (Sn € [0, en]) — P, (S, € [0,90))| + |P, (S, € [0,0)) — 3l
for all n € N. Now, by the CLT and Theorem [7.1] we have that

P(S, € [0,00)) "=

DO =

Thus, for all n sufficiently large, we have that [P(S,, € [0,00)) — 1/2| < €//3. Furthermore,
there exists some N € N such that P(N € (ev/N,0)) < ¢/3 where N denotes a standard
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normal random variable. Thus, for all n € N sufficiently large

Py(Sue [0,en]) = 3 <5+ [Py(Sx € (ev/m, )| < § + [Pa( S5 € (v, )|
<€+ [Py(3= e (eVN, oo))‘ <<+ PV e (eV/N,0))
+ Py (22 € (

NN

as required.

Thus,
log P(S,, = 0)

n n

logP
> —ne +log M(n) + o8 n(Sne[Qen]).

Now, for all € > 0,

1
liminf —log P(S,, = 0) = log M(n) — ne = 1(n) = inf (N).
n. n A=0

Sending € — 0 gives the desired inequality.
General Case:

Without loss of generality, (arguing as in the previous case), let K > 0 sufficiently large so that

({1Xi] < K}>.

i=1

©([0, K) > 0. Then define the conditional laws v = L(X;||X;| < K), v, = L <Sn

Have
fin([0,00) = Vn([0,90)) - (u([—K, K]))"
and
tog 0 (10.0)) > BT g k),
K 0

Let ¥ (X) = logJ . e* dp(z). Then, logf B M dv(x) = Y (N) — log u([~ K, K]). So,
exists again by sub-additivity

lim < log i ([0,00))] = fuf (log F e du(ac)) +log u([—K, K1) = inf vx(N) = Jx > —o0.

n—o N, A=0 — o A=0

Now, as observe that ¥ is a non-decreasing family of continuous functions. Hence, the (Ji)ren are

non-decreasing and so one has J; 1 J > —o0 K — oo. Furthermore, the sets {\ : ¥ i (\) < J} are

compact by the continuity of the 1 xand the fact that p([0, K]) > 0 implies )\lim Y (A) = o0, as
—00

well as nested. Thus, there exists some A € ﬂ{)\ s Y (A) < J}. hence, ¥(Ag) = klim Yr(N) < J
—0

k
by monotone convergence. So,

lim ~ log 1 ([0,20)) = J > (o) > inf $(\)

n—ow n A=0

as required.
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9 Brownian Motion

Lecture 17 Definition 9.1. A process (Bi)ser, is called a Brownian motion in R?, d > 1 starting from
x € R?if (By)s>0 is a continuous process and

1. BO =X a.s.
2. For all s <t, By — Bs ~ N (0, (t — s) - Idy).
3. (Bit)¢=0 has independent increments independent of By.

If x = 0 we call it a standard Brownian motion. Observe that i .determine uniquely its law.

Examples:
Let (Bt)i=0 be a standard Brownian motion in R, U ~ [0,1] uniformly distributed and
independent from (By)¢>o and define

D _ Btv t7&U
Bt‘{o, t=U

Then fi is a.s. discontinuous, so even though B, B have the same finite dimensional distribu-
tions, B is not a Brownian motion.

Theorem 9.1 (Wiener). There exists a Brownian motion on some probability space.

Proof. (Lévy and Kolmogorov)

1. We shall proceed to construct a BM on [0,1] in d = 1. Let Dy = {0,1}, D,, = {k-27":0 <
k<2"}forneNand D= | | D,
n=0
We will now construct (By,dinD) inductively. First for DO. Let (Z4,d € D) be an iid se-
quence ~ N(0,1) on some probability space (Q, F,P). Set by = 0, By = Z; (clearly satisfies
properties in . Suppose now we have constructed (Bg,d € D,,_1) satisfying properties
2&3. We need to construct (Bg,d € Dy,).

For d € D,\D;,—1, have d =d £+ 27" € D,,_1. Now, set

BatBur | Zi qeD,\D,
By = 2z
By, deD,_;.

We now show that our candidate process (Bg)g4ep, has independent increments. Indeed, we
have that for d € D,\D,,—1,

Bay—Ba-— z
By~ By = Bl g 2o,
2
Bay—Ba— z
Bay — Bqg = =%5—= — ﬁ
2

are independent. To see this, note that by induction we have that B‘”gﬁ ~ N(0, %)

and the same holds for f—il Thus, ¢ — B4—, Bq+ — By are two mean-zero uncorrelated
272

Gaussians, hence they are independent.

Now for any two disjoint intervals of length 27", the corresponding increments of the process
(Bd4)dep,, are independent since one can express every increment as half the increment of the
previous scale plus an independent Gaussian and apply the induction step.

Thus, we have been able to construct (Bg, d € D) satisfying the conditions 2&3. Furthermore,
by Gaussianity we have
E[|Ba — Bg|] = |d —q|> -E[|[N]"],
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where N ~ N(0,1). Since for all p > 0 E[|N|P] < co. By Kolmogorov’s continuity criterion,
for all a € (0, ©) with € = L —1(Bg,d€ D) is a.s. a—Hélder continuous for all o < 3.

We now extend to the whole of [0, 1] by setting By = lim By, d € D, d; — t, i — o0. It
1— 00

is immediate that (B e[o,1]) is a.s. a— Holder continuous for all v < % Now it remains to
check conditions 2&3 are satisfied.

Let 0 = to<t, <<t <1- Then, we claim the increments (B, — By, , )i=1,... , are independent
Gaussian with (B, — By, ,) ~ N(0,t; —t;—1) for all 1 < i < k. Indeed, let

0<t<th<---<tp <1

o
N
S —
N

1 <<t <

be dyadic rationals. By continuity, we have a.s. Bt? — Bt;‘,l s By, — By, for all j < k.
Thus, by bounded convergence,

independent, normal

k —_—N— n _ 4n
E [exp (7, Z ’U,j( Bt.’; — Bt;L_1> >] = Hexp <u§(t32tjl)>
Jj=1 o,
g 1_[ exp (W) = ¢(u).

By Lévy’s convergence theorem, since ¢ : R¥ — R is the characteristic function of independent
Gaussians ~ N(0,¢; — t;_1) and since the characteristic functions of the increments and
the independent Gaussians agree, this forces the law of (By, — By, ,)j<kr to be that of &
independent N (0,¢; — t;_1) gaussians. Hence, (By,t € [0,1]) satisfies all the properties.

2. Extending the construction to all of R. Let (B¢, t € [0,1]) be independent brownian motions
and define

lt]—-1
By =B, + Y Bl t>0
=0

It is not hard to see that the conditions in [0.1] are satisfied.

3. Now for d > 1, let (B})i=0, (B})i=0," " , (B{)t=0 be independent one dimensional Brownian
motions. Set (By)i=0 = (B, -+, B%)i>0 and it is easy to check that the conditions are met.
O

Theorem 9.2. Let B be a standard Brownian motion in R¢. Then

1. If U is an orthogonal matrix, then UB = (U By)¢>0 is also a standard Brownian motion.
Hence so is —B.

Bt

2. (Scale invariance:) Let A > 0 be given. Then ( ) is also a standard brownian
t>

S

motion.

3. (Simple Markov property:) For all ¢ > 0, (Bys — Bs)i>0 is also a standard Brownian
motion and is independent of FZ, where F2 = o(B, : u < s).

Proof. Easy to check that it follows from the definition of Brownian motion. O

Lecture 18

9.1 Properties of Brownian Motion
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Theorem 9.3 (Time inversion). Let B be a standard Brownian motion in d = 1. Let

tB1 t>0
X, =7
t {0,'t_0.

Then (X;);>0 is a standard brownian motion.

Proof. Fix ty,--- ,tx, > 0. Then (By,, -, By,) is Gaussian random vector with zero mean and
Cov(Bs,B, = s A t. Need to check that (X;,,---, Xy, ) is Gaussian and with the same covariance
as above. By inspection, we se thtah this vecto is clearly Gaussian with zero mean. Now for the
covariance, we compute

1 1
COV(Xti,th) = COV(tiBti,thtj) = tiﬁjCOV(Bt,”Btj) = titj (t- A t) = ti A f,j.

i J

Now it remains to show that X is continous. Indeed, for positive ¢, X is clearly continuous. Now,
we also claim that lim;| o X; = 0 a.s. Observe that

(X1, t€ Qi) L (B teQy)
and so

P(tl[)l§tr£Q+Xt—o> =P( U N {|Xq<]if}

NeNreQy qeQ4 ,g<r

(00 (e 3] Cam )

NeNreQ; ¢eQy4 ,g<r
Finally, since Q is dense in R, and X is continuous for ¢ > 0, we have that

IimX; = lim X,=0, a.s.

10 t10,teQ
O
Corollary 9.3.1. Let B be a standard brownian motion in d = 1. Then,
B —
—t ey 0, a.s.
t
Proof. By theorem we have that with X defined therein,
B 1
lim =% = limX<> =0
t—owo t t—00 t
by the continuity of X at zero. O

Definition 9.2. For s > 0, let 7 = ﬂ FB = o(B, :u<t). Have FF c Fi.

t>s

Remark. From the simple Markov property, we have that
(Biss — Bs)izo L FP.

In fact we have more, that is

Theorem 9.4. For all s > 0,

(Biys — Bs)i=o L Fy.

39




Advanced Probability Pantelis Tassopoulos

Proof. 1t suffices to show that if t1,--- ,tx€ Ry and F is a continuous and bounded, function on
(RH* and if A = F then

E [F(Bt1+s — Bs, - 7Btk+5 - BS) . 1(A)] =E [F(Bt1+s — B, ’Btk+s - BS)] : P(A)-
Since, for any open set, U = (R%)*, one can approximate Fj,, 1 1(U) from below by bounded

continuous functions Fy,(z) = f(dist(z,U°)), z € (R?)* where f : R — R is the continuous,
bounded function

1, r>e
) = {ir, r <e.

for r € R and apply monotone convergence. Then one just has to observe that the collection of open
sets generates the borel sigma algebra on (R%)* and apply the uniqueness of extension theorem.

Now, let s, | s be a strictly decreasing sequence. Then, by continuity, have By,,, — By, "—>
B;,+s — By a.s. for all ¢ < k. Thus, we have

E[F(Biy+s — Bs- -+, Burs — By) - 1(A)] "€T E[F(Byy 45, — By, Byss, — Bs,) - 1(A)]

and observe that A € F} implies A € ]—"51 for all n € N. Thus, we can conclude by the simple

Markov Property and another application of Dominated convergence. O

Corollary 9.4.1 (Blumenthal’s 0-1 Law). The sigma algebra F is trivial, i.e. if A € F,
then P(A) € {0,1}.

Proof. Take A € F)" < o(B; : t > 0). But, bu the above, we have o(B; : t > 0) L Fj and so
A 1L A which gives
P(A) =P(An A) =P(A) - P(A).

Theorem 9.5. Let B be a standard Brownian motion in d = 1. Define 7 = inf{t > 0: By > 0
and o = inf{t > 0: B; =0}. Then P(7 =0) =P(c =0) = 1.

Proof. For all n € N, have that {r = 0} = ﬂ {e € (0,1/k) s.t. B > 0} and so have {r = 0} € F;
k=n ~
77

which means that P(r = 0) € {0,1}. Now, P(r < t) > P(B; > 0) = 5 for all ¢ >. So,

((r=0)=woPr <>

which gives that P(7 = 0) = 1. By symmetry (—B is a std BM) we also have that
inf{t >0:B;, <0} =0, as.

Since B is continuous, by the intermediate value theorem we get thath o = 0 a.s. O

Proposition 9.1. Let B be a standard brownian motion in d = 1. For all t > 0, set S; =
sup Bs and I; = ugf5 By. Then,
B

s<t

1. For all € > 0, have S > 0 and I. < 0 a.s. In other words, in every interval (0,¢) there
exists a zero of BM.

2. sup By = +o0 and inf B; = —0 a.s.
t=0 t=0
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Proof. 1. Let t, | t as n — o0. Then we have
{By, i.0} < {S. > 0}.
It is not hard to see that {B;, i.0 } € . Thus applyinf Fatou’s lemma we deduce

P(B,, i0o. ) =P(limsup{B,, > 0})

Fat 1
= limsup P({B;, > 0}) = B

Thus, P(B,, i.0. ) =1 and so P(S. > 0) = 1. By symmetry, (—B is a std BM) we conclude
that P(I. < 0) = 1.

2. Have for all A > 0 that

B
S = sup By = sup By 4 VAsup At
t=0 t=0 t=0

So S 4 aSy for all @ > 0. We also know now thath S,,. Hence it can only be the case that
Se = 400 a.s. One can show that ir>1f B; = —0 a.s.

t=

O

Proposition 9.2. Let B be a standard Brownian motion and let C' be a cone with origin at
zero and non-empty interior, that is C = {tu : t > 0,u € A} with A < S!(= unit sphere in
R%). Set He = inf{t > 0: B; € C}. Then, P(Hc =0) = 1.

Proof. Observe that {Hc = 0} € Fy and P(B, € C) = P(B; € C) by scale invariance of Brownian
motion and C. Since intC # ¢J, P(By € C) > 0. Thus, P(He <t) = P(B; € C) > 0.Taking ¢ | 0
and applying Blumenthal concludes the argument. O

Figure 4: Tllustration of cone in proposition
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Lecture 19
Theorem 9.6 (Strong Markov Property). Let B be a standard Brownian motion and let

T be an a.s. finite stopping time. Then, (B;i1r — Br):>0 is a standard Brownian motion and

(Bisr — Br)i=o L .

Proof. Let T, = 27 "[2"T|, T, | T, n — . For k € N, let B¥ = B, 10-n — Bo-n and
Bi") (t) = Byyr, — Br,. Will show thath By is a Brownian motion independent of F7. .

Clearly, B,(k") is continuous. Now, let A be any event and fix F € ]-';fn. Then, we compute

+ +
E]:]vzfn L]:}v?_"

0 —_—
P(ByeA,E) = > P(T,=k-27", B¥ €A E)

0]
= Y P(T, =k-27",E)-P(B® € A)
=P(BeA)- -P(E).
He have thus shown that B 2 Band L f;ﬂ. Now, observe that

Bs+t+T — Bs+ T = lim (BS-HH-TTL — Bs+Tn)-
—_—

n—oo

N(0,t) N(0,t)

So, (Biy1 — Br)t>0 is a standard BM.

It remains to show that (Byir—Br)i=0 L .7-';. Indeed, fix t1,--- ,t; > 0and let F : (R)* :—» R
be a continuous and bounded function. Fix A € .7-';5 and compute

cr .
E[F(Bi,+1 = Br,--- , Bysr — Br) - 1(A)] =" lim E[F(By,+1, — Br,.--, By+1, - Br,) - 1(4)].
Since A e F, Ae Fj for all n e N. Finally, using that B 1 F7. concludes the proof. O

Theorem 9.7 (Reflection principle). Let B be a standard Brownian motion in d = 1 and
T an a.s. finite stopping time. Define

B — By, 0<t<T
" 12Br—B;, t>T

Then B is a standard Brownian motion.

(oo ]

Figure 5: Ilustration of reflection of B at time T

Proof. We have by the Strong Markov Property that B(T) = (Bi+1 — Br)t>0 is a standard Brow-
nian Motion independent of F. Let C, = Co([0, ) : R) denote the space of continuous functions
on the positive reals that vanish at zero, endowed with the topology of local uniform convergence
and A the induced Borel sigma algebra.
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Metrisability of topology of local uniform convergence
Recall from Topology that this topology is induced by the metric

d: Co([0,00) : R) x Co([0,0) : R) — R,
© x:ﬁl}gq |f(x) — g(z)]
(fag)'_)d(fvg) ::Zi :

We also have the useful fact that

Characterisation of A
We have, see Kallenberg’s book on the ‘Foundations of Modern Probability‘ for instance, that

A=oc({m:t >0}

where for t = 0, m; : Cp — R denotes the projection onto the ¢ coordinate.

Now define the function

is a continuous map in the product topology, therefore measurable. To see that 1 is continuous,

Continuity of

Fix (X,T,Y) € Cy x [0,00) x Cg. Due to the metrisability of the underlying topologies, it
suffices to show that for any sequence (X, T, Yn )nen S Co % [0, 0) x Cp such that X, 4, X,
Y, -5 Y and Tp, > T as n — 0, ¥(Xn, Tn, Yy) — (X, T,Y).

Now, fix € > 0, an arbitrary compact set K € R, and let t € K be arbitrary. We estimate

WJ(Xna Tm Yn)(t) - w(X7 T? Y)(t)|

<|(X() = X(T7)) - 1t <T) — (Xn(t) = Xn(Th)) - 1 < T)| + | X(T w(Tn)

HY(t—=T) - 1(Tp AT, Ty v T))| + [Y(t = T) — Yot — T,)]
0
< 1(X(0) = X(T)) - 1Ty A DT v TD| + X = Nertty o+ | X (1T
0

Y (t—T) 1(Tp AT, Ty v T])| + Y (t — T) YT — T,)|

<|(X() = X(T) - 1(Ty AT, T v T + [Y(E=T) - 1((Tp A T, Ty v T)| + €

0

(where we make the set harmlessly Y (¢t—T) = 0 for t < T) for n € N large enough independent
of t € K, since the crossed-out terms converge to zero uniformly in ¢ € K due to local uniform
convergence and uniform contuinity on compact sets. The fact that Y (t—7) and X (¢t)— X (T")
vanish at T" and that T;, — T', n — o0 enables us to bound for n sufficiently large independent
of t:

(X T Vo)) — (X T < sup ((X(@0) — XD + |Vt —T)) + ¢ <2
te(Tn AT, T, vT]

and conclude the argument.

Also observe that
Y((Beat)iz0, T, BMD) = B
’(/}((Bt/\T>t>O, T, —B(T)) =B
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By observing that B(r) is independent of the stopped process (B;.r)i=0, we have that

((B)i=0), T, (B )i=0) £ ((Be)i=0), T, (Bl )i=0)

and so it follows that B < B. O

Corollary 9.7.1. For ¢t > 0, let S; = sup B and fix b > 0 and a < b. Then

s<t

P(S; > b, By < By < a) = P(B; = 2b— a).

Proof. Fix x > 0 and define T, = inf{t > 0 : B; = z}. Since Sy < o0 a.s., it follows that T, < o
a.s. and Br, = x. Observe that {S; = b} = {T;, < t}. Now we compute,

on Tbgt,étzzb_Bt
/_/%
P(S; >b,B;,<a) =P(T,<t,Bi<a)
B, >2b—a = T, <t
=PBy=2b—a,T,<t)=P( B, >2b—a )
= P(B; > 2b—a).

Corollary 9.7.2. S, < | By |.

Proof.
=P(B;>=a) =P(B;>2b—a) by the reflection principle
/__/% -
P(St = a) = P(St = a, Bt > a) + ]P)(St = a, Bt < a)
= 2]P)(Bt = (l)
=P(|B| = a).

Corollary 9.7.3. Fix > 0 and let T,, = inf{t > 0 : By = z}. Then
d X ?
,4(X) .
‘ <B1>

9.2 Martingales for Brownian motion

Theorem 9.8. Let (B;);>0 be a standard Brownian motion in d = 1. Then
1. (By)i=0 is a martingale with respect to the filtration (F;");>0

2. (B? —t)¢>0 is a martingale with respect to the filtration (F;")¢>o.

Proof. Fix s <t. Compute LF+
——
E|[B/|F}|=E[B,— Bs + BJ|F,/| = B,, as.

and
0

E[(Bf —t)|FS]| =E[(B; — Bs)?*|FS | + 2E [(B =Bs)B,|Ff | + E[B2|F}| —t=B2 —s, as.
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Corollary 9.8.1. Let B be a standard Brownian motion in d = 1 and suppose x,y > 0. Then

y
(T <Ty) =

and
E[T o ATyl=x-y
with 7" defined as in corollary [9.7.3

Proposition 9.3. Let B be a standard Brownian motion in R?. Set

ul?t
ot = (- 1)

is an ;" martingale for all u € R%.

Proof. Fix u € R?. Integrability and adaptedness are clear. Now, for the martingale property, we
have

2

E[M|F}] = Elexp(Cu, B = By) — (u. BY)|Ff] - e~
— exp((u, By)) - exp (MEG=) et —

O
Lecture 20

Theorem 9.9. Let f(t,z) : R, x R? — R be continuously differentiable in ¢ and twice

continuously differentiable in x. Assume f and all its derivatives are bounded. Then the
process

M= 6.8~ 5080~ [ (24 38) r By

0 57"

is an F;" —martingale.

Proof. By the boundedness assumption, M is integrable and is clearly adapted. Now it remains
to show the martingale property, that is for all ¢,z > 0 E [M; s — Mg|FS] = 0. We have

t+s P 1
Mt+s_Ms = f(t+szt+s)_f(szs)_J (67“ +2A> f(raBr) dr

t
o 1
= f(t+s,Bi1s) — f(s,Bs) — f ( + A) f(r+s,Byys)dr.
0 (}7" 2
Now, taking conditional expectations, we have

E[My s — Ms|FF] = —f(s,Bs) +E[f(t + s, Byrs — Bs + Bs)|F.]

t
-E U ( ¢ + 1A> f(r+s,Byys — Bs + By)dr|FS
0 67‘ 2

t
et gn = [ ([ (54 38) s vae moar)n0yas
Rd or 2

0
+ | ft+s,2+ Bs)p(0,7)dx
Rd

—lz|?

where p;(0,2) = ﬁ exp ( 5 ) for z € R%, t > 0. Note that p, satisfies the heat equation:

(’)pt _ 1
ot~ 3t

Using dominated convergence, we have that

J}Rd (fot (;T + ;A> f(r+ s,z + Bs) dr) p,(0,7) dz

: o 1
_lgfngd L (67" + 2A> f(T+S,I+Bs)dT> p-(0,z) dz.

45



Advanced Probability Pantelis Tassopoulos

On (¢,t), we have enough regularity to integrate by parts and s theorem to obtain

J. €

L (867“ + ;A) f(r+s,z+ By) dT) p(0,7)dz

. tro 1

= 16%1 fRd <£ (67“ + 2A> flr+s,z+ Bs) dr) pr(0,2) dz.

= J ft+ s,z + Bs)p:(0,z) do — lilrglJ fle+ s,z + Bs)pe(0, z) dz
Rd' € d

0(PDE)
fr+s,z+ B,)dr |dx

_Opr

t
+ lei?ol 5 L §Apr((),z)
=E[f(t+ s Bi+s)] - leil%lE [f(e+ s, Beys) | FS ]
bt g y ft+ s, + Bs)pe(0,z)dz — f(s, By).
Combining all of the above together yields the desired equality E [Mp, s — Mg|FF] = 0 a.s. O

9.3 Transience and recurrence

Recall that if B is Brownian motion By = 0 then it is called a standard Brownian motion. More
generally, if By = x then call its law P, and note that (B;—x, ¢ > 0) is a standard Brownian motion.

Theorem 9.10. Let B be a standard Brownian motion in R9.

1. If d = 1, then B is point-recurrent, i.e. for all x,z {t > 0 : B; = z} is unbounded P,—a.s.

2. If d = 2, then B is neighbourhood recurrent, that is for all € > 0 and z,z € R? the set
of times {t > 0 : |B; — z| < €} is unbounded P,—a.s. However, it does not hit points
that is P, (3t > 0: B, = z) = 0.

3. If d = 3, B is transient, that is |B;| — o0, as t — o0 P, — a.s.

Proof. 1. d =1: we have almost surely that limsup B; = o0, litrn inf B; = —o0 which gives the
t—0o0 —®
result.

2. d = 2: by translation, it suffices to consider z = 0. Fix radii ¢ < |z| < R. Let T, = inf{t >
0:|Bi =r} for r > 0. We want to compute P, (T, < Tr). Let H = T, A Tg, an a.s. finite
stopping time. Let ¢ : R?2 — R be given by ¢(y) = log|y| on the annulus € < |y| < R and
extended outside that region in a fashion so that ¢ € CZ(R?). Then, A¢ = 0 in the annulus.
By theorem the process

M; = 6(B1) — 6(B0) — [ 50(B.) ds

0

is a continuous (F,")i>o—martingale. An argument
similar to that in Theorem gives E[Mp ] =0 et
for all n € N, in other words, E [log(|B, . x|)] = log |z|.
Taking n 1 oo and applying DCT gives E [log(|Bg|)] =
log |z|. In other words, expressed in terms of the stop-
ping times T¢, Tg, this leads to
log R — log |z
P, (T. < Tp) = -2 98171
x ®) log R —loge (*)
Now, taking R — o0, T — o a.s. and so P, (T, < o0) = 1. We now compute
P, (|Bt| < € for some t > n) = Py (|Bi4n — Bn + By| < € for some t > 0)

= J Po(| Bt + y| < € for some t > 0)py, () dy = 1.
R

3 Approximate n A H from above by the sequence (Tin)men = (27[2™n A H|)men, use the discrete OST on the
UI martingale (Mg, )deD., of bdd stopping times an(jlgass to the limit as m — o0 using DCT.
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Hence, {t = 0: |B;| < €} is unbounded P, —a.s. Now, in (*), letting € — 0, P, ( hit 0 before R) =
0. Let R — oo we finally obtain P, (3¢t > 0: B; = 0) = 0 for all z # 0.

Lecture 21 It remains to show now that Po(B; = 0 for some ¢ > 0)=0. Indeed, let a > 0, and observe
that
LF}
——
Po(Bitq = 0 for some t > 0) = Py(Birq — By +Bq = 0 for some ¢ > 0)
std BM

———
Po(Btta — Ba +y = 0 for some t > 0)p,(y) dy
2

= P, (B: = 0 for some t > 0)p,(y) dy = 0
R2

since P, (3t > 0: By = 0) = 0 for all y # 0. So taking the limit as a | 0, we get
Py(B¢ = 0 for some t > 0) = HE)IIPO(Bt =0 for some t > a) = 0.

3. We now show that B is transient for d > 3, that is |B;| — o0, as t — c0. To this end, it
clearly suffices to prove transience for d = 3.

As in the case d = 2, start by fixing radii € < |z| < R.

Let T, = inf{t = 0: |B| =r} forr > 0. Let H =T, A

Tg, an a.s. finite stopping time. Let ¢ : R> — R be
2—d

given by ¢(y) = (I ‘) on the annulus € < |y| < R

and extended outside that region in a fashion so that
¢ € C2(R?). Then, A¢ = 0 in the annulus.
By theorem the process

Mi = 0(B) — 0(B) — | 3A0(B.)ds

is a continuous (F;");>o—martingale. Arguing in the same way as above, we obtain

—

2—d 2—d
E [(IBIH|> = <m> . In other words, expressed in terms of the stopping times T¢, Ty,
this leads to

P.(T. <Tg) =

. (s4)

Q..

Now, taking R — o0, T — o a.s. and so P, (T, < o) (%)

For n e Ny let 4, = {|B:| > nforallt > T3}, Tps
being almost surely finite for all n € N. To prove
|B;| — o0 a.s. as t — o0, it suffices to show that the
A,, happen eventually a.s. (recall d = 3). We now
compute

Po(AS) = Po(|Bi| < n) for some t > T,3)
SMP Eo [PB 5 (| Bt] < n) for some t > O)] = #

e}
SO Z P(AS) < oo and so we conclude that A,, occurs

n=1
eventually in n € N a.s. thereby showing transience.
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9.4 Dirichlet Problem

Definition 9.3 (Poincaré conce condition). D € R is called a domain if it is open, non-
empty and connected. We say that D satisfies the Poincaré cone condition at x € 0D if there
exists a non-empty open cone C with origin at = and r > 0 such that C n B(z,r) < D*.

8 .

>

Figure 6: Illustration of Poincaré cone condition for a domain D < R,

Theorem 9.11 (Dirichlet problem). let D be a bounded domain in R? such that every
boundary point of D satisfies the Poincaré cone condition, (see figure @ Let ¢ be continuous

on 0D and let B be a Brownian motion, 75p = inf . Then the function
{t=0:B1edD}

u(m) =E, [¢(BT€D)] ; T E D

is the unique continuous function satisfying the boundary value problem

Au=0, inD
uw=¢, ondD.

Before we proceed with the proof we recall some facts from the theory of PDEs.

Theorem 9.12. Let D < R be a domain and u : D — R be measurable and locally bounded.
Then the following are equivalent:

1. w is twice continuously differentiable and Au = 0.

2. For all balls B(z,r) € D,

3. For all balls B(z,r) € D,

1

o) = @) LB@,T) uly) doa,y

where 0, , denotes the surface area measure of 0B(x,r).

Definition 9.4 (Harmonic). if u satisfies any of the above, we call u harmonic in D.
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Theorem 9.13 (Maximum principle). Let v : R? :— R be harmonic in D. Then
1. If w attains its maximum in D, then wu is constant in D.

2. If u is continuous in D and D is bounded, then 'maz__5u(x) = max u(z).
zeD xedD

Proof. 1. Let M be the maximum, let V = {z € Du(z) = M}, then by assumption such that
the ball B(z,r € D. Then, by the mean value property

1
M =u(z) = 75(]3(% ) JB(m,T) u(y)dy < M.

Hence, u(y) = M for almost all y € B(z,r). By the continuity of u, we have equality
everywhere in B(x,,r). Thus, B(z,r) € V and so V is now open, closed and also non-empty.
Since, D is connected, we deduce that V = D.

2. w is continuous in D and D is bounded implies that v attains a maximum in D. By 1,

max u = maxu.
D oD
O

Corollary 9.13.1. If u;,us : R? are harmonic in D, with D bounded and u, us agree on
0D, then u; = ug in D.

Proof. Have

—u) = —w) =0
mﬁax(ul uz) I%%X(ul u2)

by the maximum principle. Thus, u; < up for all z € D and similarly we obtain us < uy in D.
Thus, we obtain u; = ug in D. O

Proof. (Theorem With B
w() = By [6(Brp)],  on D

to show that u is twice continuously differentiable and harmonic, Theorem [9.12]it suffices to show

that it satisfies the mean value property.

Now, we have that 7 =
displaystyleinf{t > 0: B; € (z,6)} < o0 a.s. and by the tower property

u(x) =E, [¢(B7'6D)] =E [EI [QS(BTM)"F:]]
Now, define the function

F:Ry xCo([0,00)) > R
(z,f)— F(z,f) =inf{t =0: 2+ f(t) e D}

which is measurable with respect to B(R;) ® A, where A is the Borel sigma algebra induced by
the topology of local uniform convergence, as in the proof of Theorem Observe now that
TBap = T + F(Br, (Br4t — Br)i=0). a.s. By the strong Markov property, (Br+t+ — Br)i=0 L F©
and so we can conclude

rir(B, B0 T BrlFS

i ¢)(B7(—:-)F(BT,B(T)) + BT)|]::_
. [¢(9(Br, BT)) + B,)|F}]]

E, |¢(B")
E

where g is the continuous, hence measurable function

F: Ry x Co([0,0)) — R
(Z7f) '—>g(2,f) = f(Z)

49



Advanced Probability Pantelis Tassopoulos

thus another application of the strong Markov property gives

the law of B, is invariant under rotations and by uniqueness is the spherical measure o(z,8)

u(z) SMP & indep. b f #(9(Br,w) + B;) p(dw)
Co([0,00)) —
p denotes the Wiener measure of BM started at =
= T BE) J J y,w) + y)u(dw) dog 5y
0B(z,8) JCo([0,00)
= S BE - E, [¢(g(y B) +y)]dos,sy
= S BE - u(y) doz 5y

thus, showing that w is indeed harmonic. Uniqueness follows from the result [9.13.1] established
earlier.

It remains to show that u is continuous up to the boundary, 0D. Let z € 0D. Need to show
that u is continuous at z. Since ¢ is continuous on 0D, we have that for all € > 0, there exists a
0 > 0 such that if |y — z| < 3, y € 0D, |¢(y) — ¢(2)| <e.

oy
2

Figure 7: Ilustration of situation near the boundary.

Let k € N to be determined and let = be such that |z — z| < 27F - §, then we estimates
u(@) —u(z)| < [Ey[¢(Bryp) = H

o(z)
E; [|o( raD> o(z2)
<e-Pu(rop < ToB(z,6) ) +2 H¢||oo 'Px(TaB(z,a < Top).

Now, By the Poincaré cone condition, let C, be an open cone at z that lies in D¢ sufficiently close
to z. Then
P (ToB(z,s < Top) < Pu(ToB(z5 < Toc.)-

We claim that
sup  Pu(Top0,1) <Tc) S a <l ()
zeB(0,3)

where C is a translate of the cone C, to the origin.

Proof of (**%*)
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To establish (# = %) it suffices to show that
Brownian motion stays arbitrarily close to
straight bounded segment of lines (and in fact
to any continuous function) with positive prob-
ability, i.e.

Pe,z,a = ]P)I(”B - gz’a||007[071] < 6) >0

e > 0,z € R? and lines {3 o connecting points
r,a € R e £y ,(t) =t + (1 —t)a, t e [0,1]
(see figure [9.4). To see this, the bound (= # )
essentially reduces to bounding uniformly
from zero the probability that a Brownian
path starting from a point = € B(0,1/2) stays
within some uniform in x amount € > 0 close
to a line of length < 2 (figure [9.4).

By the geometry of the situation, an € > 0 exists, so that no matter where the BM starts
in B(0,1/2), there is a direction it can stay within epsilon to for times ¢ € [0,1] that would
guarantee it never touches the boundary 0B(0, 1) before the cone, in [0, 1].

We proceed with several reduction steps. By translation, we can let without loss of generality
z = 0 and consider only p¢, := pe,0,q for €e >0,a € R?. Moreover, by containment of events
that pc . is decreasing in € > 0 and less than one away from zero with p.o = 1 for all € > 0.
By independence of the components of B and rotational symmetry, we have

-1
Po(|By — at|| o1y <€) = (]P)O(HBHOO,[O,I] < 6) -Po (HBtl = llall 'tHooy[Oyl] S 6)

We now show that for fixed €, > 0 and |\| bounded, one has a positive uniform lower bound
on the probabilities
P0(|Wt — )\t| < 6).

where W is a standard Brownian motion in one dimension. To show this it suffices to note
that from Lévy’s construction of Brownian motion, one constructs (Wy,t € [0,1]) as an a.s.
uniformly convergent power series (starting from the iid sequence (Z;)qep) as

m:;&w

where the F), are independent, piecewise linear functions given by

n+1

2772 Z;, teD,\Dy_
Fn(t) = Oa t € anl
linear between consecutive points in D,,.

for n = 1 and define Fy by interpolating linearly between Z; and zero in [0,1]. Now, a
straightforward computation yields that for ¢ > 0, n € N sufficiently large independent of c,

P(|Z4| = cy/n) < exp (7‘327”) This in conjunction with the Borell-Cantelli lemma gives

P({3d € Dy, s.t. |Z4| < cy/n}) =0, for ¢ > +/2log2.

Thus, using the continuity of P, there exists some M € N such that

P( N 1120 < cm2—¥}> >0,

n>=M

Additionally, observe that for the truncated series 25:1 F,, corresponds to the piecewise
linear extension of the dyadic approximations to W in Theorem Now, for |A| bounded,
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M possibly even larger, by the independence of the Gaussians (Z4,d € D) it is not hard
to approximate At on [0,1] by the truncated series up to stage M — 1 and then use the
independence of the F,, and the above to obtain with a positive probability that the tail is
also uniformly close and the approximation at stage M — 1, hence proving there is a uniform
positive lower bound, thus proving (* x ).

In the final step, essentially we will iterate the bound (x # %) on nested balls surrounding the
origin to get exponential decay in the corresponding version of (# * ). More precisely,

Exponential decay step
Let k € N. We want to bound

P.(ToB0,1) € 7¢), € B(0, 1/29).
Now, we have
P (TaB(0,1) € TC)

= E, [1(7oB(0,1) < 7¢)]

{ToB0,2- 1) <Tc}2ToB(0,1)<7c}

=E. | L(mopoe-t-n) <7) E [1(703(0,1) < Tc)|]'—f65(0,2,<k,1)]

SMP
= K, 1(703(0 2—(k=1)) < ) Pp, el (763(071) <)
) oB(0,2—(k=1))
< Po(meB0,1) < 7c) - sup Py(7on(0,1) < 7c)-
yeB(0,2—(k=1))

(A)
Now, for x € B(0,27k) consider P, (7;p(0,2-x-1y < 7c¢). By scale invariance of Brownian
motion and the cone, C we have with A\ = 2(k=1)

Pr(TaB(o,szfl)) <)

std BM
—_—— _
— Po(inf{t = 0: W, e B(0,2- ")} < (inf{t > 0: W, € C})

seale ivariance pGnft > 01 1/AWa; € B(0,2-(F-D)} < (inf{t > 0: /AWy, € C})

=Po(inf{t > 0: Wy, + Az € B(0,1)} < (inf{t > 0: Wy2; + Az € C})
=Po(1/A2inf{A\?*t > 0: W2, + Az € B(0,1)} < 1/A\%inf{\*t = 0: W2, + Mz € C})

=Py, (inf{t > 0: By € B(0,1)} <inf{t >0: B, € C})

=Prxu(moB01) <7c) < sup  Py(7apo1) < 7c)-
lyl<2=(—=D

Thus, inducting on k € N and using (* # %) as the base case and (A) as the induction step we
deduce that
sup  Pu(Tope) <7c.) <a¥ >0, k— o
zeB(0,27k)

which allows us to conclude the proof.

Example:

Let d = 2 and let ¢ : 0B(0,1) — R continuous. Let v : D — R where D = B(0,1)\{0} be
the unique solution to the Dirichlet problem on B(0,1) with boundary data ¢. Augment ¢
to 0B(0,1) n {0} and observe that
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is not a solution if v(0) # ¢(0) since u(0) = ¢(0) = v(0) because Brownian motion does not
hit points, as we proved in Theorem [9.10

10 Donsker’s invariance principle

The main theorem of this section is Donsker’s inavriance principle, which states

Theorem 10.1 (Donsker’s invariance principle). Let X;, X5, -+ be iid R—valued inte-
grable random variables with law p, such that E[X;] = 0, and variance o2 € (0,00). Set
So =0, 8, X1+ + X, forn>1and S; = (1 — {t})Spg + {t} Sp+1, where {t} =t — [t] and
[t] is the integer part of ¢ = 0. Now, define

St[N] _ Sin

Vo2N

for 0 < t < 1. Then, (St[N],O <t < 1) converges weakly to (B;,0 < 1 < 1), that is to a

standard Brownian motion. More explicitly, we have for all continuous (in the local uniform
topology) and bounded functionals F' : C([0,1],R) — R

E [F(S[NJ)] N=® g R(B)].

Before we prove it we need a supporting result, the so-called Skorokhod embedding.

Theorem 10.2 (Skorokhod embedding). Let u be a probability measure with zero mean
and variance 02 € (0,00). Then, there exists a probability space (€2, F,P), a filtration (F;)¢0,
a Brownian motion (Bi):>0 and a sequence of stopping times 0 = Ty < 77 < - -+ < such that

1. The sequence defined by (Sp)nen = (BT, )neny for n € N is a random walk with step
distribution p.

2. The sequence (T,,)nen and steps of mean 2.

Proof. Define the Borel measures on B([0, o)), for A € B([0,x0))

4 (A) = (A A [0, 0))
1o (A) = p(=A A (~o0,0)),

Let (Q, F,P) be a probability space on which we define a standard Brownian motion (Bj);>0 and
the iid sequence (X,,, Yy )neny with law v(dz,dy) = C - u—(dz)py(dy) (independent from B) and
C' > 0 a normalising constant. We have

f f v(dz,ydy) =1 = Cp([0,0)) JOO zp_(dz)

00

+Cp((—~0,0)) j i (dy).

0

Since p has mean zero, we also have that J zp—(dz) = ,u((foo,()))J Y+ (dy) which gives
0 0

0

cf "t (d) = Cp((~0,0)) [ " i (dy) = 1.

Now, define the random sequence Ty = 0, and for n > 1
Tn+1 = mf{t = TT, : Bt — BTn € {7Xn+17yvn+1}}.

We claim that the (7},)nen are stopping times with respect to the filtration F; = o(FF, Fy) for
t = 0 where o = 0((Xp,Ys) : neN).
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(T))nen are stopping times

To see that the (T,,)nen are stopping times, we proceed by induction. Clearly Top = 0 is a
stopping time. Now, suppose for n € N that T, is a stopping time. Now, Fox s > 0 and
observe that since T,,41 = T, + 1 a.s. where n = inf{t > 0: BT ¢ {(—Xni1,Yoi1}}

{Tnr1i<t}c{Tn<t}
——N—
{Thi1 <sp= {Tn,<r} n{n<s}
Observe, that 7 is o(Ff , Fo)—measurable. Hence, we have that {T,,11 < s} € o(FF , Fo) N

FPB. Noting that we can express sigma(Ff, ,Fo) = c({An B: Ae Ff ,Be Fo}) = FP, we
conclude that {T,, 11 < s} € FZ for any s > 0, hence proving the statement.

Now, define the measurable (wrt to the usual sigma algebras) function

7:C([0,0)) xR > R
fix)—»inf{t = 0: f(t) = z}

and conditioning on X7,Y; we compute
P(Br, = Yi[X1y,) =E[1(r(B,Y) <7(B,—X))|X1, 1]

X1+Y

using the well-known Gambler’s ruin identity and the independence of B from (X,,, Y}, )nen. Simi-
larly, we also obtain E [T1]X1y,] = X3 - Y1.

Now we determine the law of Br,. Fix A € B([0,00)) and compute

P ) = [ [ o+ i @ ()

— 12 ) = u(A).
Similarly, we have for A € B((—0,0)) P(Br, € A) = p(A4) and

Q0

E[T] - f:o ) ey Ol + yn_(dd)us (dy) = f:o u-(@a) + [ Puetan) = o

This tease with the case n = 1, for the general case one proceeds inductively using the strong
Markov property, that is (B, — Br, )t=0 L ]—":,5; and essentially reduce the argument to what we
have already done. O

We now return to Theorem [I0.1]

Proof. (Theorem [10.1)) Without loss of generality, let 02 = 1 (by scaling). Now, let B be a
Brownian motion and a sequence of stopping times (7}, )nen as in Skorokhod’s embedding theorem,
on a possibly enlarged probability space such that

(Br, )nen £ (Sn)nen.
Now, define B,fN) = /N B% a standard Brownian motion by scale invariance. Let (TTEN)),LN
be stopping times corresponding to B() (again on a possibly enlarged probability space). Set
SN — B(T]Xl) for all n € N. Let St(N) be the linear interpolation of (Sr(LN))neN. Observe that we
have !
(™) iz, (T nen) £ ((S2)i0, (Tuhnen)-

Now, we need to show
E|F (57" ) | “F ELF (B

for all continuous and bounded functionals F : C([0,00) — R. Tt suffices to show that SV)
converges uniformly in probability to B, that is

P(sup |§t(N) — By| >e> N=%g

0o<<l1
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for all € > 0, by Dominated convergence.

Now, for n < N,
N
S _ S B(<13> . fBT,L/N _
WEUN T VN IN
where T(N) T By the Strong law of large numbers, we have that T” 21 as. (from Sko-

rokhod embedding, the T;, are a random walk with independent and 1dent1cally distributed steps).
Thus,

Gy

n—o0 ~
-sup|T, —n| — 0, a.s. (™)
N neN‘ | §wm S
v
Since Sff/v]gf = BT,S?") foralln < N — 1, I -i—l
. 1 n n
we claim that for all £ < ¢ < 25, N ¥

there exists Ty(LN) <u< T(N% such that

" n+ B
St(N) = B,. This follows from an ap- BTM
plication of the Implicit Function The-

orem and using the continuity of B, S
and that S is piecewise linear.

So now we have

A = {|§(N) — By| > € for some t € [0, 1]}
|T,(LjVN — %] =0 forsomen> Nt = A
U{|Bt Bn\>ef0rsomete[071] and |u—t|<6+%};:142_

Hence we have the bound P(A) < P(A;) + P(Az). Take N > 1/6 and ¢ > 0 sufficiently small so
that P(Az) < €/2 since Brownian motion is uniformly continuous on [0, 1]. O

11 Poisson random measures

Recall that X ~ Po(A), A > 0if P(X =n) = e’)"\%; forallne N. If A = 0 set X =0 and if
A =00, set X = o0. Also recall the following basic facts about Poisson random variables.

Proposition 11.1 (Addition property). Let (Ng)ien be independent Poisson N, ~ Po(\x),

A > 0 for all k € N. Then
e} o0
ZNk~PO<Z)\k>.
k=0 k=0

Proposition 11.2 (Splitting property). Let N ~ Po(\), A > 0 and let (Y},)nen be an iid
N
sequence and independent of N with P(Y; = j) = p;, j =1--- k. Set N; = Z 1Y, = j).

n=1

Then Ny, ---, Nj are independent and N; ~ Po(Ap;).

Definition 11.1. Let (E,&, ) be a o—finite measure space. A Poisson random measure
with intensity p M is a random map M : Q x & — Z u {o0} such that if (Ag)ren is a disjoint
collection in &, then

[e¢]
1. M (U Ak> = > M(Ap)(w), forallweQ
keN k=0

2. (M(Ag))ken are independent random variables.

55



Advanced Probability Pantelis Tassopoulos

3. For all ke N, M(Ax) ~ Po(u(Ax)).-

Let E* = {Z, u {0} — valued measures on (E,E)}. Now for A € £ define the maps

X :E*x&—>7Zy u{on}
Xa: E* > 7, {0}
(m,A) — X4(m) = m(A).

Furthermore, set £* = o(X4 : A € £). We now can state the following existence (and uniqueness)
theorem for Poisson random measures.

Theorem 11.1. There exists a unique probability measure p* on (E*,E*) such that under
w*, X is a Poisson random measure of intensity u.

Proof. Uniqueness: Let Aq,--- , A be disjoint in £ and nq,--- ,ng € Z,. Set
A* ={me E* :m(A41) = nqg,--- ,m(Ag) = ng}.

Let p* be as in the statement. Then compute

n;

(A% = H vt (lAs)
j=1

]
4!
But, A* of the above form is a m—system that generates £*, so u* is uniquely determined.

Existence: First assume A = u(E) < . Let N ~ Po()\) and (Y,)nen be an iid sequence
independent of N with law p/u(E). Set

N
M(A) = Y 1(Y, e 4), Ae&*
n=1

Let Aq,---, Ag be disjoint in €. Need to show that M(A;);<x are independent ~ Po(u(A;)
random variables. Consider X, = j whenever Y, € A;. The (X,)n,<v are iid and M(4;) =
N

Z 1(X,, = j). By the splitting property [11.2} we get that M(A;,---,M(Ay) are independent
n=1

Aj
and M(A;) ~ Po (H(E) : *;f(E))).

If w(E) = o, let (E)ren be a partition of E into sets with u(Ey) < oo for all kK € N. Then on
some probability space we can construct independent Poisson random measures M}, with intensity
| g, (on some suitable product space). Then for A € &, set

”“ ~Po(u(AnEy)

——
M(A) = > My(An Ey).
k=0

By the addition property [11.1} M (A) ~ Po (Z w(An Eg) = u(A)) . Independence follows since

the (M )ren are PRM.

We have now constructed Poisson random measures on some probability space (2, F,P). Now
simply observe that p* = Py (the pushforward under of P under M) is the probability measure
on (E* £%).

O

Proposition 11.3. Let M be a Poisson random measure with intensity p. Let A € £ be
such that u(A) < 0. Then M(A) ~ Po(u(A)) and conditional on M (A) = k, then we can
E

express M = Z dx, , where (Xi,---,X}) are independent and identically distributed, with

i=1
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law “;(1'({?4?)' Moreover, is A n B = &, p|a is independent of u|p.

We leave the following as an exercise: let E = Ry 0 > 0, u = 6-1(t > 0)dt. Let M be a
PRM(u), let Ty = 0, (T, — Th—1)n>1 be iild ~ Exp(0). Set

ee]
:ZlT <t
n=1

Then, (N,,t > 0) £ (M([0,t]),t > 0).

Theorem 11.2. Let M be a Poisson random measure with intensity u. Let f € £'(u) and
define M (f Jf . Then M(f) € £(u) and

=Jf(y)M d

Fix f: F — R, measurable. Then for all u > 0,

E [e—uM(f)] — exp <f (e W) — 1)M(dy)> (Campbell’s formula)
E

Proof. The first part follows from a standard approximation by simple functions argument and
Dominated Convergence. Let (E,)nen € E* be such that u(E,) < oo. Have

E [evM(1(E)] i [fuM 1(E"))\M(En)=k]
k

=0
W(Ey) p(En)”
%!

k
Now, given M (E,,) =k, M = Z 0x, with (Xy,--+, Xx) independent and each ~ p|g,, hence
i=1

B[] - i(J —ufm>Zégn))>k —u(EnW(i')k

by independence and conclude with monotone convergence.
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