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1 Conditional Expectation

Lecture 1 1.1 Basic definitions

Let pΩ,F ,Pq be a probability space. Remember the following definitions

Definition 1.1 (Sigma algebra). F is a sigma algebra if and only if: (F P PΩ)

1. Ω P F

2. A P F ùñ Ac P F

3. pAnqnPN Ď F ùñ
ď

nPN
An P F

Definition 1.2 (Probability measure). P is a probability measure if

1. P : F Ñ r0, 1s (i.e. a set function)

2. PpΩq “ 1, and PpHq “ 0

3. pAnqnPN pairwise disjoint ùñ P

˜

ď

nPN
An

¸

“

8
ÿ

n“1

PpAnq.

Definition 1.3 (Random Variable). X : Ω Ñ R is a random variable if for all B open in
R, X´1pBq P F .

Remark. Observe that the sigma algebra G “ tB Ď R : XpBq P Fu Ě O ùñ G Ě BpRq, the
former being the collection of open sets in R and the latter the Borel sigma algebra on R with the
usual topology, namely, σpOq (see below for the notation).

Let A be a collection of subsets of Ω. We define

σpAq “ smallest sigma algebra containing A
“
č

tT : T sigma algebra containing Au.

Definition 1.4 (Borel sigma algebra on R). Let O “ topen setsRu. Then, the Borel
sigma algebra BpRqp– Bq is defined as above, namely,

BpRq – σpOq.

Let pXiqiPI be a family of random variables, then σpXi : i P Iq “ the smallest sigma al-
gebra that makes them all measurable. We also have the characterisation σpXi : i P Iq “

σpttω P Ω : Xipωq P Bu
loooooooooooomoooooooooooon

X´1
i pBq

, i P I,B P BpRquq.

1.2 Expectation

Note we use the following for the indicator function on some event A

1pAqpxq “ 1px P Aq :“
1, x P A
0, x R A

*

, A P F .

We now begin the construction of the expectation of generic random variables.

Positive simple random variables: X “

n
ÿ

i“1

1pAiq, ci ě 0, Ai P F ..

ErXs :“
n
ÿ

i“1

ciPpAiq.
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Non-negative random variables: pX ě 0q.We proceed by approximation. Namely, let Xnpωq :“
2´nt2´n ¨Xpωqu ^ n Ò Xpωq, n Ñ 8. Now, by monotone convergence,

ErXs :“Ò lim
nÑ8

ErXns “ supErXs.

General random variables: Have the decomposition X “ X` ´X´, where X` “ X _ 0, X´ “

´X ^ 0. If one of ErX`s,ErX´s ă 8 then set

ErXs :“ ErX`s ´ ErX´s.

Definition 1.5. X is called integrable if Er|X|s ă 8.

Definition 1.6. Let B P F with PpBq ą 0. Then for all A P F , set

PpA|Bq :“
PpAXBq

PpBq

Now for an integer-valued random variable X, we set:

ErX|Bs :“
ErX ¨ 1Bs

PpBq

1.3 Conditional expectation with respect to countably generated sigma
algebras

Lecture 2 We now extend the definition of the conditional expectation for a countably generated sigma algebra.
Let pΩ,F ,Pq be a probability space. We call the sigma algebra G countably generated if there ex-

ists a collection pBnqnPN of pairwise disjoint events such that
ď

nPI

Bn “ Ω with (I countable) and

G “ σpBi : i P Iq.

Let X be an integrable random variable. We want to define ErX|Gs.

Define X 1pωq “ ErX|Bis, whenever w P Bi, i.e.

X 1 “
ÿ

iPI

1pBiq ¨ ErX|Bis.

We make the convention that ErX|Bis “ 0 if PpBiq “ 0. It is easy to check that X 1 is
G´measurable. We also have that

G “

#

ď

jP

Bj : J Ď I

+

and X 1 satisfies for all G P G:ErX ¨ 1Gs “ ErX 1 ¨ 1Gs and

Er|X 1|s ď E

«

ÿ

iPI

|ErX|Bis1pBiq

ff

“
ÿ

iPI

PpBiq ¨ |ErX|Bis|

ď
ÿ

iPI

PpBiq ¨ ErX ¨ 1pBiqs
loooooomoooooon

PpBiq

“ Er|X|s ă 8.

1.4 General case

We say A P F happens a.s. if PpAq “ 1. Recall (from measure theory and basic functional
analysis):
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Theorem 1.1 (Monotone Convergence Theorem (MCT)). Let pXnqnPN be such that
Xn ě 0, X be random variables such that Xn Ò X as n Ñ 8. Then, ErXns Ò ErXs as n Ñ 8.

Theorem 1.2 (Dominanted Convergenec Theorem (DCT)). Let pXnqnPN be random
variables such that Xn Ñ X a.s. as n Ñ 8 and |Xn| ď Y a.s. for all n P N, where Y is
integrable, then ErXns Ñ ErXs, as n Ñ 8.

Let 1 ď p ă 8 and f a measurable function, then set ∥f∥p :“ pEr∥f∥psq
1
p . If p “ 8, then set

∥f∥8
:“ inftλ : |f | ď λ a.s.u. Recall for all p, the Lebesgue spaces, LppΩ,F ,Pq “ tf : ∥f∥p ă 8u.

Theorem 1.3. L2pΩ,F ,Pq is a Hilbert space, with inner product xu, vy2 “ Eru ¨ vs. Further-
more, for any closed subspace H, if f P L2, there exists a unique g P H s.t. ∥f ´ g∥L2 “

inf
hPH

∥f ´ h∥L2 and xf ´ g, hy “ 0, for all h P H. We say that g is the orthogonal projection of

f in H.

We now construct the conditional expectation in the general case, for any integrably random
variable with respect to an arbitrary sigma algebras.

Theorem 1.4 (Conditional Expectation). Let pΩ,F ,Pq be a probability space, G Ď F
a sub-sigma algebra, X P L1pΩ,F ,Pq. Then there exists an integrable random variable Y
satisfying:

1. Y is G´measurable

2. for all G P G,ErX ¨ 1pGqs “ ErY ¨ 1pGqs.

Moreover, Y unique in the sense that if Y 1 also satisfies the above 1q, 2q, then Y “ Y 1 a.s..
We call Y a version of the conditional expectation of X given G. We write Y “ ErXGs a.s.
If G “ σpZq, where Z is a random variable, then we write ErZs “ ErX|Gs.

Remark. 2q could be replaced by ErX ¨ Zs “ ErY ¨ Zs for all Z bounded G´measurable random
variables.

We now state and prove the main theorem of this section:

Proof. (Theorem 1.4) Uniqueness: Let Y, Y 1 satisfy 1q, 2q. Let A “ tY ą Y 1u P G. Then 2q

ùñ ErY ¨ 1pAqs “ ErY 1 ¨ 1pAqs “ ErX ¨ 1pAqs

ùñ ErpY ´ Y 1q ¨ 1pAqs “ 0
ùñ PpAq “ PpY ą Y 1q “ 0
ùñ Y ď Y 1 a.s..

We similarly obtain Y ě Y 1 a.s., hence we deduce that Y “ Y 1 a.s.
Existence: three steps.

1. Assume that X P L2pΩ,F ,Pq. Observe that L2pΩ,G,Pq is a closed subspace of L2pΩ,F ,Pq.
Hence, Theorem 1.3, we have the decomposition L2pΩ,F ,Pq “ L2pΩ,G,Pq ‘ L2pΩ,G,PqK.
Then, we have the corresponding decomposition X “ Y ` Z, where Y P L2pΩ,G,Pq and
Z P L2pΩ,G,Pq respectively. Define ErXGs :“ Y , Y is G´measurable and for all A P G,
ErX ¨ 1pAqsErY ¨ 1pAqs “ ErZ ¨ 1pAqs since Z P L2pΩ,G,PqK.

Claim: If X ě 0, a.s. then Y ě 0 a.s. Indeed, let A “ tY ă 0u P G. Then observe that
0 ď ErX ¨ 1pAqs “ ErY ¨ 1pAqs ď 0. Hence ErY ¨ 1pAqs “ 0 and so PpAq “ 0, gibing Y “ 0
a.s.

2. Assume X ě 0.
Define Xn “ X ^ n ď n, meaning Xn is bounded for all n P N. So Xn P L2pΩ,F ,Pq. Let
Yn “ ErXns a.s.. pXnqnPN is an increasing sequence. By the claim above, so is pYnqnPN a.s.
Define Y “ lim sup

n
Yn meaning Y is G´measurable and Y “Ò lim

nÑ8
Yn a.s. Now, we have

that for all A P G, ErXn ¨ 1pAqs “ ErYn ¨ 1pAqs. Thus, by theorem 1.1 (MCT), ErX ¨ 1pAqs “

lim
nÑ8

ErXn ¨ 1pAqs “ lim
nÑ8

ErYn ¨ 1pAqs “ ErY ¨ 1pAqs.
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3. X general in L1.
Decompose as before X “ X` ´X´. Define, ErXGs “ ErX`|Gs ´ ErX´|Gs.

Lecture 3

Remark. From the second step of the proof of Theorem 1.4 we see that we can define ErX|Gs for
all X ě 0, not necessarily integrable. It satisfies all conditions 1q, 2q except for the integrability
one.

Definition 1.7. G1,G2, . . .
loooomoooon

sigma algebras

Ă F . We call them independent if whenever Gi P Gi and

i1 ă . . . ik for some k P N, then PpGi1 X ¨ ¨ ¨ XGikq “

k
ź

j“1

PpGij q.

Moreover, let X be a random variable and G a sigma algebra, then they are said to be int
if σpXq is independent of G.

Properties of conditional expectations: Fix X, y P L1, G P F .

1. ErErXGss “ ErXs (take A “ Ω)

2. If X is G´measurable, then ErXGs “ X a.s.

3. If X is independent of G, then ErXGs “ ErXs

4. If X ě 0 a.s., then ErXGs ě 0 a.s.

5. For α, β P R ErαX ` βY |Gs “ αErXs ` βErY s

6. ErX|Gs| ď Er|X||Gs a.s.

Below we proved:we expansions of useful measure theoretic results for the expectation to their
corresponding conditional counterparts. First recall:

Lemma 1.1 (Fatou’s Lemma). Let Xn ě 0 for all n P N. Then

Erlim inf
n

Xns ď lim inf
n

ErXns a.s

Theorem 1.5 (Jensen’s Inequality). If X is integrable and ϕ : R Ñ R is a convex function,
then

ϕpErXsq ď ErϕpXqs a.s.

Now the results themselves:

Theorem 1.6 (Conditional Monotone Convergence theorem (MCT)). Let G Ă F be
sigma algebras, Xn ě 0 a.a. and Xn Ò X, as n Ñ 8 a.s. Then

ErXn|Gs Ò ErX|Gs a.s.

Proof. Theorem 1.6 Set Yn “ ErXnGs a.s. Observe that Yn is a.s. increasing. Set Y “ lim sup
n

Yn.

Yn is G´measurable, hence, so is Y (as a lim sup of G´measurable random variables) is also
G´measurable. Also, Y “ lim

nÑ8
Yn a.s.

Need to show: ErY ¨ 1pAqsErX ¨ 1pAqs for all A P G. Indeed,

ErY ¨ 1pAqs “ Er lim
nÑ8

Yn ¨ 1pAqs
MCT

“ lim
nÑ8

ErYn ¨ 1pAqs

“ lim
nÑ8

ErXn ¨ 1pAqs “ ErX ¨ 1pAqs.
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Proof. Theorem 1.1 lim inf
n

Xn “ lim
nÑ8

ˆ

inf
kěn

Xk

˙

, the limit of an increasing sequence. By Theorem

1.1, we have
lim
nÑ8

Er inf
kěn

Xn|Gs “ Erlim inf
n

Xn|Gs

and
Er inf

kěn
Xk|Gs

a.s.
ď inf

kěn
ErXk|Gs1

which gives the result
Erlim inf

n
Xns ď lim inf

n
ErXns a.s.

Theorem 1.7 (Conditional Dominated Convergence Theorem). SUppose Xn Ñ X
a.s. n Ñ 8 and |Xn| ď Y a.s. for all n P N with Y integrable. Then ErXnGs Ñ ErXGs a.s.
as n Ñ 8.

Proof. From ´Y ď Xn ď Y , we have Xn ` Y ě 0 for all n P N and Y ´ Xn ě 0a.s. By Theorem
1.1,

ErX ` Y Gs “ Erlim inf
n

pXn ` Y q|Gs

ď lim inf
n

ErXn ` Y |Gs “ lim inf
n

ErXnGs ` ErXs

Thus,
Er|X ´ Y ||Gs “ ErY ´ lim inf

n
Xn|Gs

ď ErY s ` lim inf
n

ErXn|Gs

Hence,
lim sup

n
ErXn|Gs ď ErX|Gs

and
lim inf

n
ErXn|Gs ě ErX|Gs

a.s., concluding the proof.

Theorem 1.8 (Conditional Jensen). Let X P L1pΩ,F ,Pq, ϕ : R Ñ R be a convex function
s.t. ϕpXq is integrable or ϕpXq ě 0

ϕpErX|Gsq ď ErϕpXq|Gs a.s.

Proof. Claim: (true for any convex function, no proof given) ϕpxq “ sup
iPN

paix` biq, aibi P R. Thus,

ErϕpXq|Gs ě aiErX|Gs ` bi for all i P N.

Taking the supremum gives 2

ErϕpXq|Gs ě sup
iPN

paiErX|Gs ` biq

“ ϕpErX|Gsq a.s.

Corollary 1.8.1. For all 1 ď p ă 8 ∥ErX|Gs∥p ď ∥X∥p.

Proof. Apply conditional Jensen.

1can take the infinum due to countability that preserves a.s.
2can take the supremum due to countability which again preserves a.s.
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Proposition 1.1 (Tower Property). Let X be integrable and H Ď G sigma algebras. Then

ErErX|Gs|Hs “ ErX|Hs a.s.

Proof. (a) ErX|Hs is H´measurable.

(b) For all A P H NTS:
ErErX|Gs ¨ 1pAqs “ ErErX|Hs ¨ 1pAqs

Indeed, both terms above are equal to ErX ¨ 1pAqs since A P G Ď H.

Proposition 1.2. Let X P L1, G Ď F , Y bounded G´measurable. Then

ErX ¨ Y |Gs “ Y ¨ ErX|Gs.

Proof. (a) RHS is clearly G´measurable.

(b) For all A P G:
ErX ¨ Y ¨ 1pAqs “ ErY ¨ ErXGs ¨ 1pAqs

ErX ¨ pY ¨ 1pAq
looomooon

G-meas. and bounded

qs “ ErErX|Gs ¨ Y ¨ 1pAqs “ RHS.

(Also observe that by a monotone class argument, we have for any integrable function f : Ω Ñ

R, ErX ¨ f s “ ErErX|Gs ¨ f s )

Lecture 4 We are building towards the Theorem

Theorem 1.9. X P L1,G,H Ď F . Assume σpG,Hq K H, Then

ErX|σpG,Hqs “ ErX|Gs a.s.

We begin with a definition

Definition 1.8. Let A be a collection of sts. It is called a π´system if for all A,B P A, we
also have AXB P A.

Theorem 1.10 (Uniquenes of extension). Let pE, ξqbe a measurable space and let A
be a π´system generating the sigma algebra ξ. Let µ, ν be two measures on pE, ξq with
µpEq “ νpEq ă 8. If µ “ ν on A, then µ “ ν on ξ.

Proof. (Theorem 1.9) NTS: for all F P σpG,Hq

ErX ¨ 1F s “ ErErX|Gs ¨ 1F s

Now, set A “ tAXB : A P G, B P Hu. It is easy to check that A is a π´system generating σpG,Hq.
If F “ AXB for some A P G and B P H, Then

ErX ¨ 1pAXBqs “ ErX ¨ 1pAq ¨ 1pBqs

“ ErX ¨ 1pAqs ¨ Er1pBqs
HKσpG,Hq

“ ErErX|Gs ¨ 1pAXBqs.

Now assume X ě 0; in the general case, decompose X “ X` ´X´ and apply same argument
to both X˘. Define the measures µpF q “ ErX ¨1pF qs and νpF q “ ErX ¨1pF qs for all F P σpG,Hq.
Observe that µpΩq “ νpΩq “ ErXs ă 8 and we have shown that µ “ ν on A. Thus, µ “ ν on
σpG,Hq which finally implies the result

ErX|σpG,Hqs “ ErX|Gs a.s.
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Examples:

Definition 1.9 (Gaussian). pX1, X2, ¨ ¨ ¨ , Xnq P Rn has the Gaussian distribution
if and only if for all scalars a1, a2, ¨ ¨ ¨ , an P R, a1X1 ` ¨ ¨ ¨ anXn has the Gaussian
distrubition in R.

A stochastic process (more on that later) pXtqtě0 is a Gaussian process if for all t1 ă

t2 ă ¨ ¨ ¨ tn the vector pXt1 , Xt2 , ¨ ¨ ¨ , Xtnq is Gaussian.

Let pX,Y q be a Gaussian vector in R2. We compute ErX|Y s.
Let X 1 “ ErX|Y s. Looking for f a Borel measurable function s.t. ErX|Y s “ fpY q

a.s. Let fpyq “ ay ` b for some a, b P R to be determined. Now, X 1 “ aY ` b,
ErX 1s “ ErXs “ aErY s ` b and ErX 1 ¨ Y s “ ErX ¨ Y s ùñ ErpX ´ X 1q ¨ Y s “ 0. Thus
CovpX ´X 1, Y q “ 0 ùñ CovpX,Y q “ a2VarpY q.

Need to check: that for all Z bounded σpY q´measurable, ErpX ´X 1q ¨ Zs “ 0.
Indeed, observe that pX ´ X 1, Y q is a Gaussian vector and since CovpX ´ X 1, Y q “

0 ùñ X ´X 1 K Y ùñ pX ´X 1q K Z.

1.2. Let pX,Y q be a random vector with density in R2 with joint density function fX,Y :
R2 Ñ R. Let h : R Ñ R be a Borel function such that hpXq is integrable. We now
compute ErhpXq|Y s.
We have for all g bounded σY´measurable functions.

ż

R2

hpxqgpyqfX,Y px, yqdxdy “ ErhpXqgpY qs

“ ErErhpXq|Y sgpY qs “ ErϕpY qgpY qs

“

ż

R2

ϕpyqgpyqfY pyq dy

where fY pyq “
ş

R fX,Y px, yqdx and ϕ : R Ñ R is some Borel measurable function.
Hence,

ϕpyq “

$

&

%

ż

R
hpxq

fX,Y px, yq

fY pyq
ddx, fY pyq ą 0

0, otherwise

can be seen to work. Thus, we obtain

ErhpXq|Y s “ ϕpY q a.s.

2 Discrete Time Martingales

Definition 2.1 (Filtration). Let pΩ,F ,Pq be a probability space. A filtration is a se-
quences of increasing sigma sub-algebras of F , pFnqnPN, Fn Ď Fn`1 for all n P N. We
call pΩ,F , pFnqnPNq a filtered probability space.

Let X “ pXnqnPN be a sequence of random variables/a stochastic process. Then it induces
pFX

n qnPN , where FX
n :“ σpX:kďnq for all n P N: the canonical filtration associated to X.

We call X adapted to a filtration pFnqnPN if Xis Fn´measurable for all n P N.X is called
integrable if Xn is integrable for all n P N.

Definition 2.2 (Martingale discrete time). Let pΩ,F , pFnqnPN,Pq be a filtered probability
space. Let X “ pXnqnPNbe an integrable and adapted process.

• X is called a martingale if ErXn|Fms “ Xm a.s. for all n ě m.

9
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• X is called a super-martingale if ErXn|Fms ď Xm a.s. for all n ě m.

• X is called a sub-martingale if ErXn|Fms ě Xm a.s. for all n ě m.

Remark. If X is a (super/sub)martingale with respect to pFnqnPN, then it is also a martingale
with respect to pFX

n qnPN. To see this, one has to use the tower property 1.1: FX
n Ď Fn for all

n P N implies ErXn|FX
m s “ ErErXn|Fms|FX

m s (since ErXn|Fms a.s.).

Examples:

1. Let pξiqiPN be iid. s.t. Erξis “ 0 for all i P N and define X “ pXnqnPN by Xn “

ξ1 ` ¨ ¨ ¨ ` ξn for all n P N, X0 “ 0. X is a martingales with respect to pFξ
nqnPN.

2. Let pξiqiPN be iid. s.t. Erξis “ 1 for all i P N and define X “ pXnqnPN by Xn “

n
ź

i“1

ξi

for all n P N, X0 “ 1. X is again a martingales with respect to pFξ
nqnPN.

Lecture 5 Let pΩ,F , pFnqnPN,Pq be a filtered probability space.

Definition 2.3 (Stopping time discrete time). A stopping time T is a random variable
T : Ω Ñ Z` Y t8u s.t. tT ď nu P Fn for all n P N. Equivalently, if tf “ nu P Fn for all n P N
since

tT “ nu “ tT ď nu
looomooon

Fn

z tT ď n´ 1u
loooooomoooooon

Fn´1ĂFn

P Fn.

and

tT ď nu “

n
ď

k“1

tT “ ku P Fk Ă Fn.

Examples:

1. Constant time are trivially stopping times.

2. Let X “ pXnqnPN be a stochastic process taking values in R and A P BpRq (X adapted).
Define

TA “ tn ě 0 : XnPAu.

Then tTA ď nu “

n
ď

k“0

tXkPAu P Fn for all n P N (with convention inf H “ 8).

3. LA “ suptn ě 0 : XnPAu is NOT a stopping time.

Properties: S, T, pTnqnPN stopping times. Then S^T, S_T , inf
n
Tn, sup

n
Tn, lim inf

n
Tn, lim sup

n
Tn

are also stopping times.

Definition 2.4 (Stopping time sigma algerbra). It T is a stopping time, define

FT “ tA P F : AX tT ď tu P Ftu

Let pXnqně0 be a process. Write XT pωq “ XT pωqpωq for ω P Ω whenever T pωq ă 8. Define

the stopped process: XT
t :“ XT^t.

Proposition 2.1. Let S and T be stopping times, and let X be an adapted process, then:

1. If S ď T , then FS Ď FT .

2. XT ¨ is FT ´measurable.

3. XT is adapted.

10
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4. If X is integrable, then the stopped process iss integrable.

Proof. 1. Immediate from definition.

2. Let A P BpRq. Need to show:

tXT1pT ă 8qu X tT ď tu P A, for all t ě 0.

Indeed, we have that

tXT1pT ă 8qu “

t
ď

s“0

tXs P Au
loooomoooon

FsĎFt

X tT “ su
looomooon

Fs

P Ft.

3. XT
t “ XT^t, this being FT^t´measurable Ď Ft´measurable by 1q, so we conclude it is

Ft´measurable.

4.
Er|XT

t |s “ Er|XT^t|s

“

t´1
ÿ

s“0

Er|Xs| ¨ 1pT “ sqs ` Er|Xt| ¨ 1pT ě tqs

ď

t
ÿ

s“0

Er|Xs|s ă 8
loomoon

Xt is integrable

.

We now state and prove a fundamental theorem in Martingale theory:

Theorem 2.1 (Optional Stopping Theorem discrete time). Let pXn be a martingale.

1. If T is a stopping time, then the stopped process XT is also a martingale. In particular
for all t ě 0:

ErXT^ts “ ErX0s.

2. It S ď T are bounded stopping times, then

ErXT |FSs “ XT , a.s.

and hence ErXT sErXSs.

3. It there exists an integrable random variable Y such that |Xn ď Y | for all n ě 0 and T
is finite, then ErXT s “ ErX0s.

4. If there exists M ě 0 such that |Xn`1 ´Xn| ď M for all n P N and T is a stopping time
with ErT s ă 8, then ErXT s “ ErX0s.

Proof. 1. NTS: for all t ě 0, ErXT^t|Ft´1s “ XT^t a.s. Indeed,

ErXT^t|Ft´1s “

t´1
ÿ

s“0

ErXs ¨ 1pT “ sq|Ft´1sErX ´ ´ts ¨ 1pT ě tq|Ft´1s

“

t´1
ÿ

s“0

1pT “ sq ¨Xs `Xt´1 ¨ 1pT ě tq a.s.

“

t´2
ÿ

s“0

1pT “ sq ¨Xs `Xt´1 ¨ 1pT ě t´ 1q a.s.

“ XT^t´1 a.s.

2. S ď T ď n, n P N fixed. Let A P FS . NTS: ErXT ¨ 1pAqs “ rXs ¨ 1pAqs. We compute

XT ´XS “ pXT ´XT´1q ` ¨ ¨ ¨ ` pXS`1 ´XSq

“

n´1
ÿ

k“0

pXk`1 ´Xkq ¨ 1pS ď k ă T q.

11
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Thus,

ErXT ¨ 1pAqs
pAPFSq

“ ErXS ¨ 1pAqs `

n´1
ÿ

k“0

ErpXk`1 ´Xkq ¨ 1pS ď k ă T q ¨ 1pAqs

Have, AXtS ď ku P Fk and AXtT ą ku P Fk. Thus, 1pS ď k ă T q ¨1pAq is Fk´measurable.
Using ErXk`1|Fks “ Xk a.s. we deduce that

ErpXk`1 ´Xkq ¨ 1pS ď k ă T s ¨ 1pAqs “ Er
����������: 0

ErpXk`1 ´Xkq|Fks ¨ 1pS ď k ă T s ¨ 1pAqs

“ 0

Thus, ErXT |FSs “ XS a.s.

3. By the Optional Stopping Theorem applied to pXT^nqně0, we have

ErXT^ns “ ErX0s for all n ě 0.

Now, T being finite a.s. implies that XT “ lim
nÑ8

XT^n a.s. By assumption, have |XT^n| ď Y

a.s. for all n P N and so can apply DCT to conclude.

4. Observe that for all n ě 1

XT^n ´X0 “

n´1
ÿ

k“0

pXk ´X0q ¨ 1pT “ kq ` pXn ´X0q1pT ě nq

Hence, we have the bound (using that |Xk`1 ´Xk| ď M a.s. for all k ě 0)

|XT^n ´X0| ď M
n´1
ÿ

k“0

k1pT “ kq ` n1pT ě nq

ď ErT s ă 8 a.s.

Now, ErT s ă 8 gives T ă 8 a.s. and so can deduce as before that XT “ lim
nÑ8

XT^n and

use the DCT to conclude the argument.

Corollary 2.1.1. Let X be a positive superartingale, T a stopping time such that T ă 8

a.s., then
ErXT s ď ErX0s.

Proof. Use Fatou 1.1: Erlim inf
tÒ8

XT^ts ď lim inf
tÒ8

ErXT^ts ď ErX0s.

Simple random walk on Z
Let pξiqiě0 be iid Bernoulli random variables with success probability 1{2. Define the process
pXnqně0 by setting Xn “ ξ1 ` ¨ ¨ ¨ ` ξn for all n ě 1 and X0 “ 0. Furthermore, let T “

inftn ě 0 : Xn “ 1u. Using the analysis below, we will see that PpT ă 8q “ 1. The Optional
Stopping Theorem gives ErXT^ts “ 0 for all t ě 0. Yet, 1 “ ErXqT s ‰ 0. We thus see that
the condition ErT s ă 8 in 4q is necessary, since ErT s “ 8.

1/21/2

10-1-2-3 2 3

Figure 1: Illustration of simple random walk (first step) on Z.

Lecture 6
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We consider again the example of the simple random walk 2 pXnqnPN and define the stopping
times

Tc “ inf n ě 0 : Xn“c, c P Z

Set T “ T´a ^ Tb for ab P Z. We now ask what is PpT´a ^ Tbq?

To answer this, note first that XT
n “ XT^n is a martingale by the Optional Stopping Theorem

and we also have the bounded differences |Xn`1 ´Xn| ď 1 for all n ě 1.

Claim: ErT s ă 8.
To show this, we will stochastically dominate T be a geometric random variable, which automati-
cally has a finite expectation and then conclude using the non-negativity of T . Now we have that
for the sequence ξ1, ξ2, ¨ ¨ ¨ , ξa`b the probability that they all are either `1 or ´1 is 2 ¨ 2´pa`bq by
independence, call this event A1. The same is true for the shifted sequence ξkpa`bq`1 ¨ ¨ ¨ ξpk`1qpa`bq

for all k P N, where we call the corresponding event Ak.

Thus, we can bound T by the random variable

Zpωq “ inftn ě 0 : ω P Anu

which has the distribution Z „ Geomp2 ¨ 2´pa`bqq. Thus, ErT s ă ErZs ď pa ` bq ¨ 2a`b´1 ă 8.
Thus, we conclude by the OST that ErXT s “ ErX0s “ 0. Hence, ´aPpTa ă Tbq`bPpTb ă T´aq “ 0
and so a quick computation yields that PpT´a ă Tbq “ b

a`b .

3 Martingale Convergence Theorem

Theorem 3.1 (Almost sure martingale convergence theorem). Let X be a super-
martingale bounded in L1, i.e. satisfying sup

n
Er|Xn|s ă 8. Then, there exists X8 P

L1pF8q,F8 “ σpFn : n ě 0q such that Xn
nÑ8
ÝÑ X8, a.s.

Before we embark on the proof of this theorem, we need so me supporting results. First we
have a result from analysis and we set up some notation. Let x ´ pxnnPNq be a real sequence and
let a ă b be reals. We proceed to define the number of upcrossings of the sequence before time
n P N. Wec constructrecursively the sequence of times:

T0pxq “ 0
Sk`1pxq “ inftn ě Tkpxq : xn ď au

Tk`1pxq “ inftn ě Sk`1pxq : xn ě bu

and
Nnpra, bs, Xq “ suptk ě 0 : Tkpxq ď nu

Observe that as n Ñ 8, Nnpra, bs, xq Ò Npra, bs, xq “ suptkgeq0 : Tkpxq ă 8u (see figure 2 for an
illustration).

Lemma 3.1. Let X “ pXnq be a real sequence. Then X converges in R “ R Y t˘8u if and
on ly if for all a ă b, a, b P Q, Npra, bs, Xq ă 8.

Proof. ùñ : Suppose x converges, if a ă b such that Npra, bs, xq “ 8, then lim inf
n

xn ď a ă b ď

lim sup
n

xn, a contradiction.

ðù : if not, then lim inf
n

xn ă lim sup
n

xn which implies that there exists a ă b inQ with lim inf
n

xn ă

a ă b ă lim sup
n

xn, and hence Npra, ns, xq “ 8, a contradiction.

Now we state it Doob’s upcrossing Inequality

13
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Lemma 3.2 (Doob’s upcrossing inequality). Let X be a supermartingale, then for all
n P N:

pb´ aq ¨ ErNnpra, bs, Xqs ď ErpXn ´ aq´s

Proof. It is not hard to check that the sequences of times in 3 are stopping times. Now we have:

n
ÿ

k“1

pXTk^n ´XSk^nq

“

Nn
ÿ

k“1

pXTk
´XSk

q

looooooooomooooooooon

ěNn¨pb´aq

`pXn ´XSNn`1
q1pSNn`1 ď nq

Since Tk^n ě Sk^n, the OST gives ErXTk^ns ď ErXSk^ns. Note:

Xn ´XSNn`1
looooooomooooooon

ěpXn´aq^0“´pXn´aq´

1pSNn`1 ď nq.

Thus, taking expectations on both sides gives:

0 ě pb´ aq ¨ ErNns ´ ErpXn ´ aq´s.

thus concluding the proof.

0

Figure 2: Illustration of upcrossings for the process pXnqnPN.

Now we proceed to the proof of the martingale convergence theorem:

Proof. (Theorem 3.1) Fix a ă b, in Q. Have

ErNnpra,bs,Xqs ď pb´ aq´ ErpXn ´ aq´s
looooooomooooooon

ďEr|Xn|`as

ď pb´ aq´

¨

˝sup
ně0

Er|Xn|s
looomooon

ă8

`a

˛

‚

Also have Nnpra, bs, Xq Ò Npra, bs, Xq as n Ñ 8. By monotone convergence: ErNpra, bs, Xqs ă 8.
Set

Ω0 “
č

aăba,b,PQ
tNpra, bs, Xq ă 8u P F8

and PpΩ0q “ 1. On Ω0, X converges. set

X8 “

#

lim
nÑ8

Xn on Ω0

0, on ΩzΩ0.

So, X8 is F8´measurable, Xn
nÑ8
ÝÑ X8 a.s. and

Er|X8|s “ Erlim inf
n

|Xn|s ď lim inf
ErXns

ă 8.

14
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Corollary 3.1.1. Let B be a upermaartingale. Then, X converges a.s.

Proof. Er|Xn|s “ ErXns ď ErX0s. Apply the martingale convergence theorem to conclude.

Lecture 7

4 Doob’s inequalities

Theorem 4.1 (Doob’s maximal inequality). Let X be a non-negative submartingale and
set X˚

n “ sup
0ďkďn

Xk . Then for all λ ě 0,

λ ¨ PpX˚
n ě λq ď ErXn ¨ 1pX˚

n ě λqs

ď ErXns.

Proof. Let T “ inftk ě 0 : Xk ě λu (it is a stopping time). Then tX˚
n ě λu “ tT ď nu. Also have

that XT^n is a submartingale by the OST. Then ErXT^ns ď ErXns. Now,

ErXT^ns “ ErXT ¨ 1pT ď nqs

`ErXn ¨ 1pT ą nqs

ě λ ¨ PpT ď nq ` ErXn ¨ 1pT ą nqs

ùñ λ ¨ PpT ď nq ď E

»

—

–

Xn ¨ 1p T ď n
loomoon

“tX˚
n ěλu

q

fi

ffi

fl

ď E rXns

Theorem 4.2 (Doob’s L1 inequality). Lte p ą 1 and let X be a martingale or a non-
negative submartingale. Set X˚

n “ sup
0ďkďn

|Xk|. Then∥∥X8
n

∥∥
p

ď
p

p´ 1
∥Xn∥p .

Proof. By Jensen, it is enough to prove 4.2 for a non-negative submartingale. Now, observe that

“ b

py ^ kqp “

ż 0

k

pxp´11py ě xqdx “ Er

ż k

0

rxp´11pX8
nqdxs

Fubini
“

ż k

0

pxp´1PpX˚
n ě xq

ď 1
xErXn¨1pX˚

n ěxqs
dx

ď E

«

ż k

0

pxp´2 ¨ 1pX˚
n ě xqdx ¨Xn

ff

“ E
”

p
p´1 pX˚

n ^ kqp´1 ¨Xn

ı

Hölder
ď

p
p´1 ¨ ∥Xn∥p ¨ ∥X˚

n ^ k∥p´1
p .

So we proved ∥X˚
n ^ k∥pp ď

p
p´1 ∥Xn∥p ¨ ∥X˚

n ^ k∥p´1
p , which implies ∥X˚

n ^ k∥p ď
p

p´1 ¨ ∥Xn∥p.
Now take k Ñ 8 and use monotone convergence to conclude the argument.

Theorem 4.3 (Lp-convergence theorem). Let X be a martingale and 1 ă p ă 8, then
the following are equivalent:

1. X is bounded in L
√
, i.e. sup

ně0
∥Xn∥p ă 8.

2. X converges ’underlinealmost surely and in Lp to a limit X8 P Lp.

15
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3. There exists Z P Lp s.t. Xn “ E rZ|Fns a.s.

Proof. 1q ùñ 2q: X bounded in Lp implies X is bounded in L1. So there exists X8 such that

Xn
nÑ8
ÝÑ X8 a.s.

Also, E r|X8|ps “ E
”

lim inf
n

|Xn|p
ı Fatou

ď lim inf
Er|Xn|ps

ă 8. Thus, X8 P Lp.

Now, let X˚
n “ sup

0ďkďn
|Xk|, X˚

8 “ sup
kPN

|Xk|. Thus,

|Xn ´X8| ď 2X˚
8

for all n P N. Thus, it is enough to show by DCT that X˚
8 P Lp. By Doob’s Lp´inequality,

∥X˚
n∥p “

p
p´1 ¨ sup

nPN
∥Xn∥p ă 8 By MCT (X˚

n Ò X˚
8): ∥X˚

8∥p ď
p

p´1 sup
nPN

∥Xn∥p ă 8 Thus,

X˚
8 P Lp.

2q ùñ 3q: Xn
nÑ8
ÝÑ X8 a.s. and in Lp. Set Z “ X8. Need to show: Xn “ E rX8|Fns for all

n P N.
∥Xn ´ E rXoo|Fns∥p

měn
“ ∥E rXm ´X8|Fns∥p

contraction (Jensen)
ď ∥Xm ´X8∥p Ñ 0, m Ñ 8.

3q ùñ 1q: By conditional Jensen, we can conclude.

Definition 4.1. A martingale of the form Xn “ E rZ|Fns, Z P Lp is called a martingale
closed in Lp.

Corollary 4.3.1. Let Z P Lp, Xn “ E rZ|Fns a.s. Then Xn
nÑ8
ÝÑ E rZ|F8s a.s. and in Lp

where F8 “ σpXn, n ě 0q.

Proof. By theorem 4.3, we have Xn
nÑ8
ÝÑ X8 a.s. And in Lp. Now, we need to show:

X8 “ E rZ|F8s a.s.

Now, we have that X8 is F8´measurable (being the point wise limit of Xn, n ě 0) and for all

A P F8, E rZ ¨ 1pAqs “ E rX8 ¨ 1pAqs. Fix A P
ď

ně0

Fn, a π´system generating F8. There exists

N P N such that A P FN . Let n ě N , now

E rZ ¨ 1pAqs “ E rXn ¨ 1pAqs
nÑ8
ÝÑ E rX8 ¨ 1pAqs .

Definition 4.2 (Uniform integrability). A collection of variables pXiqiPI is called uni-
formly integrable (UI) if

sup
iPI

E r|Xi| ¨ 1p|Xi| ą Mqs
MÑ8
ÝÑ 0.

Equivalently, pXiqiPI is UI if pXiq is bounded in L1 and for all ϵ ą 0, there exists δ ą 0 such
that for all A P F with PpAq ă δ,

sup
iPI

E r|Xi| ¨ 1pAiqs ă ϵ.

• A UI family is bounded in L1.

• If a family pXiq is bounded in Lp, p ą 1, then it is also UI.

16
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Lemma 4.1. Let pXnqnPN, X be in L1 and Xn
nÑ8
ÝÑ X a.s. Then Xn

nÑ8
ÝÑ in L1 if and only

if pXnqnPN is UI.

Theorem 4.4. Let X P L1. The family tE rX|G : G Ă Fsu is uniformly integrable (UI).

Proof. Need to show for all ϵ ą 0, there exists λ large enough such that for all G Ă F

E r||E rXGs ¨ 1p|E rXGs | ą λqs ă ϵ
ď E rE r|X||Gs ¨ 1p| E rX|G|s

looomooon

G´measurable

| ą λqs .

Since X P L1, for all ϵ ą 0, there exists mδ ą 0 such that if A P F , PpAq ă δ, then
E r|X| ¨ 1pAqs ă ϵ. Now,

Pp|E rXGs | ą λq
Markov

ď
Er|ErXGs|s

λ

ď
ErEr|X|Gss

λ “
Er|X|s

λ .

Take λ “
Er|X|s

λ , then we are done.

Definition 4.3. X “ pXnqnPN is called UI (super/sub) martingale if it is a (super/sub)
martingale and pXnqně0 is UI.

Examples:
Let X1, X2, ¨ ¨ ¨ be an iid sequence with PpX1 “ 0q “ PpX1 “ 2q “ 1{2. Set Yn “ X12 ¨ ¨ ¨ ¨ ¨Xn,

which can be seen to be a martingale. Also have E rYns “ 1 for all n P N and Yn
nPN
ÝÑ Y8 “ 0

a.s. by the martingale convergence theorem, not not in L1 (because it is not UI).

Theorem 4.5. Let X be a martingale. Then the following are equivalent:

1. X is UI.

2. X converges a.s. and in L1 to X8 as n Ñ 8.

3. There exists Z P L1 such that Xn “ E rZ|Fns for all n ě 0.

Proof. 1q ùñ 2q: X is bounded in L1 implies (by the martingale convergence theorem), Xn Ñ

a.s. Since Xn is UI, then Xn Ñ X8 in L1.

2q ùñ 3q: Set Z “ X8. Need to show: Xn “ E rX8|Fns a.s. Indeed,

∥Xn ´ E rX8|Fns∥1
měn

“ ∥E rXm ´X8|Fns∥1
ď ∥Xm ´X8∥1

mÑ8
ÝÑ 0.

3q ùñ 1q: The tower property implies pXnqnPN is a martingale and the previous theorem
implies that pXnnPNq is UI.

Remark. 1. We get as before, X8 “ E rZ|Fs a.s., where F8 “ σpXn : n ě 0q.

2. It X were a UI super/sub martingale, then we would get E rX8|Fns
ěsub

ď Xn (check!).

X is UI implies Xn Ñ X8 in L1 and a.s. Now let T be a stopping time. We can then define

XT “

8
ÿ

n“0

Xn ¨ 1pT “ nq `X8 ¨ 1pT “ 8q.

17
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Theorem 4.6 (Optional stopping theorem for UI martingales). Let X be a UI mar-
tingale and let S, T be stopping times with S ď T . Then

E rXT |FSs “ XS a.s.

Proof. We know that Xn “ E rX8Fns a.s. since X is UI. It suffices to prove that for any stopping
times T , E rX8|FT s “ XT a.s. Indeed, E rXT |FSs “ E rE rX8|FT s |FSs and since S ď Twe have
FS Ď FT and hence the tower property would give:

E rXT |FSs “ E rX8|FSs “ XS

a.s. Thus, we need to show: for all T stopping times, E rX8|FT s “ XT a.s.

1. NTS: XT P L1:

E r|XT |s “

8
ÿ

n“0

E r|Xn ¨ 1pT “ nq|s ` E r|X8| ¨ 1pT “ 8qs

have Xn “ E rX8|Fns

ď

8
ÿ

n“0

E

»

—

–

E r|X8Fn|s ¨

1pT“nq
hkkikkj

P Fn

fi

ffi

fl

`E r|X8 ¨ 1pT “ 8q|s

“

8
ÿ

n“0

E r|X8| ¨ 1pT “ nqs ` E r|X8 ¨ 1pT “ 8q|s

“ E r|X8|s ă 8

as X8 P L1. It is also not hard to check that XT is FT ´measurable.

2. NTS: for all B P FT : E rX8 ¨ 1pBqs “ E rXT ¨ 1pBqs

E rXT ¨ 1pBqs “

8
ÿ

n“0

E

»

—

–

Xn ¨ 1pT “ nq ¨ 1pBq
looooooooomooooooooon

PFn

fi

ffi

fl

`E rX8

¨1pT “ 8q ¨ 1pBq

“

8
ÿ

n“0

E rX8 ¨ 1pT “ nq ¨ 1pBqs

“ E rX8 ¨ 1pBqs

Definition 4.4 (Backwards martinagles). Let ¨ ¨ ¨ Ď G´2 Ď G´1 Ď G0 be a decreasing
family of sub sigma algebras of F . We call X “ pXnqnď0 a backwards martingale if Xo P L1

and for all n ď ´1 E rXn`1|Gns “ Xn a.s. By the tower property, E rX0|Gns “ Xn for all
n ď 0. Since X0 P L1, a backwards martingale is automatically UI.

Theorem 4.7 ( Lp/a.s. backwards martingale convergence theorem). Let X be a
backwards martingale with X0 P Lp, 1 ď p ă 8. Then Xn Ñ X´8 as m Ñ ´8 a.s. and in

Lp and X´8 “ E rXo|G´8s a.s., where G´8 “
č

nď0

Gn.

Proof. Set Fk “ G´n`k, 0 ď k ď n. This is an increasing filtration and pX´n`kq0ďkďn is
Fk´martingale. Let N´npra, bs, Xq be the number of upcrossings of the interval ra, bs between
´n and 0. Doob’s upcrossing inequality gives:

pb´ aq ¨ E rN´npra, bs, Xqs ď E
“

pXn ´ aq´
‰

.

18
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As before, we get that Xn Ñ X´8 as n Ñ ´8 a.s. We also have X´8is G´8´measurable. Also
observe that nXo P Lp implies Xn P Lp for all n ď 0.

Lecture 9 Xn “ E rXn|Gns a.s. (backwards martingale). If Xn P Lp, p P r1,8q XnÑX´8
a.s. n Ñ ´8

a.s. and X´8 is G´8 “
č

nď0

Gn´measurable.

Observe we have that Xn P Lp by conditional Jensen and using Fatou, we obtain X´8 P Lp.
Now we need to show that Xn Ñ X´8 in Lp. Indeed,

|Xn ´X´8|p “ |E rX0|Gns ´ E
“

X´8|G\
‰

|p

“ |E
“

X0s´X´8|Gn

‰

|p

Jensen
ď E r|X0 ´X´8|p|Gns

looooooooooomooooooooooon

UI family

.

Hence, p|Xn ´X´8|pqnď0 is UI, hence giving L1 convergence.

NTS: X´8 “ E rXo|G´8s a.s.

Let A P G´8 “
č

ně0

Gn implies that A P Gn for all n ď 0. Hence, E rXn ¨ 1pAqs “ E rX0 ¨ 1pAqs,

for all n ď 0. Take n Ñ ´8 and use L1 convergence to get E rX´8 ¨ 1pAqs “ E rX0 ¨ 1pAqs to
conclude.

5 Applications of martingales

sec: applications of mgs

Theorem 5.1 (Kolmogorov’s 0 ´ 1 law). Let pXiq be iid and for all n P N, Fn “ σpXk :

k ě nq, F8 “
č

ně0

Fn. Then, F8 is trivial, i.e. for all A1in1F8, PpAq P t0, 1u.

Proof. Let A P F8. Define G\ “ σpX\ : ∥ ď \q and G8 “ σpGn, n ěq. Now, we have that
E r1pAq|Gns is a martingale and

E r1pAq|Gns
nÑ8
ÝÑ E r1pAq|G8s a.s.

Now, A P F8 implies that A P Fn`1 and also have Gn K Fn`1 and E r1pAq|Gns “ PpAq a.s.,
E r1pAq|G8s “ 1pAq a.s. since F8 Ď G8 implies that A P G8. So PpAq “ 1pAq a.s. finally giving
PpAq P t0, 1u.

Theorem 5.2 (Strong law of large numbers). Let pXiqiPI be an iid sequence in L1 with
E rX1s. Define Sn “ X1 ` ¨ ¨ ¨Xn. Then

Sn

n converges a.s. and in L1 to µ as n Ñ 8 a.s.

Proof. Define G “ σpSn, Sn`1 ¨ ¨ ¨ q “ σpSn, Xn`1, ¨ ¨ ¨ q. For n ď ´1, Mn “
S´n

´n . We will show
that pMnqnď´1 is a backwards martingale with respect to pG´nnď´1q. Indeed,

E rMm`1|G´ms “ M´m a.s. for m ď ´1

“ E
”

S´m´1

´m´1 |G´m

ı

setn“´m
“ E

”

Sn´1

n´1 |Gn

ı

“ E
”

Sn´1

n´1 |Sn´1, Xn`1 ¨ ¨ ¨

ı

“ E
”

Sn´Xn

n´1 Sn

ı

“ Sn

n´1 ´ E
”

Xn

n´1 |Sn

ı

.

Now since Sn “ X1`
iid
¨ ¨ ¨ `Xn, we have that E rXk|Sns “ E rX1|sSn and so Sn

n´1 ´ 1
n´1

`

Sn

n

˘

“

Sn

n´1

`

n´1
n

˘

“ Sn

n . Hence Sn

n

nÑ8
ÝÑ Y a.s. and in L1measurable for all k ě 0. Thus Y is
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č

k

σpXk`1, ¨ ¨ ¨ q

loooooooomoooooooon

Kolmogorov 0-1 law ùñ trivial

´measurable. So there exists c P R such that PpY “ cq “ 1. So Sn

n

nÑ8
ÝÑ

in L1 and hence c “ E rY s “ limiÑ8 E
“

Sn

n

‰

“ µ and so finally c “ µ.

Theorem 5.3 (Radon-Nikodym Theorem). Let P and Q be two probability measures
on the space pΩ,F ,Pq. Suppose that F is countable generated, i.e. there exists a sequence
pFnqnPN such that F “ σpFn : n P Nq. Then the following are equivalent:

1. For all A P F , PpAq “ 0 implies QpAq “ 0. pQ ăă P q.

2. For all ϵ ą 0, there exists δ ą 0 such that if A P F with PpAq ă δ, then QpAq ă ϵ.

3. There exists a non-negative random variable X such that QpAq “ E rX ¨ 1pAqs, for all
A P F .

Remark. X is called a version of the Radon-Nikodym derivative ofQ with respect to P , orX “
dQ
dP

on F a.s.

Proof. 1q ùñ 2q : Suppose 2q does not hold, then there exists an ϵ ą 0 such that for all n P N,

there exist An with P pAnq ď 1
n2 and QpAnq ě ϵ. Now, since

8
ÿ

n“1

P pAnq ă 8 Borel-Cantelli implies

P pAn i.oq “ 0 and so QpAnq “ 0. However,

tAni.o.u “
Ş

n

Ť

kěnAk ùñ QpAn i.oq

“ limnÑ8 Q
`
Ť

kěnAn

˘

ě limnÑ8 QpAnq ě ϵ

a contradiction.
3q ùñ 1q : trivial.

2q ùñ 3q : Let An “ tH1 X ¨ ¨ ¨ X Hn : Hi “ Fi or F
c
i for all iu. In other words An “

␣

F1, F2, ¨ ¨ ¨ , Fn,
Ť

kěn Fk

(

. Let FN “ σpAnq, so Fn is a filtration.

Now defined

Xnpωq “
ÿ

APA\

QpAq

P pAq
¨ 1pω P Aq.

Thus, for all A|inFn, E rXn ¨ 1pAqs “ QpAq “
FnĎFn`1

“ E rXn`1 ¨ 1pAqs. So pXnqnPN is indeed a
martingale. Furthermore E rXns “ QpΩq “ 1 (and since Xn ě 0 for all n ě 0), we have that Xn is

an L1 bounded martingale. Thus, Xn
nÑ8
ÝÑ X8 a.s.

Now we show that pXnqnPN is UI:

PpXn ě λq ď 1{λ ă 8

ď δ

using Markov’s inequality and taking λ “ 1{δ. Thus, E rXn ¨ 1pXn ě λqs “ QpXn ě λq ă epsilon.
Thus pXnqnPN is UI and so Xn Ñ X8 in L1.

Now define Q̃pAq “ E rX8 ¨ 1pAqs. Want to show: p̃QqpAq “ QpAq for all A P F . Indeed, we
have Xn “ X8|Fn. Now if we let for a moment A P

Ť

ně0 Fn, there exists some N P N such that
A P FN . Thus,

E rXN ¨ 1pAqs
looooooomooooooon

“QpAq

“ E rX8 ¨ 1pAqs
looooooomooooooon

“Q̃pAq

.

Hence, Q “ Q̃ on a π´system, p
Ť

n Fnq, that generates F , and by the extension theorem we

have that Q ” Q̃ everywhere.

Lecture 10
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6 Continuous Time processes

Let X “ pXnqnPN be a process, that is for all n P N Xn is a random variable on some underlying
probability space pΩ,F ,Pqq. X can also be viewed as the map

X : pω, nq ÞÑ Xnpωq.

and observe that this map is FbPpNq “ σptAˆtku : A P F , k P Nuq as long asXn is F´measurable
for all n P N. Now we consider random variables taking values in the spaces Rd, d ě 1.

Definition 6.1 (Stochastic process). The family pXtqtPR`
is called a stochastic process if

for all t positive Xt is a random variable.

Remark. The map X : pω, tq ÞÑ Xtpωq need not be F b BpR`q´measurable.

Claim: If for all ω P Ω, ÞÑ Xtpωq is a continuous function for t P p0, 1s, then the map
X : pω, tq ÞÑ Xtpωq is F b BpR`q´measurable.

Indeed, by continuity we can write

Xtpωq “ lim
nÑ8

for all nthis sum isFbBpp0,1sq´meas.
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkj

2n´1
ÿ

k“0

1pt P pk ¨ 2´n, pk ` 1q ¨ 2´nsqXk¨2´npωq

Thus X is measurable with as a limit of measurable functions.

From now onwards, we will always (unless otherwise stated) assume that X is right-continuous
and admits left limits, almost everywhere. We call such processes cadlag.

We now revisit some of the earlier definition we have made in the discrete setting and extend
the to the continuous case. A filtration is an increasing family of sigma algebras pFtqtPR`

when-
ever t ď t1. We say X is adapted to the filtration above if Xt if Ft´measurable for all t P R`.
A random variable T : Ω Ñ r0,8s is called a stopping time if for all t, tT ď tu P Ft. Define
FT “ tA|inF : A X tT ď tu P Ft for all tu and A|inBpRq. Furthermore, TA “ inf

tě0:XtPA
is not

always a stopping time.

tTA ď tu “
ď

sďt

tXs P Au

an uncountable union so not immediately clear whether it in Ft.

Examples:

Figure 3: Illustration of X.

Let J “

"

1, with probability 1
2

´1, with probability 1
2

and

Xtpωq “

"

t, t P r0, 1s

1 ` Jpt´ 1q, t ą 1.

Let pFtqtě0 “ pFX
t qtě0 and fix A P p1, 2q. Then tTA ď 1u 

inF1 “ tH,Ωu, since tTA ď 1u “ tJ “ 1u.

Again, we say XT
t “ XT^t, XT pωq “ XT pωqpωq whenever T pωq ă 8.

Proposition 6.1. Let S, T be stopping times and X a cadlag adapted process. Then

1. If S ď T , then FS Ď FT .

2. S ^ T is a stopping time.

3. XT ¨ 1pT ă 8q is FT ´measurable.
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4. XT is adapted.

Proof. 1q, 2q are clear (check!) and 4q is immediate from 3q, since XT^t if FT^t´measurable and
FT^t Ď Ft.

proof of 3q: Claim: a random variable Z is FT^t´measurable if and only if Z ¨ 1pT ď tq is
Ft´measurable for all t ě 0. Indeed,

ðù ): is true by definition.

ùñ q : if Z “ c ¨ 1pAq, A P F , then A P FT which means that Z is FT ´measurable. Now, if

Z “
ÿ

i

ci ¨ 1pAiq, a finite sum with ci ą 0, Ai P F , then Z is FT ´measurable.

Z general (ě 0): let Zn Ò Z, where

Zn “ 2´nt2nZu ^ n, for all n P N.

Observe that Zn are simple for all n and so by the previous steps Zn is FT ´measurable and hence
so is Z, being an a.s. pointwise limit of measurable functions.

The case for completely general Z follows by decomposing Z “ Z` ´ Z´, Z` “ Z_, Z´ “

p´Zq _ 0 and apply the previous case to Z`, Z´.

Now, by the above claim, it suffice to show: XT ¨ 1pT ď tq if Ft measurable for all t. We have
XT1pT ď tq “ XT ¨ 1pT ă tq ` Xt ¨ 1pT “ tq. Hence, it suffices to show that XT ¨ 1pT ă tq if Ft

measurable for all t.

Define Tn “ 2´nr2nT s, stopping times since

tTn ď tu “ tr2nT s ď 2ntu
“ t2nT ď t2ntuu “ tT ď 2´nt2nT uu

P F2´nt2nT u Ď Ft.

Also, Tn Ó T , as n Ñ 8. Now by the cadlag property of X,
XT ¨ 1pT ă tq “ limnÑ8 XTn^t ¨ 1pT ă tq.

Furthermore, Tn takes values in Dn “ tk ¨ 2´n, k P Nu. Now,

XTn^t ¨ 1pT ă tq “
ÿ

dPDn,dďt

Ft´meas.
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

Xd ¨ 1pTn “ dq ¨ 1pT ă tq

`Xt ¨ 1pTn “ tq ¨ 1pT ă tq.

Hence, XT ¨ 1pT ă 8q is Ft´measurable as a limit of Ft´measurable functions.

Proposition 6.2. Let X be a continuous and adapted process and let A be a closed set. Then
TA “ tt ě 0 : Xt P Au is a stopping time.

Proof. Need to show: tTA ď tu “

"

inf
sPQ,sďt

dpXs, Aq “ 0

*

.

pĎq : dpx,Aq “distance of x from A. Let TA “ s ď t, then there exists a sequence sn Ó s, such
that XSn P A. Since A is closed, we have dpXs, Aq “ 0 and Xsn Ñ Xs, as n Ñ 8. Again A being
closed implies that dpXs, Aq “ 0. The continuity of X and dp¨, Aq means that there exists another
sequence pqnqnPN Ď Q such that qn Ò s such that dpXqn , Aq Ñ 0 hence infsPQ,sďt dpXs, Aq “ 0.

(Ě): If infsPQ,sďt dpXs, Aq “ 0, then there exists a sequence psnqnPN such that sn ď t for all
n and dpXsn,A Ñ 0q as n Ñ 8. Then by compactness, there exists a convergent subsequence of
sn Ñ s (without relabelling), such that s ď t and dpXsn,Aq Ñ 0 as n Ñ 8 and by continuity we
obtain dpXs, Aq “ 0, hence Xs P A and so TA ď t.
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Definition 6.2. Given a filtration pFtqtě0, we define Ft` “
Ş

sąt Fs, for all t ě 0. Observe
that pFt` qtě0 is a filtration. If for all t ě 0, Ft` , we say pFtqtě0 is right-continuous.

Lecture 11
Proposition 6.3. Let X be a continuous process, and A be an open set. Then

TA “ inftt ě 0 : Xt P Au

is a stopping time with respect to the filtration pFt` qtě0.

Proof. Need to show: for all t ě 0, tTA ď tu P Ft` . Have,

tTA ă su “
ď

qPQ,qăs

Xq P A
loomoon

PFs

P Fs

tTA ď tu “
Ş

n tTA ă t`
1

n
u

looooooomooooooon

PF
t` 1

n

P Ft` .

Let pXtqtě0 be a stochastic process. It can be viewed, as a random element in the space of
functions tf : R` Ñ Eu endowed with the product sigma-algebra making all projections measur-
able. Further, let CpR`, Eq be the space of all continuous functions and DpR`, Eq the space of
all cad lag functions. Endow the spaces C,D with the sigma algebra that makes all projections
πt : f ÞÑ ft measurable for all t ě 0. This sigma algebra is generated by the cylinder sets

#

č

sPJ

tfs P As : for all T Ď R`, finite, As P BpEqu

+

.

For A in the product sigma algebra, we write µpAq “ PpX P Aq and we call µ the law of X.
(“X˚P “ µ“). For every J finite subset of R`, write µJ for the law of pXtqtPJ . The measures
pµJq are called the finite dimensional marginals of X. The µJ completely characterise the law of
µ. This follows because the sets above form a π´system that generates the sigma fields previously
mentioned.

Examples:
Let X “ 0 for all t P r0, 1s and U „ r0, 1s (uniform) and Xt1 “ 1pU “ tq for t P r0, 1s. Both of
them have the same finite dimensional distributions which are Dirac masses at zero, but the
processes are not equal.

PpXt “ 0 for all t P r0, 1sqq “ 1
PpX 1

t “ 0 for all t ď 1q “ 0. But,
PpXt “ X 1

tq “ 1 for all t P r0, 1s.

Definition 6.3. Let X and X 1 be two processes on pΩ,F ,Pq, we say X 1 is a version of X if
(Xt “ X 1

t a.s.) for all t. That is

For allt ě 0 : PpXt “ X 1
tq “ 1.

Definition 6.4. Fix a filtered probability space pΩ,F , pFtqtě0,Pq. Set N to be the collection
of sets of measure zero. Furthermore, set

F̃t “ σpFt,N q

for all t ě 0. If for all t, Ft “ F̃t, we say that pFtqtě0 satisfies the usual conditions.
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Theorem 6.1 (Martingale regularisation theorem). Let pXtqtě0 be a martingale wrt
pFtqtě0. Then, there exists a cadlag process pX̃tqtě0 satisfying for all t ě 0:

Xt “ E
”

X̃t|Ft

ı

a.s.

and X is a martingale with respect to the augmented filtration pF̃tqtě0. If pFtqtě0
satisfies the

usual conditions, then X̃ is a version of X.

We start with a Lemma

Lemma 6.1. Let f : Q` Ñ R such that for all I Ď Q` bounded, f is bounded on I and for
any a ă b, a, b, P Q`, for all I bounded and suppose

N pra, bs, I, fq “ sup tn ě 0 : there exists 0 ă s1 ă t1 ă ¨ ¨ ¨ ă sn ă tn,
si, ti P I s.t. fpsiq ă a, fpti ą bqu ă 8.

Then, for all t ě 0, the limits
lim

sÒt,sPQ`

fpsq, lim
sÓt,sPQ`

fpsq

exist and are finite.

Proof. Let sn Ó t, the sequence pfpsnqq will converge by the finite upcrossing property (see lemma
3.1). Now suppose tn Ó t is another such sequence, then combining them (by selecting elements
from each sequence in an alternating fashion exploiting convergence) we get a decreasing sequence
converging to t to conclude limnÑ8 fpsnq “ limnÑ8 fptnq. Finally, f being bounded gives that
both limits are equal and finite.

Goal: To define X̃t “ limsÓt,sPQ`
Xs on a set of measure 1, and zero otherwise. We now outline

below the main steps in the proof of Theorem 6.1.
Steps:

1. Show that the limit exists and is finite on a set of measure one.

2. Show that X̃ is F̃t´measurable and satisfies E
”

X̃t|Ft

ı

a.s. for all t ě 0.

3. X̃ is a pF̃tqtě0 martingale.

4. X̃ is cadlag.

Proof. (Theorem 6.1)

1. Let I be a bounded subset of Q`. Need to show that P
ˆ

sup
tPI

|Xt| ă 8

˙

“ 1. Observe that

sup
tPI

|Xt| “ sup
JĎI,J finite

sup
tPJ

|Xt|.

Now, let J “ tj1, ¨ ¨ ¨ , jnu Ď I with j1 ă ¨ ¨ ¨ jn and k ą sup I. Then pXtqtPJ is a discrete
time martingale. Hence the maximal inequality in 4.1 gives

λ ¨ Ppsup
tPJ

|Xt| ě λq ď E r|Xjn |s ď E r|Xk|s

by the martingale property and Jensen. Now taking the limit as J Ò I,

λ ¨ P
ˆ

sup
tPI

|Xt| ě λ

˙

ď E r|Xjn |s ď E r|Xk|s

So, P
ˆ

sup
tPI

|Xt| ě λ

˙

“ 1. Now for M P N define IM “ Q` X r0,M s, then by the above,

P

˜

č

MPN

"

sup
tPIM

|Xt| ă 8

*

¸

“ 1
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and on the above event, Xt is bounded on bounded intervals of Q`.
Lecture 12 Let a ă b, a, b P Q`, I Ď Q`, bounded. Observe that

N pra, bs, I,Xq “ sup
IĎI,J finite

N pra, bs, J,Xq.

Now, let J “ tj1, ¨ ¨ ¨ , jnu Ď I with j1 ă ¨ ¨ ¨ jn and k ą sup I. Then pXtqtPJ is a discrete
time martingale. Now, Doob’s upcrossing inequality from 3.2 gives

pb´ aq ¨ E rN pra, bs, J,Xqs ď E rpXjn ´ aq´s

ď E rpXk ´ aq´s .

By monotone convergence, we get

pb´ aq ¨ E rN pra, bs, I,Xqs ă 8.

Let M P N, IM “ Q` X r0,M s and

Ω0 “
č

mPN

˜

č

aăb,a,bPQ
tN pra, bs, IM , Xq ă 8u

ď

"

sup
tPIm

|Xt| ă 8

*

¸

.

On Ω0, from lemma 6.1, limsÓtXs exists and we have PpΩ0q “ 1. Now, define

X̃t “

"

limsÓt,sPQ`
Xs, on Ω0

0, otherwise.

Recall F̃t “ σpFt,N q for all t ě 0. From the definition definition, we see that X̃ is
F̃´adapted.

It remains to show that Xt “ E
”

X̃t|Ft

ı

a.s. and X̃ is cadlag and a martingale.

2. Let tnÓt, tnPQ`
, then

X̃t “ lim
nÑ8

Xtn

a.s. Observe that pXtnq is a backwards martingale with respect to the filtration pFtnqnPN.

So pXtnq converges a.s. and in L1. In other words, Xt “ in L1. So Xt “ E
”

X̃t|Ft

ı

a.s.

3. We now prove that X̃ is a martingale. Let s ă t, we need to show that E
”

X̃t|F̃s

ı

“1 tildeXs

a.s.

Claim: E rXt|Ft` s “ X̃s a.s. Indeed, first observe that for Y any random variable and G a
sigma algebra it follows that

E rY |σG,N qs “ E rX|Gs

which is clear because the conditional expectation is defined almost surely and N only con-
tains sets of measure zero.

Now, fix s ă t and let sn Ó s, sn P Q`, s0 ă t. We have by the tower property that
pE rXt|FsnsqnPN is a backwards martingale and so it converges a.s. and in L1 to E rXt|Ft` s.
But E rXt|Fsns “ Xsn a.s. and Xss Ñ X̃s a.s. as n1to8. So X̃s “ E rXt|Fs` s.

4. Finally, we show that X̃ is a cadlag. First we show that X̃ is right continuous. Suppose not.
Then, there exists ω P Ω0 and some t ě 0 such that X̃pωq is not right continuous at t. That
is there exists a sequence sn Ó t such that |X̃sn ´ X̃t| ě ϵ ą 0 (for some positive ϵ). By the
definition of X̃, there exists another sequence s1

n ą sn, for all n P N and s
1

n Ó t, s1
n P Q`

such that |X̃sn ´ Xs1
n

| ď ϵ
2 . So |Xs1

n
´ X̃t| ě ϵ

2 , a contradiction since s1
n Ó t, s1

n P Q`. The
argument for left continuity is entirely analogous.
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Examples:
Let ξ, η be independent iid symmetric Bernoulli with success probability 1{2. Define

Xt“

$

&

%

0, t ă 1
ξ, t “ 1
ξ ` η, t ą 1.

and let Ft “ σpXs, s ăďq for all t ě 0. Observe that X is an pFtqtě0 martingale. Also, X̃

satisfies Xt “ E
”

X̃t|Ft

ı

where

X̃t “

"

0, t ă 1
ξ ` η, t ě 1.

Furthermore, F1 “ σpξq and Ft “ σpξ, ηq for all t ą 1, X̃ is cadlag with respect to F̃ . Observe
finally that F1` “ σpξ, ηq and so the filtration F is not right continuous and X̃ is not a version
of X. We thus see that the right-continuity of pFtqtě0 is necessary in Theorem 6.1.

Theorem 6.2 (Almost sure martingale convergence theorem). Let X be a cadlag
martingale bounded in L1. Then Xt Ñ X8 a.s. with X8 P L1pF8q.

Proof. Let IM “ Q` X r0,M s. Then Doob’s upcrossing inequality 3.2 from the discrete setting
and a monotone convergence argument give for a ă b, a, b P Q`

pb´ aq ¨ E rN pra, bs, IM , Xqs ď a` sup
tě0

E r|Xt|s .

Taking M Ñ 8 gives N pra, bs,Q`, Xq ă 8 a.s. Hence, for the event

Ω0 “
č

aăb,a,bPQ`

tN pra, bs,Q`, Xq ă 8u

we have PpΩ0q “ 1 and on Ω0, limqÑ8,qPQ`
Xq exists and is finite. We thus have X8 “

limqÑ8,qPQ`
Xq on Ω0. Now for all ϵ ą 0, there exists q0 such that |Xq0 ´ X8| ď ϵ

2 for all
q ą q0, q P Q`. Now let t ą q0. Then there exists some q ą t, q P Q` such that |Xt ´Xq| ď ϵ

2 by
right continuity of X. So |Xt ´X8| ď ϵ.

Theorem 6.3 (Doob’s maximal inequality). LetX be a cadlag martingale,X˚
t “ sup

sďt
|Xs|.

Then for all λ ą 0,

λ ¨ PpX˚
t ě λq ď E r|Xt| ¨ 1pX˚

t ě λqs ď E r|Xt|s .

Proof. Have
sup
sďt

|Xs| “ sup
sPttuYpQ`Xr0,tsq

|Xs|

and use the beginning of the proof of theorem 6.1.

Theorem 6.4 (Optional stopping theorem for cadlag UI martingales). Let X be a
cadlag UI martingale, then for all S ď T stopping times

E rXT |FSs “ XS a.s.

Proof. Let Tn “ 2´ns2nT s and Sn “ 2´nr2nSs. Both are stopping times and Tn Ó T , Sn Ó S as
n Ñ 8. need to show: for A P FS , then E rXT ¨ 1pAqs “ E rXS ¨ 1pAqs. Indeed, XTn

Ñ XT and
XSn

Ñ XS a.s. as n Ñ 8 (X is right continuous).

Now, by the discrete optional stopping theorem applied to the martingale pXk¨2´nqkPN with
respect to the filtration pFK¨2´nqkPN, XTn

“ E rX8|FTn
s, so XTn

is UI (since Tn take values in
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2´n¨N). Thus, XTn
Ñ XT in L1, and the same holds forXSn

Ñ XS using the exact same argument.
By the discrete optional stopping theorem, we have that E rXTn

|FSn
s “ XSn

a.s. Now for A P FS ,
we have that A P FSn

for all n P N since Sn ě S. So E rXTn
¨ 1pAqs “ E rXSn

¨ 1pAqs.

Lecture 13
Theorem 6.5 (Kolmogorov’s continuity criterion). Let Dn “ tK ¨ 2´n : 0 ď k ď 2nu

and D “
ď

ně0

Dn. Let pXtqtPD be a stochastic process taking real values. Suppose there exists

some ϵ ą 0 p ą 0, such that

E r|Xt ´Xs|ps ď c ¨ |t´ s|1`ϵ, for all s, t P D

where c is a positive constant. Then for all α P p0, ϵ{pq, the process is α´Hölder continuous,
that is there exists a random variable Kα ă 8 such that

|Xt ´Xs| ď Kα ¨ |t´ s|α, for all s, t P D.

Proof.

P
`

|Xk¨2´n ´XpK`1q¨2´n | ě 2´nα
˘ Markov + assumption

ď c ¨ 2´nαp ¨ 2´np1`ϵq.

Thus,

P
ˆ

max
0ďkď2n

|Xk¨2´n ´XpK`1q¨2´n | ě 2´nα

˙

union bound
ď c ¨ 2nαpnϵ, α P p0,

ϵ

p
q.

By Borel-Cantelli,
max

0ďkď2n
|Xk¨2´n ´XpK`1q¨2´n | ď 2´nα

for all n P N sufficiently large. Thus,

sup
ně0

max
0ďkď2n

|Xk¨2´n ´XpK`1q¨2´n |

2´nα
ď 2´nα ď Mpωq ă 8

a.s. For some random variable M .

Need to show: there exists some M 1 such that |Xt ´Xs| ď M 1 ¨ |t´ s|α for all s, t P D.

Let s ă t, s, t P D and let r be the unique integer such that 2´pr`1q ă t´ s ď 2´r. Then there
exists some k P N such that s ă k ¨ 2´pr`1q ă t. Now, observe that t´ α ď 2´r so

t´ α “

8
ÿ

j“r`1

xj
2j
, xj P t0, 1u

and

α ´ s “

8
ÿ

j“r`1

yj
2j
, yj P t0, 1u.

Observe that rs, tq is a disjoint union of dyadic intervals each of them having length 2´n with
n ě r ` 1 and each interval of length will appear at most twice. Thus, we get the bound

|Xt ´Xs| ď

d,n is the endpoint of a dyadic interval in the decomposition of rs,tq of length 2´n

hkkkkkkkkkkikkkkkkkkkkj

ÿ

d,n

|Xd ´Xd`2´n |
loooooooomoooooooon

ď2´nα¨M

ď 2 ¨M ¨

8
ÿ

n“r`1

2´nα “
2M ¨ 2´pr`1qα

1 ´ 2´α
ă

2M

1 ´ 2´α
|t´ s|α.
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7 Weak Convergence

We fix pM, dq a metric space endowed with its Borel sigma algebra.

Definition 7.1. Let pµnqnPN be a sequence of probability measures on M. We say pµnqnPN
converges weakly to µ and write µn ùñ µ as n Ñ 8 if

µnpfq :“

ż

M
fpxqµnpdxq

nÑ8
ÝÑ

ż

M
fpxqµpdxq :“ µpfq

for any f continuous and bounded.

Examples:

1. Let xn Ñ x as n Ñ 8 in pM, dq then δxn

nÑ8
ÝÑ δx ,since δxn

pfq “ fpxnq
nÑ8
ÝÑ fpxq “

δxpfq.

2. Let M “ r0, 1s, with the Euclidean metric and its Borel sigma algebra. Let µn “
1
n

ÿ

0ďkďn

δk{n. Then µn converges weakly to the Lebesgue measure. Indeed, µnpfq “

1
nfpk{nq

nÑ8
ÝÑ

ş

fpxqdx, being Riemann sums.

3. µn “ δ 1
n

ùñ δ0, as n Ñ 8. Notice however that for A “ p0, 1q, µnpAq “ for all n ě 0

and so νnpAq��Ñδ0pAq “ 0.

Theorem 7.1. Let pµnqnPN be a sequence of probability measures on pM, dq. Then the
following are equivalent:

1. µn ùñ µ.

2. For all G open, lim inf
n

µnpGq ě µpGq.

3. For all A closed, lim sup
n

µnpAq ď µpAq.

4. For all A with µpBAq “ 0, then µnpAq Ñ µpAq.

Proof. 1 ùñ 2: Let G be open with Gc ‰ H. Let M ą 0 and set fM pxq “ 1pMdpx,Gcqq ď 1px P

Gq. Observe that fM pxq Ò 1px P Gq as M Ñ 8, fM is bounded and continuous for all M . So
µnpfM q Ñ µpfM q as n Ñ 8 for all M . Thus,

lim inf
n

µnpGq ě lim inf
n

µnpfM q “ µpfM q
monotone convergence

Ñ µpGq.

2 ùñ 3: follows from the previous case by taking complements. 2, 3 ùñ 4: 0 “ µpBAq “

µpAz intAq, hence µpAq “ µpAq “ µpintAq. 2 : lim inf
n

µp

ż

Aq ě µpintAq “ µpAq. 3 : lim sup
n

µnpAq ď

µpAq “ µpAq.
4 ùñ 1: Need to show for any f continuous and bounded, µnpfq Ñ µpfq. We can assume

further that f ě 0. Fix K ą sup f . Have,

ż

M
fpxqµnpdxq “

ż

M

˜

ż K

0

1pt ď fpxqqdt

¸

µnpdxq

Fubini
“

şK

0
µnpf ě tqdt.

It suffices to show µnpf ě tq Ñ µpf ě tq as n Ñ 8. Since then we can conclude using dominated
convergence. Thus it suffices to show that µpBtf ě tuq “ 0. Indeed,

Btf ě tu Ă tf “ tu.
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since f is continuous and tf ą tu is open and Ă
ş

tf ě tu. Also observe that there exists an at
most countable number of t such that µpf “ tq ą 0. Thus,

tt : µpf “ tq ą 0u “
ď

n

tt : µptf “ tuq ě
1

n
u

loooooooooooomoooooooooooon

#ďn

.

Thus, Btf ě tu is countable and has Lebesgue measure zero.

Now, let M “ R. Let µ be a probability measure on R. We define the distribution function of
µ to be the function Fµ : x ÞÑ µpp´8, xsq, FµR Ñ r0, 1s.

Proposition 7.1. Let pµnqnPN. be a sequence of probability measures on R. Then the
following are equivalent:

µn ùñ µ, as n Ñ 8.Fµn
pxq

nÑ8
ÝÑ Fµpxq for all x P R continuity points of Fµ.

1. Proof. 1 ùñ 2: Let x be a continuity point of Fµ. Have Fµn
pxq “ µnpp´8, xsq and

µpBp´8, xsq “ µptxuq

“ µpp´8, xsq ´ limnÑ8 µpp´8, x´ 1
n sq

“ Fµpxq ´ limnÑ8 Fµpd´ 1
n q “ 0

since x is a continuity point of Fµ.

2 ùñ 1: Let G be an open set in R. Then G “
ď

n

pak, bkq, a union of disjoint open intervals.

Now,

lim inf
n

µnpGq “ lim inf
n

ÿ

k

µnpak, bkq

Fat
ě

ÿ

k

lim inf
n

µnpak, bkq.

“ `d

So it suffices to show that lim inf
n

µnpa, bq ě µpa, bq for all a ă b P R.

Indeed, We have µnppa, bqq “ Fµn
pb´q´Fµn

paq and since Fµ is non-decreasing and has at most

countably many discontinuities, there exist a1, b1 continuity points of Fµ. Hence, Fµn
pa1q

nÑ8
ÝÑ

Fµpa1q and Fµn
pb1q

nÑ8
ÝÑ Fµpb1q. This means that

lim inf
n

µnppa, bqq ě Fµpb1q ´ Fµpa1q.

By the density of continuity points, there exist pb1
mqmPN, such that b1

m Ò b1 and pa1
mqmPN, a

1
m Ó a1

all continuity points. Thus,

lim inf
n

µnppa, bqq ě sup
n
Fµn

pb1
mq ´ Fµpa1

mq

“ Fµpb´q ´ Fµpaq “ µppa, bqq.

Definition 7.2. Let pXnqnPN be a sequence of random variables taking values in pM, dq,
defined on probability spaces pΩn,Fn,Pnq. We say that pXnqnPN converges weakly (or in
distribution) to a random variable X defined on pΩ,F ,Pq if LpXnq ùñ LpXq (i.e. the laws
converge weakly).

Remark. Equivalently, Xn
w{d
ùñ X if for all F continuous and bounded, EPn

rfpXnqs Ñ EP rfpXqs,
as n Ñ 8.
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Proposition 7.2. 1. If Xn
P

ùñ X as n Ñ 8, then Xn
d

ùñ X as n Ñ 8.

2. If Xn
d

ùñ c, c a constant, then Xn
P

ùñ c

Examples: (CLT)

Let pXnqnPN be iid and E rX1s “ m and σ2 “ VarpX1q. Then with Sn “

n
ÿ

i“1

Xi

Sn ´ n ¨m
?
nσ2

d
ÝÑ N p0, 1q

as n Ñ 8.

Definition 7.3 (Tightness). Let pM, dq be a metric space. A sequence of probability mea-
sures pµnqnPN on M is called tight if for all ϵ ą 0, there exists a compact set K Ď M such
that

sup
ně0

µpMzKq ď ϵ.

Remark. It M is compact, then all sequences of probability measures are tight.

Theorem 7.2 (Prohorov). Let pµnqnPN be a tight sequence of probability measures, then
there exists a subsequence pµnk

qkPN and a probability measure µ such that

µnk

d
ùñ µ, as k Ñ 8.

Proof. We focus on the case M “ R. Let Q “ tx1, x2, ¨ ¨ ¨ u be an enumeration of Q and Fn “ Fµn
.

Then, the sequence pFnpx1qqnPN in r0, 1s has a convergent subsequence F
n

p1q

k

px1q
kÑ8
ÝÑ F px1q by

compactness. So does pF
n

p1q

k

px2qqkPN. Thus, continuing so inductively, we obtain for all i P N that

there exist sequences pn
piq
k qkPN such that

F
n

piq

k

pxjq
kÑ8
ÝÑ F pxjq, for all 1 ď j ď i.

Thus, we can extract a diagonal sequence pmkqkPN, where mk “ n
pkq

k for all k P N and Have

Fmk
pxq

kÑ8
ÝÑ F pxq, for all x P Q.

Observe now that the functions Fmk
are non-decreasing, and so F is non-decreasing, so for x P R

define F pxq “ limqÓx,qPQ F pqq. Thus, F is right continuous, non-decreasing and so F has left-limits.

Let x P R be a continuity point of F . We need to show that Fmk
pxq

kÑ8
ÝÑ F pxq. Indeed, for

any ϵ ą 0, there exist s1 ă x ă s2, si P Q such that F psiq ´ F pxq| ă ϵ{2 (since F is continuous at
x). We now have the chain of inequalities

F pxq ´ ϵ ď F ps1q ´
ϵ

2
ď Fmk

ps1q ď Fmk
pxq ď Fmk

ps2
conv. in Q

ď F ps2q `
ϵ

2
ď F pxq ` ϵ

for all k P N sufficiently large.

Finally, it remains to show that there exists some probability measure µ such that F “ Fµ.
Indeed, by tightness, we have that for all ϵ ą 0, there exists N P R large enough so that (with ˘N
being continuity points of F )

sup
ně0

µnpr´N,N scq ď ϵ.

Thus, F p´Nq ď ϵ and 1 ´ F pNq ď ϵ. This guarantees that

lim
xÑ´8

F pxq “ 0, lim
xÑ8

F pxq “ 1.
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Finally, define define µppa, bsq “ F pbq ´F paq. Then, µ can be extended to the Borel sigma algebra
by Calathea dory’s extension theorem.

Definition 7.4. Let X be a random variables with values in Rd. The characteristic function
of X is defined as

ϕXpuq “ E
”

eixu,Xy
ı

, u P Rd.

Properties of ϕX :

1. ϕX is continuous on Rd and ϕXp0q “ 1.

2. ϕX completely determines the law of X, that is if ϕXpuq “ ϕY puq for all u P Rd, then
LpXq “ LpY q.

Lecture 15
Theorem 7.3 (Lévy’s convergence theorem). Let pXnqnPN, X be random variables taking
values in Rd. Then

1. LpXnq ùñ LpXq as k Ñ 8, then ϕXnpuq
nÑ8
ÝÑ ϕXpuq for all u P Rd.

2. Suppose there exists ψ : Rd Ñ C such that ψp0q “ 1, ψ is continuous at zero and

ϕXn
puq

nÑ8
ÝÑ ψpuq for all u P Rd. Then there exists a random variable X with charac-

teristic function ψ “ ϕX and LpXnq ùñ LpXq.

Before we proceed with the proof of the theorem, we state a Lemma

Lemma 7.1. Let X be a random variable in Rd. Then, for all K ą 0,

Pp∥X∥8q ď C ¨

ˆ

K

2

˙d ż

r´ 1
K , 1

K sd
p1 ´ ϕXpuqqdu,

where C “ p1 ´ sinp1qq´1.

Proof. Fix λ ą 0 and let µ “ LpXq. Then,

ż

r´λ,λsd
ϕXpuqdu “

ż

r´λ,λsd

˜

ż

Rd

d
ź

j“1

eiuj ¨xjµpdxq

¸

du

Fubini
“

ż

Rd

µpdxq

d
ź

j“1

˜

ż

r´λ,λs

eiuj ¨xj duj

¸

“

ż

Rd

µpdxq

d
ź

j“1

ˆ

eixjλ ´ e´ixjλ

ixj

˙

“

ż

Rd

d
ź

j“1

2 ¨ sinpλxjq

xj
µpdxq

“ p2λqd
ż

Rd

d
ź

j“1

ˆ

2 ¨ sinpλxjq

λxj

˙

µpdxq.

Thus,
ż

r´λ,λsd
p1 ´ ϕXpuqq du “ p2λqd

ż

Rd

d
ź

j“1

ˆ

1 ´
2 ¨ sinpλxjq

λxj

˙

µpdxq

Now, let fpuq “

d
ź

j“1

ˆ

2 ¨ sinpujq

uj

˙

, f : Rd Ñ R.

Claim: not hard to see that if x ě 1, then
ˇ

ˇ

ˇ

sinpxq

x

ˇ

ˇ

ˇ
ď sinp1q. Hence, if ∥u∥8 ě 1, then |fpuq| ď

sinp1q. So 1p∥u∥8 ě 1q ď C ¨ p1 ´ fpuqq, where C “ p1 ´ sinp1qq´1. Hence,

Pp∥X∥8 ě kq ď C ¨ E
„

1 ´ f

ˆ

X

K

˙ȷ
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and by simple scaling, one can conclude for the general case.

Proof. (Theorem 7.3)

fpxq “ eixu,xy is continuous and bounded so by bounded convergence, have

ϕXn
puq “ E rfpXnqs Ñ E rfpXqs

as n Ñ 8.

1. First we prove that LpXnqqnPN is tight. By Lemma 7.1, have that

Pp∥Xn∥8q ď C ¨

ˆ

K

2

˙d ż

r´ 1
K , 1

K sd
p1 ´ ϕXn

puqqdu

and |1 ´ ϕXn
puq| ď 2 for all u P Rd, n P N. Thus, by dominated convergence,

ż

r´ 1
K , 1

K sd
p1 ´ ϕXn

puqqdu
nÑ8
ÝÑ

ż

r´ 1
K , 1

K sd
p1 ´ ψpuqqdu.

Since ψ is continuous at zero and ψp0q “ 1, taking K large enough we get

ż

r´ 1
K , 1

K sd
p1 ´ ψpuqqdu ă

ϵ

2dCd
p2K´1qd.

Thus, Pp∥Xn∥8 ě Kq ď ϵ for all n P N sufficiently large. Taking K possibly even larger, we
conclude that

sup
ně0

Pp∥X∥8 ě Kq ď ϵ,

hence showing that pLnqnPN is tight. By Pro horror, there exists a subsequence pnkqkPN such
that

LpXnk
q

nÑ8
ùñ LpXq

and so ϕXnk
puq Ñ ϕXpuq for all u P Rd. Thus, ψ ” ϕ.

Suppose for a contradiction that LXn
does not converge. Then there exists f continuous and

bounded and a subsequence mk such that

|Emk
rfpXmk

qs ´ E rfpXqs| ě ϵ

for all k Q N. Now, since pLpXmk
qqkPN is tight, there exist a subsequence, without relabelling,

such that pLpXmk
qq converges weakly, a contradiction. Thus, the limit must also be X.

Now, we briefly embark on a discussion of the theory of large deviations.

8 Large deviations

Let X1, X2, ¨ ¨ ¨ be iid „ N p0, 1q random variables. Let pSn “ 1
n

n
ÿ

i“1

Xi „ N p0, 1{nq. Let δ ą 0,

we by the weak law of large numbers that

1.
Pp|Ŝn| ě δq

nÑ8
ÝÑ 0.

2.

Pp
?
n|Ŝn| P

interval

A q
CLT
ÝÑ

ż

A

1
?
2π
e´ x2

2 dx.
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3.

Pp|Ŝn| ě δq “ 1 ´

ż δ
?
n

´δ
?
n

1
?
2π
e´ x2

2 dx.

In other words,
logPp|Ŝn| ě δq

n
nÑ8
ÝÑ ´

δ

2
.

Observe that Ŝn, the “typical “ value is of the order 1?
n
and it can take relatively large values

pě δ ą 0q with very small probability ẽ´ δ2n
2 . Furthermore, 1, 2 are universal but 3 depends on the

distribution. We shall focus on quantifying 3 for an appropriate class of random variables.

Let X1, X2, ¨ ¨ ¨ be an iid family of random variables, such that E rX1s “ x, Sn “ X1 ` X2 `

¨ ¨ ¨ `Xn. Let a P R. Now

PpSn`m ě apn`mqq
independence

ě PpSn ě anq ¨ PpSměam
q.

Now, with bn “ ´ logPpSn ě anq for all n P N, have that bn`m ď bn ` bm. This is called
sub-additive sequence. Actually, for such sequences one has

lim
nÑ8

bn
n

“ inf
n

bn
n
.

Sub-additive sequences

To quickly see this, suppose first that inf
n

bn
n

ą ´8. Fix any ϵ ą 0, then there exists some

m P N such that bm
m ă inf

n

bn
n

` ϵ. Hence, for any k ě m, we have by Euclidean division that

there exists some q P Z` and r P r0,mq X N such that k “ qm ` r. Thus, the sub-additivity
of pbnqnPN implies that

bk
k “

bqm`r

qm`r ď
q¨bm`br
qm`r

ď
���* 1

qm
qm`r infn

bn
n

`
��������:0
ϵ ¨mq `

br
qm` r

as k Ñ 8. The case where inf
n

bn
n

“ ´8 can be dealt with similarly.

So, we have that

´
1

n
logPpSn ě anq

nÑ8
ÝÑ Ipaq.

Also,

PpSn ě anq
λą0
“ PpeλSn ě eλanq

Markov
ď E

“

eλSn
‰

¨ e´nλa “ E
“

eλX1
‰

¨ e´λan.

Define Mpλq “ E
“

eλ¨X1
‰

, ψpλq “ logMpλq, λ P R. In other words, we have

PpSn ě anq ď expp´npλa´ ψpλqqq.

Furthermore, let ψ˚paq “ sup
λě0

pλa ´ ψpλqq ě 0. So PpSn ě anq ď expp´nψ˚paqq and so have

obtained
´ logPpSněanq

n
ě ψ˚paq.

Lecture 16
Theorem 8.1 (Cramer’s Theorem). LetX1, X2, ¨ ¨ ¨ be an iid sequence of random variables

with E rX1s “ x. Let Sn “

n
ÿ

i“1

Xi. Then,

´
1

n
logPpSn ě anq

nÑ8
ÝÑ ψ ˚ paq
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for all a ě x where ψ˚paq “ sup
λě0

pλalpha ´ psipλqq, ψpλq “ logE
“

eλ¨X1
‰

(ψ˚ is known as the

Legendre transform).

We collect some basic facts about the function Mpλq “ E
“

eλX1
‰

, λ P R.

Lemma 8.1. The functionsM and ψ are continuous on D “ t:Mpλq ă 8u and differentiable

in intD with M 1pλq “ E rX1¨eλX1 s and ψ1pλq “
M 1

pλq

λ , λ P D.

Proof. Continuity: Fix a sequence λn
nÑ8
ÝÑ λ P D. Then, pointwise, eλnX1

nÑ8
ÝÑ eλX1 and take

n P N such that for all n ě N , eλnX1 ď eλNX1 ` eλX1 P L1 (which holds by since λN ď λn ď λ for

n possible larger). Thus, can conclude by dominated convergence that ψpnq
nÑ8
ÝÑ ψpλq.

Differentiability: Fix η P intD. We can now bound

ˇ

ˇ

ˇ

Mpη`ϵq´Mpηq

ϵ

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
E
”

epη`ϵq¨X1´eη¨X1

ϵ

ıˇ

ˇ

ˇ

ď eη¨X1
ˇ

ˇ

eϵ1´1
ϵ

ˇ

ˇ .

Now, let δ ą 0 sufficiently small such that pη ´ δ, η ` δq Ď intD. Now, for all ϵ P p´δ, δq

ˇ

ˇ

ˇ

ˇ

e1 ´ 1

ϵ

ˇ

ˇ

ˇ

ˇ

comparing power series
ď

eδ|X1| ´ 1

δ
.

So
ˇ

ˇ

ˇ

ˇ

epη`ϵqX1 ´ eηX1

ϵ

ˇ

ˇ

ˇ

ˇ

ď eηX1 ¨
eδ|X1| ´ 1

δ
.

Now, since eηX1 ¨ eδ|X1| ď eηX1 ¨ peδX1 ` e´δX1q P L1 since η P intD and we can thus conclude by
dominated convergence.

Proof. (Theorem 8.1) From the previously derived Chernoff bound, we have

lim
nÑ8

´
1

n
logPpSn ě anq ě ψ˚paq.

It suffices to show now that

lim
nÑ8

´
1

n
logPpSn ě anq ď ψ˚paq, for all a ě x.

Observe that we can replace each Xi by X̃i “ Xi ´ a and define S̃n “

n
ÿ

i“1

X̃i and

M̃pλq “ E
”

eλX̃
ı

“ e´aλMpλq, where ψ̃pλq “ ψpλq ´ aλ, λ P R.

Thus we can restate the original inequality as follows

lim
nÑ8

´
1

n
logPpSn ě anq “ lim

nÑ8
´
1

n
logPpS̃n ě 0q ď ψ̃˚p0q

where ψ̃˚pλq “ sup
λě0

p´ψ̃pλqq. Thus, without loss of generality, it suffices to show that

lim
nÑ8

´
1

n
logPpSn ě 0q ě inf

λě0
ψpλq,

when x ď 0.

For the remainder of the proof, we let µ “ LpXq and break the proof into several cases.

Case 1: Mpλq ă 8 for all λ P R.
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Define a new measure µθ for all θ ě 0, absolutely continuous with respect to µ and radon-
Nikodym derivative

dµθ

dµ
“

eθX1

Mpθq
.

We compute

Eθ rfpX1qs “

ż

R

eθxfpxq

Mpθq
µpdxq.

Now, if X1, ¨ ¨ ¨ , Xn are iid „ µ. Then

Eθ rF pX1, ¨ ¨ ¨ , Xnqs “

ż

F pX1, ¨ ¨ ¨ , Xnq

n
ź

i“1

eθxi

Mpθq
µpdxiq.

Set gpθq “ Eθ rX1s “
ş

x eθx

Mpθq
dµ “

M 1
pθq

Mpθq
“ ψ1pθq.

Seek: θ such that gpθq “ ψ1pθq “ 0.

If PpX1 ą 0q “ 0, then PpSn ě 0q “ pPpX1 “ 0qqn by independence. Thus,

1

n
logPpSn ě 0q “ PpX1 “ 0q

and
inf
λě0

ď lim
λÑ8

ψpλq “ lim
λÑ8

E
“

eλX1
‰ DCT

“ lim
λÑ8

E
“

eλX11pX1 “ 0q
‰

“ PpX1 “ 0q.

We can now focus on the case where PpX1 ą 0q ą 0. Now, there exists an N P N such that
PpX1 ą 1

N q ą 0. We deduce that

lim
θÑ8

ψpθq “ lim
θÑ8

E
“

eθX1
‰

ě lim
θÑ8

E
„

e
θ
N 1

ˆ

X1 ą
1

N

˙ȷ

“ 8.

Thus, there exists some η ě 0 such that inf
λě0

ψpλq “ ψpηq and ψ1pηq “ 0. Now,

PpSn ě 0q ě PpSn P r0, ϵnsq ě E
“

eηSn´ηϵn1pSn P r0, ϵnsq
‰

“ e´ηϵnpMpηqqn ¨ PηpSn P r0, ϵnsq

where PηpX1 P ¨q “ µηp¨q. Now, since Eη rX1s “ 0, we claim that we can use the CLT on iid copies
of X1 with law µη to deduce

PpSn P r0, ϵnsq
nÑ8
ÝÑ

1

2
.

Proof of claim
This is a little messy, be warned! Fix any ϵ1 ą 0. We have by the triangle inequality

ˇ

ˇ

ˇ

ˇ

PηpSn P r0, ϵnsq ´
1

2

ˇ

ˇ

ˇ

ˇ

ď |PηpSn P r0, ϵnsq ´ PηpSn P r0,8qq| `

ˇ

ˇ

ˇ

ˇ

PηpSn P r0,8qq ´
1

2

ˇ

ˇ

ˇ

ˇ

.

for all n P N. Now, by the CLT and Theorem 7.1 we have that

PpSn P r0,8qq
nÑ8
ÝÑ

1

2
.

Thus, for all n sufficiently large, we have that |PpSn P r0,8qq ´ 1{2| ă ϵ1{3. Furthermore,
there exists some N P N such that PpN P pϵ

?
N,8qq ă ϵ1{3 where N denotes a standard
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normal random variable. Thus, for all n P N sufficiently large

ˇ

ˇPηpSn P r0, ϵnsq ´ 1
2

ˇ

ˇ ď ϵ1

3 `

ˇ

ˇ

ˇ
Pηp Sn?

n
P pϵ

?
n,8qq

ˇ

ˇ

ˇ
ď ϵ1

3 `

ˇ

ˇ

ˇ
Pηp Sn?

n
P pϵ

?
n,8qq

ˇ

ˇ

ˇ

ď ϵ1

3 `

ˇ

ˇ

ˇ
Pηp Sn?

n
P pϵ

?
N,8qq

ˇ

ˇ

ˇ
ď ϵ1

3 ` PpN P pϵ
?
N,8qq

`

ˇ

ˇ

ˇ
Pηp Sn?

n
P pϵ

?
N,8qq ´ Pηp N?

n
P pϵ

?
N,8qq

ˇ

ˇ

ˇ

ď ϵ1

3 ` ϵ1

3 `

��������������������:
(CLT) ď ϵ1

3

ˇ

ˇ

ˇ
Pηp Sn?

n
P pϵ

?
N,8qq ´ Pηp N?

n
P pϵ

?
N,8qq

ˇ

ˇ

ˇ

ď ϵ1

as required.

Thus,
logPpSn ě 0q

n
ě ´ηϵ` logMpηq `

logPηpSn P r0, ϵnsq

n
.

Now, for all ϵ ą 0,

lim inf
n

1

n
logPpSn ě 0q ě logMpηq ´ ηϵ “ ψpηq ě inf

λě0
ψpλq.

Sending ϵ Ñ 0 gives the desired inequality.

General Case:

Without loss of generality, (arguing as in the previous case), let K ą 0 sufficiently large so that

µpr0,Ksq ą 0. Then define the conditional laws ν “ LpX1||X1| ď Kq, νn “ L

˜

Sn

ˇ

ˇ

ˇ

n
č

i“1

t|Xi| ď Ku

¸

.

Have
µnpr0,8q ě νnpr0,8qq ¨ pµpr´K,Ksqqn

and

logµnpr0,8qq ě
log νnpr0,8q

n
` µpr´K,Ksq.

Let ψKpλq “ log

ż K

´K

eλx dµpxq. Then, log

ż 8

´8

eλx dνpxq “ ψKpλq ´ logµpr´K,Ksq. So,

exists again by sub-additivity
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

lim
nÑ8

1

n
logµnpr0,8qqs

first step
ě inf

λě0

ˆ

log

ż 8

´8

eλx dνpxq

˙

`logµpr´K,Ksq “ inf
λě0

ψKpλq :“ JK ą ´8.

Now, as observe that ψK is a non-decreasing family of continuous functions. Hence, the pJkqkPN are
non-decreasing and so one has Jk Ò J ą ´8 K Ñ 8. Furthermore, the sets tλ : ψKpλq ď Ju are
compact by the continuity of the ψKand the fact that µpr0,Ksq ą 0 implies lim

λÑ8
ψKpλq “ 8, as

well as nested. Thus, there exists some λ0 P
č

k

tλ : ψKpλq ď Ju. hence, ψpλ0q “ lim
kÑ8

ψKpλq ď J

by monotone convergence. So,

lim
nÑ8

1

n
logµnpr0,8qq ě J ě ψpλ0q ě inf

λě0
ψpλq

as required.
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9 Brownian Motion

Lecture 17 Definition 9.1. A process pBtqtPR`
is called a Brownian motion in Rd, d ě 1 starting from

x P Rd if pBtqtě0 is a continuous process and

1. B0 “ x a.s.

2. For all s ă t, Bt ´Bs „ N p0, pt´ sq ¨ Iddq.

3. pBtqtě0 has independent increments independent of B0.

If x “ 0 we call it a standard Brownian motion. Observe that i .determine uniquely its law.

Examples:
Let pBtqtě0 be a standard Brownian motion in R, U „ r0, 1s uniformly distributed and
independent from pBtqtě0 and define

B̃t “

"

Bt, t ‰ U
0, t “ U

Then B̃ is a.s. discontinuous, so even though B, B̃ have the same finite dimensional distribu-
tions, B̃ is not a Brownian motion.

Theorem 9.1 (Wiener). There exists a Brownian motion on some probability space.

Proof. (Lévy and Kolmogorov)

1. We shall proceed to construct a BM on r0, 1s in d “ 1. Let D0 “ t0, 1u, Dn “ tk ¨ 2´n : 0 ď

k ď 2nu for n P N and D “
ď

ně0

Dn.

We will now construct pBd, d
1inDq inductively. First for D0. Let pZd, d P Dq be an iid se-

quence „ N p0, 1q on some probability space pΩ,F ,Pq. Set b0 “ 0, B1 “ Z1 (clearly satisfies
properties in 9.1). Suppose now we have constructed pBd, d P Dn´1q satisfying properties
2&3. We need to construct pBd, d P Dnq.

For d P DnzDn´1, have d˘ “ d˘ 2´n P Dn´1. Now, set

Bd “

#

Bd´`Bd`

2 `
Zd

2
n`1
2

, d P DnzDn´1

Bd, d P Dn´1.

We now show that our candidate process pBdqdPDn
has independent increments. Indeed, we

have that for d P DnzDn´1,

Bd ´Bd´ “
Bd`´Bd´

2 `
Zd

2
n`1
2

Bd` ´Bd “
Bd`´Bd´

2 ´
Zd

2
n`1
2

are independent. To see this, note that by induction we have that
Bd`´Bd´

2 „ N p0, d`´d´
4 q

and the same holds for Zd

2
n`1
2

. Thus, d ´ Bd´, Bd` ´ Bd are two mean-zero uncorrelated

Gaussians, hence they are independent.

Now for any two disjoint intervals of length 2´n, the corresponding increments of the process
pBdqdPDn

are independent since one can express every increment as half the increment of the
previous scale plus an independent Gaussian and apply the induction step.

Thus, we have been able to construct pBd, d P Dq satisfying the conditions 2&3. Furthermore,
by Gaussianity we have

E r|Bd ´Bq|ps “ |d´ q|
p
2 ¨ E r|N |ps ,
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where N „ N p0, 1q. Since for all p ą 0 E r|N |ps ă 8. By Kolmogorov’s continuity criterion,
for all α P p0, ϵ

p q with ϵ “
p
2 ´ 1 pBd, d P Dq is a.s. α´Hölder continuous for all α ă 1

2 .

We now extend to the whole of r0, 1s by setting Bt “ lim
iÑ8

Bdi , d P D, di Ñ t, i Ñ 8. It

is immediate that pBt,tPr0,1sq is a.s. α´ Hölder continuous for all α ă 1
2 . Now it remains to

check conditions 2&3 are satisfied.

Let 0 “ t0ďt1ď¨¨¨ďtnď1. Then, we claim the increments pBti ´ Bti´1qi“1,¨¨¨ ,k are independent
Gaussian with pBti ´Bti´1q „ N p0, ti ´ ti´1q for all 1 ď i ď k. Indeed, let

0 ď tn0 ď tn1 ď ¨ ¨ ¨ ď tnk ď 1
Ó Ó ¨ ¨ ¨ Ó

0 ď t0 ď t1 ď ¨ ¨ ¨ ď tk ď 1

be dyadic rationals. By continuity, we have a.s. Btnj
´ Btnj´1

nÑ8
ÝÑ Btj ´ Btj´1 for all j ď k.

Thus, by bounded convergence,

E

«

exp

˜

i
k
ÿ

j“1

ujp

independent, normal
hkkkkkkikkkkkkj

Btnj
´Btnj´1

q

¸ff

“

k
ź

j“1

exp

˜

´u2j ptnj ´ tnj´1q

2

¸

nÑ8
ÝÑ

k
ź

j“1

exp

˜

´u2j ptj ´ tj´1q

2

¸

” ϕpuq.

By Lévy’s convergence theorem, since ϕ : Rk Ñ R is the characteristic function of independent
Gaussians „ N p0, tj ´ tj´1q and since the characteristic functions of the increments and
the independent Gaussians agree, this forces the law of pBtj ´ Btj´1qjďk to be that of k
independent N p0, tj ´ tj´1q gaussians. Hence, pBt, t P r0, 1sq satisfies all the properties.

2. Extending the construction to all of R. Let pBi
t, t P r0, 1sq be independent brownian motions

and define

Bt “ B
ttu
t´ttu `

ttu´1
ÿ

i“0

Bi
t, t ě 0.

It is not hard to see that the conditions in 9.1 are satisfied.

3. Now for d ą 1, let pB1
t qtě0, pB

1
t qtě0, ¨ ¨ ¨ , pBd

t qtě0 be independent one dimensional Brownian
motions. Set pBtqtě0 “ pBt, ¨ ¨ ¨ , Bdtqtě0 and it is easy to check that the conditions are met.

Theorem 9.2. Let B be a standard Brownian motion in Rd. Then

1. If U is an orthogonal matrix, then UB “ pUBtqtě0 is also a standard Brownian motion.
Hence so is ´B.

2. (Scale invariance:) Let λ ą 0 be given. Then
´

Bλt?
λ

¯

tě0
is also a standard brownian

motion.

3. (Simple Markov property:) For all c ě 0, pBt`s ´ Bsqtě0 is also a standard Brownian
motion and is independent of FB

s , where FB
s “ σpBu : u ď sq.

Proof. Easy to check that it follows from the definition of Brownian motion.

Lecture 18

9.1 Properties of Brownian Motion
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Theorem 9.3 (Time inversion). Let B be a standard Brownian motion in d “ 1. Let

Xt “

"

tB 1
t
, t ą 0

0, t “ 0.

Then pXtqtě0 is a standard brownian motion.

Proof. Fix tt, ¨ ¨ ¨ , tk ą 0. Then pBt1 , ¨ ¨ ¨ , Btkq is Gaussian random vector with zero mean and
CovpBs,Bt

“ s ^ t. Need to check that pXt1 , ¨ ¨ ¨ , Xtkq is Gaussian and with the same covariance
as above. By inspection, we se thtah this vecto is clearly Gaussian with zero mean. Now for the
covariance, we compute

CovpXti , Xtj q “ CovptiBti , tjBtj q “ titjCovpBti , Btj q “ titj

ˆ

1

ti
^

1

tj

˙

“ ti ^ tj .

Now it remains to show that X is continous. Indeed, for positive t, X is clearly continuous. Now,
we also claim that limtÓ0Xt “ 0 a.s. Observe that

pXt, t P Q`q
d
“ pBt, t P Q`q

and so

P
ˆ

lim
tÓ0,tPQ`

Xt “ 0

˙

“ P

¨

˝

č

NPN

ď

rPQ`

č

qPQ`,qăr

"

|Xq| ď
1

N

*

˛

‚

“ P

¨

˝

č

NPN

ď

rPQ`

č

qPQ`,qăr

"

|Bq| ď
1

N

*

˛

‚“ P
ˆ

lim
tÓ0,tPQ`

Bt “ 0

˙

“ 1.

Finally, since Q` is dense in R` and X is continuous for t ą 0, we have that

lim
tÓ0

Xt “ lim
tÓ0,tPQ`

Xt “ 0, a.s.

Corollary 9.3.1. Let B be a standard brownian motion in d “ 1. Then,

Bt

t
tÑ8
ÝÑ 0, a.s.

Proof. By theorem 9.3, we have that with X defined therein,

lim
tÑ8

Bt

t
“ lim

tÑ8
X

ˆ

1

t

˙

“ 0

by the continuity of X at zero.

Definition 9.2. For s ě 0, let F`
s “

č

tąs

FB
t “ σpBu : u ď tq. Have FB

s Ď F`
s .

Remark. From the simple Markov property, we have that

pBt`s ´Bsqtě0 K FB
s .

In fact we have more, that is

Theorem 9.4. For all s ě 0,
pBt`s ´Bsqtě0 K F`

s .
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Proof. It suffices to show that if t1, ¨ ¨ ¨ , tkP R` and F is a continuous and bounded, function on
pRdqk and if A Ă F`

s then

E rF pBt1`s ´Bs, ¨ ¨ ¨ , Btk`s ´Bsq ¨ 1pAqs “ E rF pBt1`s ´Bs, ¨ ¨ ¨ , Btk`s ´Bsqs ¨ PpAq.

Since, for any open set, U Ă pRdqk, one can approximate Fm Ò 1pUq from below by bounded
continuous functions Fmpxq “ fmpdistpx, U cqq, x P pRdqk where f : R Ñ R is the continuous,
bounded function

fprq “

"

1, r ě ϵ
1
ϵ r, r ă ϵ.

for r P R and apply monotone convergence. Then one just has to observe that the collection of open
sets generates the borel sigma algebra on pRdqk and apply the uniqueness of extension theorem.

Now, let sn Ó s be a strictly decreasing sequence. Then, by continuity, have Btisn ´ Bsn
nÑ8
ÝÑ

Bti`s ´Bs a.s. for all i ď k. Thus, we have

E rF pBt1`s ´Bs, ¨ ¨ ¨ , Btk`s ´Bsq ¨ 1pAqs
DCT
“ E rF pBt1`sn ´Bs, ¨ ¨ ¨ , Btk`sn ´Bsnq ¨ 1pAqs

and observe that A P F`
s implies A P FB

sn for all n P N. Thus, we can conclude by the simple
Markov Property and another application of Dominated convergence.

Corollary 9.4.1 (Blumenthal’s 0-1 Law). The sigma algebra F`
0 is trivial, i.e. if A P F`

0 ,
then PpAq P t0, 1u.

Proof. Take A P F`
0 Ď σpBt : t ě 0q. But, bu the above, we have σpBt : t ě 0q K F`

0 and so
A K A which gives

PpAq “ PpAXAq “ PpAq ¨ PpAq.

Theorem 9.5. Let B be a standard Brownian motion in d “ 1. Define τ “ inftt ą 0 : Bt ą 0
and σ “ inftt ą 0 : Bt “ 0u. Then Ppτ “ 0q “ Ppσ “ 0q “ 1.

Proof. For all n P N, have that tτ “ 0u “
č

kěn

tϵ P p0, 1{kq s.t. Bϵ ą 0u
looooooooooooooomooooooooooooooon

FB
1
n

and so have tτ “ 0u P F`
0

which means that Ppτ “ 0q P t0, 1u. Now, Ppτ ď tq ě PpBt ą 0q “ 1
2 for all t ą. So,

tpτ “ 0q “ tÓ0Ppτ ď tq ě
1

2

which gives that Ppτ “ 0q “ 1. By symmetry (´B is a std BM) we also have that

inftt ą 0 : Bt ă 0u “ 0, a.s.

Since B is continuous, by the intermediate value theorem we get thath σ “ 0 a.s.

Proposition 9.1. Let B be a standard brownian motion in d “ 1. For all t ě 0, set St “

sup
sďt

Bs and It “ inf
sďt

Bs. Then,

1. For all ϵ ą 0, have Sϵ ą 0 and Iϵ ă 0 a.s. In other words, in every interval p0, ϵq there
exists a zero of BM.

2. sup
tě0

Bt “ `8 and inf
tě0

Bt “ ´8 a.s.
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Proof. 1. Let tn Ó t as n Ñ 8. Then we have

tBtn i.o u Ď tSϵ ą 0u.

It is not hard to see that tBtn i.o u P F`
0 . Thus applyinf Fatou’s lemma we deduce

PpBtn i.o. q “ Pplim sup
n

tBtn ě 0uq

Fatou
ě lim sup

n
PptBtn ě 0uq “

1

2

Thus, PpBtn i.o. q “ 1 and so PpSϵ ą 0q “ 1. By symmetry, (´B is a std BM) we conclude
that PpIϵ ă 0q “ 1.

2. Have for all λ ą 0 that

S8 “ sup
tě0

Bt “ sup
tě0

Bλt
d
“

?
λ sup

tě0

Bλt
?
λ
.

So S8
d
“ αS8 for all α ą 0. We also know now thath S8. Hence it can only be the case that

S8 “ `8 a.s. One can show that inf
tě0

Bt “ ´8 a.s.

Proposition 9.2. Let B be a standard Brownian motion and let C be a cone with origin at
zero and non-empty interior, that is C “ ttu : t ą 0, u P Au with A Ď S1(= unit sphere in
Rd). Set HC “ inftt ą 0 : Bt P Cu. Then, PpHC “ 0q “ 1.

Proof. Observe that tHC “ 0u P F`
0 and PpBt P Cq “ PpB1 P Cq by scale invariance of Brownian

motion and C. Since int C ‰ H, PpB1 P Cq ą 0. Thus, PpHC ď tq ě PpBt P Cq ą 0.Taking t Ó 0
and applying Blumenthal concludes the argument.

Figure 4: Illustration of cone in proposition 9.2
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Lecture 19
Theorem 9.6 (Strong Markov Property). Let B be a standard Brownian motion and let
T be an a.s. finite stopping time. Then, pBt`T ´BT qtě0 is a standard Brownian motion and

pBt`T ´BT qtě0 K F`
T .

Proof. Let Tn “ 2´nr2nT s, Tn Ó T , n Ñ 8. For k P N, let B
pkq

t “ Bt`k¨2´n ´ Bk¨2´n and

B
pnq
˚ ptq “ Bt`Tn

´BTn
. Will show thath B˚ is a Brownian motion independent of F`

Tn
.

Clearly, B
pnq
˚ is continuous. Now, let A be any event and fix E P F`

Tn
. Then, we compute

PpB˚ P A,Eq “

8
ÿ

k“0

Pp

PF`

k¨2´n
hkkkkkkikkkkkkj

Tn “ k ¨ 2´n,

KF`

k¨2´n
hkkikkj

Bpkq P A,Eq

“

8
ÿ

k“0

PpTn “ k ¨ 2´n, Eq ¨ PpBpkq P Aq

“ PpB P Aq ¨ PpEq.

He have thus shown that B˚
d
“ B and K F`

Tn
. Now, observe that

Bs`t`T ´Bs` T
loooooooooomoooooooooon

N p0,tq

“ lim
nÑ8

pBs`t`Tn
´Bs`Tn

loooooooooomoooooooooon

N p0,tq

q.

So, pBt`T ´BT qtě0 is a standard BM.

It remains to show that pBt`T ´BT qtě0 K F`
T . Indeed, fix t1, ¨ ¨ ¨ , tk ą 0 and let F : pRdqk :Ñ R

be a continuous and bounded function. Fix A P F`
T and compute

E rF pBtt`T ´BT , ¨ ¨ ¨ , Btk`T ´BT q ¨ 1pAqs
DCT
“ lim

nÑ8
E rF pBtt`Tn ´BTn , ¨ ¨ ¨ , Btk`Tn ´BTnq ¨ 1pAqs .

Since A P F`
T , A P F`

Tn
for all n P N. Finally, using that B

pnq
˚ K F`

Tn
concludes the proof.

Theorem 9.7 (Reflection principle). Let B be a standard Brownian motion in d “ 1 and
T an a.s. finite stopping time. Define

B̃t “

"

Bt, 0 ď t ď T
2BT ´Bt, t ą T

Then B̃ is a standard Brownian motion.

Figure 5: Illustration of reflection of B at time T .

Proof. We have by the Strong Markov Property that BpT q “ pBt`T ´BT qtě0 is a standard Brow-
nian Motion independent of F`

T . Let C′ “ C0pr0,8q : Rq denote the space of continuous functions
on the positive reals that vanish at zero, endowed with the topology of local uniform convergence
and A the induced Borel sigma algebra.
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Metrisability of topology of local uniform convergence
Recall from Topology that this topology is induced by the metric

d : C0pr0,8q : Rq ˆ C0pr0,8q : Rq Ñ R`

pf, gq ÞÑ dpf, gq :“
8
ÿ

n“1

1

2n

sup
xPr0,ns

|fpxq ´ gpxq|

1 ` sup
xPr0,ns

|fpxq ´ gpxq|

We also have the useful fact that

Characterisation of A
We have, see Kallenberg’s book on the ‘Foundations of Modern Probability‘ for instance, that

A “ σptπt : t ě 0uq

where for t ě 0, πt : C0 Ñ R denotes the projection onto the t coordinate.

Now define the function

ψ : pC0 ˆ r0,8q ˆ C0,A b Bpr0,8qq b Aq Ñ pC0,Aq

pX,T, Y q ÞÑ ψT pX,Y qptq
:“ Xptq ¨ 1pr0, T sqptq ` pXptq ` Y pt´ T qq1pT,8q.

is a continuous map in the product topology, therefore measurable. To see that ψ is continuous,

Continuity of ψ
Fix pX,T, Y q P C0 ˆ r0,8q ˆ C0. Due to the metrisability of the underlying topologies, it

suffices to show that for any sequence pXn, Tn, YnqnPN Ď C0 ˆr0,8qˆC0 such that Xn
d

ÝÑ X,

Yn
d

ÝÑ Y and Tn Ñ T as n Ñ 8, ψpXn, Tn, Ynq
d

ÝÑ ψpX,T, Y q.

Now, fix ϵ ą 0, an arbitrary compact set K Ď R` and let t P K be arbitrary. We estimate

|ψpXn, Tn, Ynqptq ´ ψpX,T, Y qptq|

ď |pXptq ´XpT qq ¨ 1pt ď T q ´ pXnptq ´XnpTnqq ¨ 1pt ď Tnq| `
���������: 0

|XpT q ´XnpTnq|

`|Y pt´ T q ¨ 1ppTn ^ T, Tn _ T sq| ` |Y pt´ T q ´ Ynpt´ Tnq|

ď |pXptq ´XpT qq ¨ 1ppTn ^ T, Tn _ T sq| `
�������: 0

∥X ´Xn∥8,K `
���������: 0

|XpT q ´XnpTnq|

`|Y pt´ T q ¨ 1ppTn ^ T, Tn _ T sq| `

�����������: 0

|Y pt´ T q ´ Ynpt´ Tnq|

ď |pXptq ´XpT qq ¨ 1ppTn ^ T, Tn _ T sq| ` |Y pt´ T q ¨ 1ppTn ^ T, Tn _ T sq| ` ϵ

(where we make the set harmlessly Y pt´T q “ 0 for t ď T ) for n P N large enough independent
of t P K, since the crossed-out terms converge to zero uniformly in t P K due to local uniform
convergence and uniform contuinity on compact sets. The fact that Y pt´T q and Xptq´XpT q

vanish at T and that Tn Ñ T , n Ñ 8 enables us to bound for n sufficiently large independent
of t:

|ψpXn, Tn, Ynqptq ´ ψpX,T, Y qptq| ď sup
tPpTn^T,Tn_T s

`

|pXptq ´XpT q| ` |Y pt´ T q|
˘

` ϵ ď 2ϵ

and conclude the argument.

Also observe that
ψppBt^T qtě0, T, B

pT qq “ B

ψppBt^T qtě0, T,´B
pT qq “ B̃
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By observing that BpT q is independent of the stopped process pBt^T qtě0, we have that

ppBtqtě0q, T, pBT
t qtě0q

d
“ ppBtqtě0q, T,´pBT

t qtě0q

and so it follows that B
d
“ B̃.

Corollary 9.7.1. For t ě 0, let St “ sup
sďt

Bs and fix b ą 0 and a ď b. Then

PpSt ě b, Bt ď Bt ď aq “ PpBt ě 2b´ aq.

Proof. Fix x ą 0 and define Tx “ inftt ě 0 : Bt “ xu. Since S8 ă 8 a.s., it follows that Tx ă 8

a.s. and BTx
“ x. Observe that tSt ě bu “ tTb ď tu. Now we compute,

PpSt ě b, Bt,ď aq “ Pp

on Tbďt,B̃t“2b´Bt
hkkkkkkkikkkkkkkj

Tb ď t, Bt ď a q

“ PpB̃t ě 2b´ a, Tb ď tq “ Pp

B̃tě2b´a ùñ Tbďt
hkkkkkkikkkkkkj

B̃t ě 2b´ a q

“ PpBt ě 2b´ aq.

Corollary 9.7.2. St
d
“ |Bt|.

Proof.

PpSt ě aq “ Pp

“PpBtěaq
hkkkkkkkikkkkkkkj

St ě a,Bt ą aq `

“PpBtě2b´aq by the reflection principle
hkkkkkkkkkkikkkkkkkkkkj

PpSt ě a,Bt ď aq

“ 2PpBt ě aq

“ Pp|Bt| ě aq.

Corollary 9.7.3. Fix x ą 0 and let Tx “ inftt ě 0 : Bt “ xu. Then

Tx
d
“

ˆ

x

B1

˙2

.

9.2 Martingales for Brownian motion

Theorem 9.8. Let pBtqtě0 be a standard Brownian motion in d “ 1. Then

1. pBtqtě0 is a martingale with respect to the filtration pF`
t qtě0

2. pB2
t ´ tqtě0 is a martingale with respect to the filtration pF`

t qtě0.

Proof. Fix s ď t. Compute

E
“

Bt|F`
s

‰

“ E
“

KF`
s

hkkkikkkj

Bt ´Bs `Bs|F`
s

‰

“ Bs, a.s.

and

E
“

pB2
t ´ tq|F`

s

‰

“ E
“

pBt ´Bsq2|F`
s

‰

` 2
����������:0

E
“

pBt ´BsqBs|F`
s

‰

` E
“

B2
s |F`

s

‰

´ t “ B2
s ´ s, a.s.
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Corollary 9.8.1. Let B be a standard Brownian motion in d “ 1 and suppose x, y ą 0. Then

PpT´x ă Tyq “
y

x` y

and
E rT´x ^ Tys “ x ¨ y

with T¨ defined as in corollary 9.7.3.

Proposition 9.3. Let B be a standard Brownian motion in Rd. Set

Mt “ exp

ˆ

xu,Bty ´
|u|2t

2

˙

is an F`
t martingale for all u P Rd.

Proof. Fix u P Rd. Integrability and adaptedness are clear. Now, for the martingale property, we
have

E rMt|F`
s s “ E rexppxu,Bt ´Bsy ´ xu,Bsyq|F`

s s ¨ e´
|u|2t

2

“ exppxu,Bsyq ¨ exp
´

|u|
2

pt´sq

2

¯

¨ e´
|u|2t

2 “ Ms

Lecture 20
Theorem 9.9. Let fpt, xq : R` ˆ Rd Ñ R be continuously differentiable in t and twice
continuously differentiable in x. Assume f and all its derivatives are bounded. Then the
process

Mt “ fpt, Btq ´ fp0, B0q ´

ż t

0

ˆ

B

Br
`

1

2
∆

˙

fpr,Brqdr

is an F`
t ´martingale.

Proof. By the boundedness assumption, M is integrable and is clearly adapted. Now it remains
to show the martingale property, that is for all t, z ě 0 E rMt`s ´Ms|F`

s s “ 0. We have

Mt`s ´Ms “ fpt` s,Bt`sq ´ fps,Bsq ´

ż t`s

s

ˆ

B

Br
`

1

2
∆

˙

fpr,Brqdr

“ fpt` s,Bt`sq ´ fps,Bsq ´

ż t

0

ˆ

B

Br
`

1

2
∆

˙

fpr ` s,Br`sqdr.

Now, taking conditional expectations, we have

E rMt`s ´Ms|F`
s s “ ´fps,Bsq ` E rfpt` s,Bt`s ´Bs `Bsq|F`

s s

´E
„
ż t

0

ˆ

B

Br
`

1

2
∆

˙

fpr ` s,Br`s ´Bs `Bsqdr|F`
s

ȷ

pBr`s´Bsqrě0KF`
s

“ ´fps,Bsq ´

ż

Rd

ˆ
ż t

0

ˆ

B

Br
`

1

2
∆

˙

fpr ` s, x`Bsqdr

˙

prp0, xqdx

`

ż

Rd

fpt` s, x`Bsqptp0, xqdx

where ptp0, xq “ 1
?
2πt

d exp
´

´|x|
2

2t

¯

for x P Rd, t ą 0. Note that pt satisfies the heat equation:

Bpt
Bt

“
1

2
∆pt.

Using dominated convergence, we have that
ż

Rd

ˆ
ż t

0

ˆ

B

Br
`

1

2
∆

˙

fpr ` s, x`Bsqdr

˙

prp0, xqdx

“ lim
ϵÓ0

ż

Rd

ˆ
ż t

ϵ

ˆ

B

Br
`

1

2
∆

˙

fpr ` s, x`Bsqdr

˙

prp0, xqdx.
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On pϵ, tq, we have enough regularity to integrate by parts and s theorem to obtain
ż

Rd

ˆ
ż t

0

ˆ

B

Br
`

1

2
∆

˙

fpr ` s, x`Bsqdr

˙

prp0, xqdx

“ lim
ϵÓ0

ż

Rd

ˆ
ż t

ϵ

ˆ

B

Br
`

1

2
∆

˙

fpr ` s, x`Bsqdr

˙

prp0, xqdx.

“

ż

Rd

fpt` s, x`Bsqptp0, xqdx´ lim
ϵÓ0

ż

Rd

fpϵ` s, x`Bsqpϵp0, xqdx

` lim
ϵÓ0

ż

Rd

¨

˚

˚

˝

ż t

ϵ

¨

˚

˚

˝

�����������:0pPDEq

´
Bprp0, xq

Br
`

1

2
∆prp0,xq

˛

‹

‹

‚

fpr ` s, x`Bsqdr

˛

‹

‹

‚

dx

“ E rfpt` s,Bt`sqs ´ lim
ϵÓ0

E
“

fpϵ` s,Bϵ`sq|F`
s

‰

DCT
“ E

ż

Rd

fpt` s, x`Bsqptp0, xqdx´ fps,Bsq.

Combining all of the above together yields the desired equality E rMT`s ´Ms|F`
s s “ 0 a.s.

9.3 Transience and recurrence

Recall that if B is Brownian motion B0 “ 0 then it is called a standard Brownian motion. More
generally, if B0 “ x then call its law Px and note that pBt´x, t ě 0q is a standard Brownian motion.

Theorem 9.10. Let B be a standard Brownian motion in Rd.

1. If d “ 1, then B is point-recurrent, i.e. for all x, z tt ě 0 : Bt “ xu is unbounded Pz´a.s.

2. If d “ 2, then B is neighbourhood recurrent, that is for all ϵ ą 0 and x, z P Rd the set
of times tt ě 0 : |Bt ´ z| ď ϵu is unbounded Px´a.s. However, it does not hit points
that is PxpDt ě 0 : Bt “ zq “ 0.

3. If d “ 3, B is transient, that is |Bt| Ñ 8, as t Ñ 8 Px ´ a.s.

Proof. 1. d “ 1: we have almost surely that lim sup
tÑ8

Bt “ 8, lim inf
tÑ8

Bt “ ´8 which gives the

result.

2. d “ 2: by translation, it suffices to consider z “ 0. Fix radii ϵ ă |x| ă R. Let Tr “ inftt ě

0 : |Bt| “ ru for r ą 0. We want to compute PxpTϵ ă TRq. Let H “ Tϵ ^ TR, an a.s. finite
stopping time. Let ϕ : R2 Ñ R be given by ϕpyq “ log |y| on the annulus ϵ ă |y| ă R and
extended outside that region in a fashion so that ϕ P C2

b pR2q. Then, ∆ϕ “ 0 in the annulus.
By theorem 9.9, the process

Mt “ ϕpBtq ´ ϕpB0q ´

ż t

0

1

2
∆ϕpBsqds

is a continuous pF`
t qtě0´martingale. An argument

similar to that in Theorem 4.63 gives E rMn^H s “ 0
for all n P N, in other words, E rlogp|Bn^H |qs “ log |x|.
Taking n Ò 8 and applying DCT gives E rlogp|BH |qs “

log |x|. In other words, expressed in terms of the stop-
ping times Tϵ, TR, this leads to

xϵ

R

0

PxpTϵ ă TRq “
logR ´ log |x|

logR ´ log ϵ
. (˚)

Now, taking R Ñ 8, TR Ñ 8 a.s. and so PxpTϵ ă 8q “ 1. We now compute

Pxp|Bt| ď ϵ for some t ą nq “ Pxp|Bt`n ´Bn `Bn| ď ϵ for some t ą 0q

“

ż

R
P0p|Bt ` y| ď ϵ for some t ą 0qpnpx,yq dy “ 1.

3Approximate n^H from above by the sequence pTmqmPN “ p2´mr2mn^HsqmPN, use the discrete OST on the
UI martingale pMd^Tm qdPDm of bdd stopping times and pass to the limit as m Ñ 8 using DCT.
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Hence, tt ě 0 : |Bt| ď ϵu is unbounded Px´a.s. Now, in (*), letting ϵ Ñ 0, Pxp hit 0 before Rq “

0. Let R Ñ 8 we finally obtain PxpDt ą 0 : Bt “ 0q “ 0 for all x ‰ 0.

Lecture 21 It remains to show now that P0pBt “ 0 for some t ą 0q=0. Indeed, let a ą 0, and observe
that

P0pBt`a “ 0 for some t ą 0q “ P0p

KF`
a

hkkkkkikkkkkj

Bt`a ´Ba `Ba “ 0 for some t ą 0q

“

ż

R2

P0p

std BM
hkkkkkikkkkkj

Bt`a ´Ba `y “ 0 for some t ą 0qpapyqdy

“

ż

R2

PypBt “ 0 for some t ą 0qpapyqdy “ 0

since PypDt ą 0 : Bt “ 0q “ 0 for all y ‰ 0. So taking the limit as a Ó 0, we get

P0pBt “ 0 for some t ą 0q “ lim
aÓ0

P0pBt “ 0 for some t ą aq “ 0.

3. We now show that B is transient for d ě 3, that is |Bt| Ñ 8, as t Ñ 8. To this end, it
clearly suffices to prove transience for d “ 3.

As in the case d “ 2, start by fixing radii ϵ ă |x| ă R.
Let Tr “ inftt ě 0 : |Bt| “ ru for r ą 0. Let H “ Tϵ ^

TR, an a.s. finite stopping time. Let ϕ : R2 Ñ R be

given by ϕpyq “

´

1
|y|

¯2´d

on the annulus ϵ ă |y| ă R

and extended outside that region in a fashion so that
ϕ P C2

b pR2q. Then, ∆ϕ “ 0 in the annulus.

xϵ

R

0

By theorem 9.9, the process

Mt “ ϕpBtq ´ ϕpB0q ´

ż t

0

1

2
∆ϕpBsqds

is a continuous pF`
t qtě0´martingale. Arguing in the same way as above, we obtain

E
„

´

1
|BH |

¯2´d
ȷ

“

´

1
|x|

¯2´d

. In other words, expressed in terms of the stopping times Tϵ, TR,

this leads to

PxpTϵ ă TRq “

`

1
R

˘2´d
´

´

1
|x|

¯2´d

`

1
ϵ

˘2´d
´
`

1
R

˘2´d
. (˚˚)

Now, taking R Ñ 8, TR Ñ 8 a.s. and so PxpTϵ ă 8q “

´

ϵ
|x|

¯2´d

.

For n P N, let An “ t|Bt| ą n for all t ě Tn3u, Tn3

being almost surely finite for all n P N. To prove
|Bt| Ñ 8 a.s. as t Ñ 8, it suffices to show that the
An happen eventually a.s. (recall d “ 3). We now
compute

P0pAc
nq “ P0p|Bt| ď nq for some t ě Tn3q

SMP
“ E0

”

PBT3
n

p|Bt| ď nq for some t ě 0q

ı

“ 1
n2

so
8
ÿ

n“1

PpAc
nq ă 8 and so we conclude that An occurs

eventually in n P N a.s. thereby showing transience.

n

n3

0
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9.4 Dirichlet Problem

Definition 9.3 (Poincaré conce condition). D Ď Rd is called a domain if it is open, non-
empty and connected. We say that D satisfies the Poincaré cone condition at x P BD if there
exists a non-empty open cone C with origin at x and r ą 0 such that C XBpx, rq Ď Dc.

Figure 6: Illustration of Poincaré cone condition for a domain D Ď Rd.

Theorem 9.11 (Dirichlet problem). let D be a bounded domain in Rd such that every
boundary point of D satisfies the Poincaré cone condition, (see figure 6). Let ϕ be continuous
on BD and let B be a Brownian motion, τBD “ inf

ttě0:BtPBDu
. Then the function

upxq “ Ex rϕpBτBD
qs , x P D

is the unique continuous function satisfying the boundary value problem

"

∆u “ 0, in D
u “ ϕ, on BD.

Before we proceed with the proof we recall some facts from the theory of PDEs.

Theorem 9.12. Let D Ď Rd be a domain and u : D Ñ R be measurable and locally bounded.
Then the following are equivalent:

1. u is twice continuously differentiable and ∆u “ 0.

2. For all balls Bpx, rq Ď D,

upxq “
1

LpBpx, rqq

ż

Bpx,rq

upyqdy.

3. For all balls Bpx, rq Ď D,

upxq “
1

σx,rpBpx, rqq

ż

BBpx,rq

upyqdσx,ry

where σx,r denotes the surface area measure of BBpx, rq.

Definition 9.4 (Harmonic). if u satisfies any of the above, we call u harmonic in D.

48



Advanced Probability Pantelis Tassopoulos

Theorem 9.13 (Maximum principle). Let u : Rd :Ñ R be harmonic in D. Then

1. If u attains its maximum in D, then u is constant in D.

2. If u is continuous in D and D is bounded, then 1maxxPDupxq “ max
xPBD

upxq.

Proof. 1. Let M be the maximum, let V “ tx P Dupxq “ Mu, then by assumption such that
the ball Bpx, r Ď D. Then, by the mean value property

M “ upxq “
1

LpBpx, rqq

ż

Bpx,rq

upyqdy ď M.

Hence, upyq “ M for almost all y P Bpx, rq. By the continuity of u, we have equality
everywhere in Bpx, , rq. Thus, Bpx, rq Ď V and so V is now open, closed and also non-empty.
Since, D is connected, we deduce that V “ D.

2. u is continuous in D and D is bounded implies that u attains a maximum in D. By 1,
max
D

u “ max
BD

u.

Corollary 9.13.1. If u1, u2 : Rd are harmonic in D, with D bounded and u1, u2 agree on
BD, then u1 “ u2 in D.

Proof. Have
max
D

pu1 ´ u2q “ max
BD

pu1 ´ u2q “ 0

by the maximum principle. Thus, u1 ď u2 for all x P D and similarly we obtain u2 ď u1 in D.
Thus, we obtain u1 ” u2 in D.

Lecture 22

Proof. (Theorem 9.11) With
upxq “ Ex rϕpBτBD

qs , on D

to show that u is twice continuously differentiable and harmonic, Theorem 9.12 it suffices to show
that it satisfies the mean value property.

Now, we have that τ “

displaystyle inftt ě 0 : Bt P px, δqu ă 8 a.s. and by the tower property

upxq “ Ex rϕpBτBD
qs “ E

“

Ex

“

ϕpBτBd
q|F`

τ

‰‰

Now, define the function

F : R` ˆ C0pr0,8qq Ñ R
pz, fq ÞÑ F pz, fq :“ inftt ě 0 : z ` fptq P Dcu

which is measurable with respect to BpR`q b A, where A is the Borel sigma algebra induced by
the topology of local uniform convergence, as in the proof of Theorem 9.7. Observe now that
τBBD

“ τ ` F pBτ , pBτ`t ´ Bτ qtě0q. a.s. By the strong Markov property, pBτ`t ´ Bτ qtě0 K F`
τ

and so we can conclude

upxq “ E
”

Ex

”

ϕpB
pτq

τ`F pBτ ,Bpτqq
`Bτ q|F`

τ

ıı

“ E
”

Ex

”

ϕpB
pτq

τ`F pBτ ,Bpτqq
`Bτ q|F`

τ

ıı

“ E
“

Ex

“

ϕpgpBτ , B
pτqq `Bτ q|F`

τ

‰‰

where g is the continuous, hence measurable function

F : R` ˆ C0pr0,8qq Ñ R
pz, fq ÞÑ gpz, fq :“ fpzq
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thus another application of the strong Markov property gives

upxq
SMP & indep.

“

the law of Bτ is invariant under rotations and by uniqueness is the spherical measure σpx,δq
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

Ex

»

—

–

ż

C0pr0,8qq

»

—

–

ϕpgpBτ , wq `Bτ q µpdwq
loomoon

µ denotes the Wiener measure of BM started at x

fi

ffi

fl

“ 1
σx,rpBpx,δqq

ż

BBpx,δq

ż

C0pr0,8qq

ϕpgpy, wq ` yqµpdwqdσx,δy

“ 1
σx,rpBpx,δqq

ż

BBpx,δq

Ey rϕpgpy,Bq ` yqsdσx,δy

“ 1
σx,rpBpx,δqq

ż

BBpx,δq

upyqdσx,δy

thus, showing that u is indeed harmonic. Uniqueness follows from the result 9.13.1 established
earlier.

It remains to show that u is continuous up to the boundary, BD. Let z P BD. Need to show
that u is continuous at z. Since ϕ is continuous on BD, we have that for all ϵ ą 0, there exists a
δ ą 0 such that if |y ´ z| ď δ, y P BD, |ϕpyq ´ ϕpzq| ă ϵ.

Figure 7: Illustration of situation near the boundary.

Let k P N to be determined and let x be such that |x´ z| ď 2´k ¨ δ, then we estimates

|upxq ´ upzq| ď |Ex rϕpBτBD
q ´ ϕpzqs|

ď Ex r|ϕpBτBD
q ´ ϕpzq|s

ď ϵ ¨ PxpτBD ă τBBpz,δqq ` 2 ∥ϕ∥8 ¨ PxpτBBpz,δ ă τBDq.

Now, By the Poincaré cone condition, let Cz be an open cone at z that lies in Dc sufficiently close
to z. Then

PxpτBBpz,δ ă τBDq ď PxpτBBpz,δ ă τBCz
q.

We claim that
sup

xPBp0, 12 q

PxpτBBp0,1q ă τCq ď α ă 1. (***)

where C is a translate of the cone Cz to the origin.

Proof of (***)
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To establish p˚ ˚ ˚q it suffices to show that
Brownian motion stays arbitrarily close to
straight bounded segment of lines (and in fact
to any continuous function) with positive prob-
ability, i.e.

pϵ,x,a :“ Pxp∥B ´ ℓx,a∥8,r0,1s
ď ϵq ą 0

ϵ ą 0, x P Rd and lines ℓx,a connecting points
x, a P Rd, i.e. ℓx,aptq “ tx ` p1 ´ tqa, t P r0, 1s

(see figure 9.4). To see this, the bound p˚ ˚ ˚q

essentially reduces to bounding uniformly
from zero the probability that a Brownian
path starting from a point x P Bp0, 1{2q stays
within some uniform in x amount ϵ ą 0 close
to a line of length ď 2 (figure 9.4).

By the geometry of the situation, an ϵ ą 0 exists, so that no matter where the BM starts
in Bp0, 1{2q, there is a direction it can stay within epsilon to for times t P r0, 1s that would
guarantee it never touches the boundary BBp0, 1q before the cone, in r0, 1s.

We proceed with several reduction steps. By translation, we can let without loss of generality
x “ 0 and consider only pϵ,a :“ pϵ,0,a for ϵ ą 0, a P Rd. Moreover, by containment of events
that pϵ,a is decreasing in ϵ ą 0 and less than one away from zero with pϵ,0 “ 1 for all ϵ ą 0.
By independence of the components of B and rotational symmetry, we have

P0p∥Bt ´ at∥8,r0,1s ď ϵq “

´

P0p∥B∥8,r0,1s ď ϵ
¯d´1

¨ P0

´∥∥B1
t ´ ∥a∥ ¨ t

∥∥
8,r0,1s

ď ϵ
¯

We now show that for fixed ϵ,ą 0 and |λ| bounded, one has a positive uniform lower bound
on the probabilities

P0p|Wt ´ λt| ď ϵq.

where W is a standard Brownian motion in one dimension. To show this it suffices to note
that from Lévy’s construction of Brownian motion, one constructs pWt, t P r0, 1sq as an a.s.
uniformly convergent power series (starting from the iid sequence pZdqdPD) as

Wt “

8
ÿ

n“1

Fnptq

where the Fn are independent, piecewise linear functions given by

Fnptq “

$

&

%

2´
n`1
2 Zt, t P DnzDn´1

0, t P Dn´1

linear between consecutive points in Dn.

for n ě 1 and define F0 by interpolating linearly between Z1 and zero in r0, 1s. Now, a
straightforward computation yields that for c ą 0, n P N sufficiently large independent of c,

Pp|Zd| ě c
?
nq ď exp

´

´ c2n
2

¯

. This in conjunction with the Borell-Cantelli lemma gives

PptDd P Dn, s.t. |Zd| ă c
?
nuq “ 0, for c ą

a

2 log 2.

Thus, using the continuity of P, there exists some M P N such that

P

˜

č

něM

t∥Zn∥8 ă c
?
n2´ n

2 u

¸

ą 0.

Additionally, observe that for the truncated series
řN

n“1 Fn corresponds to the piecewise
linear extension of the dyadic approximations to W in Theorem 9.1. Now, for |λ| bounded,
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M possibly even larger, by the independence of the Gaussians pZd, d P Dq it is not hard
to approximate λt on r0, 1s by the truncated series up to stage M ´ 1 and then use the
independence of the Fn and the above to obtain with a positive probability that the tail is
also uniformly close and the approximation at stage M ´ 1, hence proving there is a uniform
positive lower bound, thus proving p˚ ˚ ˚q.

In the final step, essentially we will iterate the bound p˚ ˚ ˚q on nested balls surrounding the
origin to get exponential decay in the corresponding version of p˚ ˚ ˚q. More precisely,

Exponential decay step
Let k P N. We want to bound

PxpτBBp0,1q Ď τCq, x P Bp0, 1{2kq.

Now, we have

PxpτBBp0,1q Ď τCq

“ Ex

“

1pτBBp0,1q ă τCq
‰

“ Ex

»

—

–

tτ
BBp0,2´kq

ăτCuĚτBBp0,1qăτCu
hkkkkkkkkkkkkikkkkkkkkkkkkj

1pτBBp0,2´pk´1qq ă τCq ¨E
”

1pτBBp0,1q ă τCq|F`
τ

BBp0,2´pk´1q

ı

fi

ffi

fl

SMP
“ Ex

„

1pτBBp0,2´pk´1qq ă τCq ¨ PBτ
BBp0,2´pk´1qq

pτBBp0,1q ă τCq

ȷ

ď PxpτBBp0,1q ă τCq ¨ sup
yPBp0,2´pk´1qq

PypτBBp0,1q ă τCq.

(A)
Now, for x P Bp0, 2´kq consider PxpτBBp0,2´pk´1qq ă τCq. By scale invariance of Brownian

motion and the cone, C we have with λ “ 2pk´1q,

PxpτBBp0,2´pk´1qq ă τCq

“ P0pinftt ě 0 :

std BM
hkkikkj

Wt P Bp0, 2´pk´1qqu ă pinftt ě 0 :Wt P Cuq

scale invariance
“ P0pinftt ě 0 : 1{λWλ2t P Bp0, 2´pk´1qqu ă pinftt ě 0 : {λWλ2t P Cuq

“ P0pinftt ě 0 :Wλ2t ` λx P Bp0, 1qu ă pinftt ě 0 :Wλ2t ` λx P Cuq

“ P0p1{λ2 inftλ2t ě 0 :Wλ2t ` λx P Bp0, 1qu ă 1{λ2 inftλ2t ě 0 :Wλ2t ` λx P Cuq

“ Pλxpinftt ě 0 : Bt P Bp0, 1qu ă inftt ě 0 : Bt P Cuq

“ PλxpτBBp0,1q ă τCq ď sup
|y|ď2´pk´1q

PypτBBp0,1q ă τCq.

Thus, inducting on k P N and using p˚ ˚ ˚q as the base case and pAq as the induction step we
deduce that

sup
xPBp0,2´kq

PxpτBBpz,δq ă τCz
q ď αk Ñ 0, k Ñ 8

which allows us to conclude the proof.

Example:
Let d “ 2 and let ϕ : BBp0, 1q Ñ R continuous. Let v : D Ñ R where D “ Bp0, 1qzt0u be
the unique solution to the Dirichlet problem on Bp0, 1q with boundary data ϕ. Augment ϕ
to BBp0, 1q X t0u and observe that

upxq “ Ex rϕpBτBD
qs
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is not a solution if vp0q ‰ ϕp0q since up0q “ ϕp0q “ vp0q because Brownian motion does not
hit points, as we proved in Theorem 9.10.

10 Donsker’s invariance principle

The main theorem of this section is Donsker’s inavriance principle, which states

Theorem 10.1 (Donsker’s invariance principle). Let X1, X2, ¨ ¨ ¨ be iid R´valued inte-
grable random variables with law µ, such that E rX1s “ 0, and variance σ2 P p0,8q. Set
S0 “ 0, SnX1 ` ¨ ¨ ¨ `Xn for n ě 1 and St “ p1 ´ ttuqSrts ` ttuSrts`1, where ttu “ t´ rts and
rts is the integer part of t ě 0. Now, define

S
rNs

t “
StN

?
σ2N

for 0 ď t ď 1. Then,
´

S
rNs

t , 0 ď t ď 1
¯

converges weakly to pBt, 0 ď 1 ď 1q, that is to a

standard Brownian motion. More explicitly, we have for all continuous (in the local uniform
topology) and bounded functionals F : Cpr0, 1s,Rq Ñ R

E
”

F pSrNsq

ı

NÑ8
ÝÑ E rF pBqs .

Before we prove it we need a supporting result, the so-called Skorokhod embedding.

Theorem 10.2 (Skorokhod embedding). Let µ be a probability measure with zero mean
and variance σ2 P p0,8q. Then, there exists a probability space pΩ,F ,Pq, a filtration pFtqtě0,
a Brownian motion pBtqtě0 and a sequence of stopping times 0 “ T0 ď T1 ď ¨ ¨ ¨ ď such that

1. The sequence defined by pSnqnPN “ pBTn
qnPN for n P N is a random walk with step

distribution µ.

2. The sequence pTnqnPN and steps of mean σ2.

Lecture 23

Proof. Define the Borel measures on Bpr0,8qq, for A P Bpr0,8qq

µ`pAq “ µpAX r0,8qq

µ´pAq “ µp´AX p´8, 0qq.

Let pΩ,F ,Pq be a probability space on which we define a standard Brownian motion pBtqtě0 and
the iid sequence pXn, YnqnPN with law νpdx, dyq “ C ¨ µ´pdxqµ`pdyq (independent from B) and
C ą 0 a normalising constant. We have

ż 8

0

ż 8

0

νpdx, y dyq “ 1 “ Cµpr0,8qq

ż 8

0

xµ´pdxq

`Cµpp´8, 0qq

ż 8

0

yµ`pdyq.

Since µ has mean zero, we also have that

ż 8

0

xµ´pdxq “ µpp´8, 0qq

ż 8

0

yµ`pdyq which gives

C

ż 8

0

xµ´pdxq “ Cµpp´8, 0qq

ż 8

0

yµ`pdyq “ 1.

Now, define the random sequence T0 “ 0, and for n ě 1

Tn`1 “ inftt ě Tn : Bt ´BTn
P t´Xn`1, Yn`1uu.

We claim that the pTnqnPN are stopping times with respect to the filtration Ft “ σpFB
t ,F0q for

t ě 0 where F0 “ σppXn, Ynq : n P Nq.
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pTnqnPN are stopping times
To see that the pTnqnPN are stopping times, we proceed by induction. Clearly T0 ” 0 is a
stopping time. Now, suppose for n P N that Tn is a stopping time. Now, Fox s ě 0 and
observe that since Tn`1 “ Tn ` η a.s. where η “ inftt ě 0 : BpTnq P t´Xn`1, Yn`1uu

tTn`1 ď su “

tTn`1ďtuĎtTnďtu
hkkkikkkj

tTn ď ru Xtη ď su.

Observe, that η is σpFB
Tn
,F0q´measurable. Hence, we have that tTn`1 ď su P σpFB

Tn
,F0q X

FB
s . Noting that we can express sigmapFB

Tn
,F0q “ σptA X B : A P FB

Tn
, B P F0uq Ď FB

s , we

conclude that tTn`1 ď su Ď FB
s for any s ě 0, hence proving the statement.

Now, define the measurable (wrt to the usual sigma algebras) function

τ : Cpr0,8qq ˆ R Ñ R
pf, xq ÞÑ inftt ě 0 : fptq “ xu

and conditioning on X1, Y1 we compute

PpBT1
“ Y1|X1,Y1

q “ E r1pτpB, Y q ă τpB,´Xqq|X1, Y1s

“ X1

X1`Y1

using the well-known Gambler’s ruin identity and the independence of B from pXn, YnqnPN. Simi-
larly, we also obtain E rT1|X1,Y1

s “ X1 ¨ Y1.

Now we determine the law of BT1
. Fix A P Bpr0,8qq and compute

PpBT1
P Aq “

ż

A

ż 8

0

x

x` y
Cpx` yqµ´pdxqµ`pdyq

“ µ`pAq “ µpAq.

Similarly, we have for A P Bpp´8, 0qq PpBT1
P Aq “ µpAq and

E rT1s “

ż 8

0

ż 8

0

x ¨ y ¨ Cpx` yqµ´pddqµ`pdyq “

ż 8

0

x2µ´pdxq `

ż 8

0

y2µ`pdyq “ σ2.

This tease with the case n “ 1, for the general case one proceeds inductively using the strong
Markov property, that is pBt`Tn

´BTn
qtě0 K FB

Tn
and essentially reduce the argument to what we

have already done.

We now return to Theorem 10.1.

Proof. (Theorem 10.1) Without loss of generality, let σ2 “ 1 (by scaling). Now, let B be a
Brownian motion and a sequence of stopping times pTnqnPN as in Skorokhod’s embedding theorem,
on a possibly enlarged probability space such that

pBTnqnPN
d
“ pSnqnPN.

Now, define B
pNq

t “
?
NB t

N
a standard Brownian motion by scale invariance. Let pT

pNq
n qnN

be stopping times corresponding to BpNq (again on a possibly enlarged probability space). Set

S
pNq
n “ B

pNq

T
pNq
n

for all n P N. Let S
pNq

t be the linear interpolation of pS
pNq
n qnPN. Observe that we

have
´

pS
pNq

t qtě0, pT
pNq
n qnPN

¯

d
“ ppStqtě0, pTnqnPNq .

Now, we need to show

E
”

F
´

pS
pNq

t qtď1

¯ı

NÑ8
ÝÑ E rF ppBtqtď1qs

for all continuous and bounded functionals F : Cpr0,8q Ñ R. It suffices to show that SpNq

converges uniformly in probability to B, that is

P
ˆ

sup
0ďď1

|S̃
pNq

t ´Bt| ą ϵ

˙

NÑ8
ÝÑ 0
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for all ϵ ą 0, by Dominated convergence.

Now, for n ď N ,

S̃
pNq

n{N “
SpNq

?
N

“
B

pNq

T pNq
?
N

“

?
NB

pNq

Tn{N
?
N

“ B
T̃

pNq
n

where T̃
pNq
n “

T pNq
n

N . By the Strong law of large numbers, we have that Tn

n

nÑ8
ÝÑ 1 a.s. (from Sko-

rokhod embedding, the Tn are a random walk with independent and identically distributed steps).
Thus,

1

N
¨ sup
nPN

|Tn ´ n|
nÑ8
ÝÑ 0, a.s.

Since S̃
pNq

n{N “ B
T̃

pNq
n

for all n ď N ´ 1,

we claim that for all n
N ď t ď n`1

N ,

there exists T̃
pNq
n ď u ď T̃

pNq

n`1 such that

S̃
pNq

t “ Bu. This follows from an ap-
plication of the Implicit Function The-
orem and using the continuity of B, S̃
and that S̃ is piecewise linear.

So now we have

A :“
!

|S̃
pNq

t ´Bt| ą ϵ for some t P r0, 1s

)

Ď

!

|T̃
pNq

n{N ´ n
N | ě δ for some n ě N

)

:“ A1
Ť
␣

|Bt ´Bn| ą ϵ for some t P r0, 1s and |u´ t| ď δ ` 1
N

(

:“ A2.

Hence we have the bound PpAq ď PpA1q ` PpA2q. Take N ě 1{δ and δ ą 0 sufficiently small so
that PpA2q ă ϵ{2 since Brownian motion is uniformly continuous on r0, 1s.

Lecture 24

11 Poisson random measures

Recall that X „ Popλq, λ ą 0 if PpX “ nq “ e´λ λn

n! for all n P N. If λ “ 0 set X ” 0 and if
λ “ 8, set X ” 8. Also recall the following basic facts about Poisson random variables.

Proposition 11.1 (Addition property). Let pNkqkPN be independent PoissonNk „ Popλkq,
λk ą 0 for all k P N. Then

8
ÿ

k“0

Nk „ Po

˜

8
ÿ

k“0

λk

¸

.

Proposition 11.2 (Splitting property). Let N „ Popλq, λ ą 0 and let pYnqnPN be an iid

sequence and independent of N with PpY1 “ jq “ pj , j “ 1 ¨ ¨ ¨ , k. Set Nj “

N
ÿ

n“1

1pYn “ jq.

Then N1, ¨ ¨ ¨ , Nk are independent and Nj „ Popλpjq.

Definition 11.1. Let pE, E , µq be a σ´finite measure space. A Poisson random measure
with intensity µ M is a random map M : Ω ˆ E Ñ Z Y t8u such that if pAkqkPN is a disjoint
collection in E , then

1. M

˜

ď

kPN
Ak

¸

“

8
ÿ

k“0

MpAkqpωq, for all ω P Ω

2. pMpAkqqkPN are independent random variables.
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3. For all k P N, MpAkq „ PopµpAkqq.

Let E˚ “ tZ` Y t8u ´ valued measures on pE, Equ. Now for A P E define the maps

X : E˚ ˆ E Ñ Z` Y t8u

XA : E˚ Ñ Z`t8u

pm,Aq ÞÑ XApmq :“ mpAq.

Furthermore, set E˚ “ σpXA : A P Eq. We now can state the following existence (and uniqueness)
theorem for Poisson random measures.

Theorem 11.1. There exists a unique probability measure µ˚ on pE˚, E˚q such that under
µ˚, X is a Poisson random measure of intensity µ.

Proof. Uniqueness: Let A1, ¨ ¨ ¨ , Ak be disjoint in E and n1, ¨ ¨ ¨ , nk P Z`. Set

A˚ “ tm P E˚ : mpA1q “ n1, ¨ ¨ ¨ ,mpAkq “ nku.

Let µ˚ be as in the statement. Then compute

µ˚pA˚q “

k
ź

j“1

e´µpAjq pµpAjqqnj

nj !
.

But, A˚ of the above form is a π´system that generates E˚, so µ˚ is uniquely determined.

Existence: First assume λ “ µpEq ă 8. Let N „ Popλq and pYnqnPN be an iid sequence
independent of N with law µ{µpEq. Set

MpAq “

N
ÿ

n“1

1pYn P Aq, A P E˚.

Let A1, ¨ ¨ ¨ , Ak be disjoint in E . Need to show that MpAiqiďk are independent „ PopµpAiqq

random variables. Consider Xn “ j whenever Yn P Aj . The pXnqnďN are iid and MpAjq “
N
ÿ

n“1

1pXn “ jq. By the splitting property 11.2, we get that MpA1, ¨ ¨ ¨ ,MpAkq are independent

and MpAjq „ Po
´

µpEq ¨
µpAjq

µpEq

¯

.

If µpEq “ 8, let pEkqkPN be a partition of E into sets with µpEkq ă 8 for all k P N. Then on
some probability space we can construct independent Poisson random measures Mk with intensity
µ|Ek

(on some suitable product space). Then for A P E , set

MpAq “

8
ÿ

k“0

„PopµpAXEkq
hkkkkkkikkkkkkj

MkpAX Ekq .

By the addition property 11.1, MpAq „ Po

˜

8
ÿ

k“0

µpAX Ekq “ µpAq

¸

. Independence follows since

the pMkqkPN are PRM.

We have now constructed Poisson random measures on some probability space pΩ,F ,Pq. Now
simply observe that µ˚ “ PM (the pushforward under of P under M) is the probability measure
on pE˚, E˚q.

Proposition 11.3. Let M be a Poisson random measure with intensity µ. Let A P E be
such that µpAq ă 8. Then MpAq „ PopµpAqq and conditional on MpAq “ k, then we can

express M “

k
ÿ

i“1

δXi , where pX1, ¨ ¨ ¨ , Xkq are independent and identically distributed, with
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law µp¨XAq

µpAq
. Moreover, is AXB “ H, µ|A is independent of µ|B .

We leave the following as an exercise: let E “ R` ,θ ą 0, µ “ θ ¨ 1pt ě 0qdt. Let M be a
PRM(µ), let T0 “ 0, pTn ´ Tn´1qně1 be iid „ Exppθq. Set

Nt “

8
ÿ

n“1

1pTn ď tq.

Then, pNt, t ě 0q
d
“ pMpr0, tsq, t ě 0q.

Theorem 11.2. Let M be a Poisson random measure with intensity µ. Let f P L1pµq and

define Mpfq “

ż

fpyqMpdyq. Then Mpfq P L1pµq and

E rMpfqs “

ż

fpyqMpdyq.

Fix f : E Ñ R` measurable. Then for all u ą 0,

E
”

e´uMpfq
ı

“ exp

ˆ
ż

E

pe´ufpyq ´ 1qµpdyq

˙

(Campbell’s formula)

Proof. The first part follows from a standard approximation by simple functions argument and
Dominated Convergence. Let pEnqnPN Ď E˚ be such that µpEnq ă 8. Have

E
“

e´yMpf ¨1pEnqq
‰

“

8
ÿ

k“0

E
”

e´uMpf ¨1pEnqq|MpEnq “ k
ı

¨e´µpEnq µpEnq
k

k! .

Now, given MpEnq “ k, M “

k
ÿ

i“1

δXi
with pX1, ¨ ¨ ¨ , Xkq independent and each „ µ|En

, hence

E
”

e´yMpf ¨1pEnqq
ı

“

8
ÿ

k“0

ˆ
ż

En

e´ufpxq µpdxq

µpEnq

˙k

¨ e´µpEnqµpEnqk

k!

by independence and conclude with monotone convergence.
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