
ar
X

iv
:2

20
8.

09
48

2v
1

 [
cs

.C
R

]
 1

3
A

ug
 2

02
2

A New Outlook on the Profitability of Rogue

Mining Strategies in the Bitcoin Network

Pantelis Tassopoulos1 and Yorgos Protonotarios2

1Department of Mathematics, Imperial College London
2Department of Mathematics, University College London

July 2022

1 Abstract

Many of the recent works on the profitability of rogue mining strategies hinge
on a parameter called gamma (γ) that measures the proportion of the honest
network attracted by the attacker to mine on top of his fork. These works,
see [GP18b] and [GP18a], have surmised conclusions based on premises that
erroneously treat γ to be constant. In this paper, we treat γ as a stochastic
process and attempt to find its distribution through a Markov analysis. We
begin by making strong assumptions on gamma’s behaviour and proceed to
translate them mathematically in order to apply them in a Markov setting. The
aforementioned is executed in two separate occasions for two different models.
Furthermore, we model the Bitcoin network and numerically derive a limiting
distribution whereby the relative accuracy of our models is tested through a
likelihood analysis. Finally, we conclude that even with control of 20% of the
total hashrate, honest mining is the strongly dominant strategy.

2 Introduction

In this section we aim to explain various fundamental concepts used in our re-
search below and how they are interrelated. To begin with, a description of
the three rogue mining strategies investigated in this paper is warranted. Fur-
thermore, the concept of a difficulty adjustment which is exploited in these
strategies is of paramount importance. To accompany the aforementioned, it is
also essential to explain the importance of gamma in these strategies.

Mining a block entails ”finding” the target cryptographic hash of the block.
The target hash is a hash that begins with a predetermined number of zeros. A
miner concatenates the version of the current Bitcoin software, the timestamp of

1

http://arxiv.org/abs/2208.09482v1

the block, the root of its’ transaction’s merkle tree, the difficulty target and the
nonce and inputs them in the SHA-256 hashing function to obtain an output.
The nonce is the only variable quantity out of these six elements. Hence, the
miner only varies the nonce and inputs it in the SHA-256 hashing function in
the hopes of obtaining the target hash. ”Obtaining the target hash” does not
mean having the identical hash being output from the SHA-256 algorithm; it
means obtaining a hash that has the same or more leading zeros. The difficulty
is defined as the number of leading zeros contained in the target hash. The
Bitcoin network demands a block be mined in 10 minutes and after 2016 blocks
the network evaluates whether these blocks have been approximately mined in
20,160 minutes. The difficulty adjustment primarily depends on the number of
miners or more precisely the hashing power of the sum of all miners. If the
totality of the miners have taken more time to do so than the network adjusts
the difficulty by reducing the number of leading zeros and if not the analogous
occurs.

In this paper we make use of three rogue strategies. These are: Selfish Mining
(SM), Least-Stubborn Mining (LSM) and Equal Fork Stubborn Mining (EFSM).
The two latter ones are slight modifications of the popular Selfish Mining attack.
SM is a strategy that targets the difficulty adjustment of the protocol by inval-
idating ”honest” blocks through broadcasting a chain of secretly mined blocks
which results in slowing down the network and hence the difficulty becomes
easier even though the hashing power has not changed. Henceforth, the revenue
of a miner per unit time increases. EFSM and LSM differentiate from SM only
in terms of the timing on when the secret chain is revealed as well as the fact
that the miner also has the choice to strategically reveal blocks instead of the
entire chain when it comes to EFSM and LSM. For a complete a description of
the strategies we refer the reader to [GP18b] and [GP18a].

The parameter γ appears when a fork between a rogue chain and an honest
chain occurs (see [Nay+16]). In such scenarios, there exists a fraction of honest
miners (in other words γ) that mine on top of the rogue chain. This parameter
is instrumental in the investigation of the optimality of rogue mining strategies;
thence, we investigate its behaviour in this paper.

3 Bitcoin Network

We are going to outline and motivate the construction of a Bitcoin network,
mirroring many aspects of the existing network. This will be used as a proxy to
test the relative fitness of our analytical Markov models for the distribution of γ.

Tools from graph theory will be used to construct a numerical model that will be
used to stochastically simulate the Bitcoin network using a series of increasing
times τ (see code excerpt 2), that represent the real times since the first instance
where two nodes ping the network and the response in terms of γ is recorded

2

and stored in an array. By sampling from such a sequence, of times, we obtain
a time series of values of γ, whence we compute the transition probabilities be-
tween optimal mining strategies in the Markov chain model for gamma, and as
a by product, we get its limiting distribution (see code excerpt 1).

The nodes in the network are meant to correspond to mining pools across the
world, each in a specific continent. The amount of nodes in each continent is
determined by the fraction of the hash rate contributed to the Bitcoin network
by each continent respectfully [Aok+19] (see code excerpt 7).

3.1 Construction

The Bitcoin network at any given time t ≥ 0 will be modelled by a weighted
graph

Gt = (Vt, Et)

with Vt = {1, 2, 3 . . . , 100} vertices corresponding to nodes on the network, and
Et = {{i, j}|∀1 ≤ i < j ≤ 100} edges, with a (stochastic - its precise nature will
be explained later) weight function

Wt : Et → R

that measures the latency of nodes between themselves in microseconds.

Key assumptions on the latencies between the nodes that will be explored further
below are:

• network topology

• historical latency

• skew normality of latency distribution

• time separation between the measurements

To account for geographical separation between the nodes, values for the mean
latencies between continents in the Bitcoin network in 2019 (see [Aok+19]) were
used in the weights of the graph Gt.

Additionally, the topology of the network, that is the combinatorial properties
of the underlying graph used to model the network itself (see [Tru13], p.76), will
have an impact on the connectivity of the nodes therein. More specifically, the
notion of eigenvalue centrality plays a crucial role in determining the weights
of the network. The utility of this metric lies in that heuristically, nodes with
high centrality are connected to proportionately more nodes with high scores
[New08]. To make this mathematically precise, one takes the adjacency matrix
of the graph upon initialisation of the graph’s weights in the simulation at a
given time; some of the weighs may take the value 1E7, which is to be interpreted

3

that the connection between the nodes is non existent at that moment. Then,
one computes the adjacency matrix of the graph, defined by:

Aij =

{

1 if W(i, j) < 1E7
0 otherwise

for {i, j} ∈ V . This is then used to compute the centrality score vector Ω which
satisfies:

λΩ = A.Ω

which satisfies Ω(i) ≥ 0 for all i vertices in the graph and

∑

i∈V

Ω(i) = 1

We remark that its existence is guaranteed by the Perron - Frobenius Theorem[New08].
With regards to modelling latencies on the network, we observe that on a min-
ing network following the Bitcoin protocol, the latencies follow a multimodal
distribution (see [Gen+18], figure 3). For this reason, it will be assumed that
the weights of the network will follow a skew-normal distribution with shape
parameter α depending on the combined eigenvector centrality of the nodes
comprising an edge.

3.2 Modelling Assumptions

Before diving into the modeling assumptions, it is important to state that min-
ing is a Markov process, see [GP20]. Let γn for n ∈ N represent the process
modelling γ in discrete time, and consider the modified stochastic process in-
dexed by N:

Xn =
⋃

k∈T

1Ak
(γn) : N → Ξ

where

1Ak
(x) =

{

Ak if x ∈ Ak,

∅ otherwise

and T ⊂ N, |T | < ∞, and Ξ = {Ak : k ∈ T } such that

Ai

⋂

Aj = ∅ ∀i 6= j ∈ T

and
⋃

k∈T Ak = [0, 1] For our following model to predict transition probabilities
between strategies we require to satisfy the following ideas:

1. The probability that γ jumps to an interval that is further away to be
smaller than the probability of it jumping to interval nearby

4

2. The probability that γ jumps to an interval with greater length to be
greater than the probability that it jumps to an interval of smaller length.

The intuitive idea behind the above assumptions is the following. As men-
tioned previously γ represents the proportion of people that follow our chain.
We want the process of say a change of γ = 0.2 to γ = 0.21 to be more probable
than a change from γ = 0.2 to γ = 0.6. In deed, it seems quite improbable that
20% of people following our chain turn to 60% compare to 21%. Furthermore,
since we give γ a range rather than a fixed value in the Markov models, it also
makes sense that if we jump to greater range of γ we are giving ourselves more
leeway than if we confined ourselves to a very small one. The above assumptions
can be mathematically stated as:

P(Xn1
= [x1, x2]|Xn−1 = [y1, y2]) ≤ P(Xn2

= [x3, x4]|Xn−1 = [y1, y2]),

if

dp([x3, x4], [y1, y2]) ≤ dp([x1, x2], [y1, y2]), and d(x1, x2) = d(x3, x4)

Where dp(X,Y) is a metric defined in the following way:

dp : P([0, 1])× P([0, 1]) −→ N

dp([x1, x2], [y1, y2]) = d
(

x1 +
x2 − x1

2
, y1 +

y2 − y1

2

)

Where d(., .) is the standard metric. Moreover, we also require

P(Xn1
= [x1, x2]|Xn−1 = [y1, y2]) ≤ P(Xn2

= [x3, x4]|Xn−1 = [y1, y2]),

if

dp([x3, x4], [y1, y2]) = dp([x1, x2], [y1, y2]), and d(x1, x2) ≤ d(x3, x4)

4 Exploration of Models

4.1 1st Markov Model

Based on the above, the following probability model will be used to compute
transition probabilities:

P(Xn = [x1, x2]|Xn−1 = [y1, y2]) =

∫ x2

x1

1− dp([x1, x2], [y1, y2]) dx

∑

ξ∈Ξ

∫ x2

x1

1− dp([x1, x2], ξ) dx

(1)

5

The interval [0, 1] is partitioned into disjoint intervals as will be explained below
which is represented by the set Ξ; the denominator is a sum over all such disjoint
intervals.
Fixing the collection of nodes applying this strategy at an hashrate of 20%,
according to [GP18b], γ is partitioned in the following way:

Ξ = {[0, 0.675], [0.675, 0.76], [0.76, 0.761], [0.761, 1]}

The set Ξ as mentioned previously is the set encapsulating the way γ is parti-
tioned in correspondence with the mining strategies. From left to right we have:
honest mining (HM), selfish mining (SM), Lead-Stubborn mining (LSM), Equal
Fork Stubborn mining (EFSM). We will compute the transition probabilities.
The same process is analogously applied for all other states.

Representing the results in a transition matrix, we obtain

P1 =









0.81 0.06 0 0.13
0.59 0.12 0.01 0.28
0.57 0.12 0 0.31
0.5 0.11 0 0.39









The chain is irreducible therefore the limiting distribution π can be obtained by
solving the following equation

π = πP1

The matrix P1 has rank equal to 3 which signifies that the solution has a de-
pendency on one variable. This variable can be chosen to be unique since we
require

∑4

i=1
πi = 1. Solving the above equation and taking into considera-

tion the aforementioned we obtain the limiting distribution where each term is
rounded to significant figures:

π1 =
(

0.73 0.08 0 0.19
)

6

HM

SM

LSM

EFSM0.81

0.06

0

0.13

0.28

0.59

0.01

0.12

0.31
0.57

0

0.12 0.39

0.11

0
0.5

4.2 2nd Markov model

Upon exploring the first Markov model, we proceed with another candidate for
the distribution of gamma. This will be motivated by choice of ’Gaussian’, or
squared exponential kernel

κ(x, y) = exp

(

−
1

2

(

x− y

l

)2
)

where l = 1

4
is chosen to be the characteristic length scale of the process γt.

Once again, pertaining to the above assumptions, the transition probabilities
will also be estimated as

P(Xn = [x1, x2]|Xn−1 = [y1, y2]) =

∫ x2

x1

∫ y2

y1

κ(x, y) dx dy

∫ 1

0

∫ y2

y1

κ(x, y) dx dy

(2)

7

Figure 1: Plot of exp(− 1

2
(x
l
)2) on [−1, 1], with l = 1

4
.

Heuristically, this is used to determine how close two points have to be to in-
fluence each other significantly. This model allows for interiors of intervals to
interfere with each other and make contributions to the total probability of a
specific transition. Using figure 4.2 as a guide, one notices that the length scale
l is chosen in a fashion such that if the separation of two points is greater that
half the length of the domain of γ, then, their contribution to the probability
becomes minimal.

It is clear that the farther apart two disjoint intervals are, one possible way
to gauge this is using their Hausdorff distance, the probability given by the
model will be expected to be less than if the intervals were close so that the
mean separation between points in the intervals is within the ’support’ of the
kernel.

Also, by the mean value theorem for integrals, one obtains up to a constant
of proportionality that for intervals [x1, x2] and [x′

1, x
′
2]

P(Xn = [x1, x2]|Xn−1 = [y1, y2]) ∼ (x2 − x1)

∫ y2

y1

κ(ξ1, y) dy

P(Xn = [x′
1, x

′
2]|Xn−1 = [y1, y2]) ∼ (x′

2 − x′
1)

∫ y2

y1

κ(ξ2, y) dy

8

where ξ1 = (x1, x2) and ξ2 ∈ (x′
1, x

′
2). If now one chooses the above intervals

such that d(ξ1, [y1, y2]) ≈ d(ξ2, [y1, y2]), then the relative lengths of the intervals
drives the relative behaviour of the probabilities of landing in said intervals.
Thus, the modelling assumptions laid out above are adequately addressed by
this model.

The transition matrix and transition diagram are as follows:

P2 =









0.84 0.07 0 0.09
0.50 0.15 0.002 0.348
0.43 0.16 0.002 0.408
0.32 0.158 0.002 0.52









Applying the exact same procedure as we did with the previous stochastic ma-
trix, we obtain the following limiting distribution

π2 =
(

0.7 0.1 0 0.2
)

HM

SM

LSM

EFSM0.84

0.07

0.09

0

0.348

0.50

0.002

0.15

0.408
0.43

0.002

0.16 0.52

0.158

0.002
0.32

9

5 Numerical Results

In the simulation, the network will be sampled at constant intervals of length
one unit of time, staying consistent with the first two Markov Models. Thus, in
the above framework, we take τ to be

τ = {0, 1, 2, . . . , T − 1}

where T is some predefined constant. For the transition probabilities, a value
of T = 1000 will be used.

Figure 2: Times series of γ from time with T = 200 uniformly spaced samples,
including the moving average

Below are the matrix of frequencies of each transition and the resulting transition
probability matrix using T = 5000 samples; though a time series for γ (see figure
5) with T = 200 is included for convenience.

N =









2977 205 0 690
213 10 1 34
8 1 0 6

676 42 0 136









10

P3 =









0.77 0.05 0.0 0.18
0.83 0.036 0.004 0.13
0.53 0.07 0.0 0.4
0.79 0.05 0.0 0.16









The chain represented by the above matrix is irreducible therefore we can apply
the same techniques to derive a limiting distribution as we did for the previous
two matrices. We obtain:

π3 =
(

0.78 0.05 0 0.17
)

6 Likelihood Analysis

Using the numerical model as a proxy for real data N, we will perform a like-
lihood analysis to compare the Markov models through their transition proba-
bility matrices P1,P2.

Formally, we consider the parameter space of Markov models

Θ =







P ∈ R
4×4

≥0

∣

∣

∣

∣

∀0 ≤ i ≤ 3,
∑

0≤j≤3

Pij = 1







Now, the likelihoods of the models P1,P2 given the time series for γ, yielding
N are computed using the Markov Property:

L(θ|N) =
∏

0≤i,j≤3

P
Nij

ij × P(γ0 ∈ Ξ0)

we will see that the precise value of P(γ0 ∈ Ξ0) is irrelevant, so long as it is
uniform across all models - an assumption we will make henceforth. Following
[Dav03], we define for a model θ ∈ Θ, its Relative Ratio as follows:

RL(θ|N) = − log





L(θ|N)

sup
θ∈Θ

L(θ|N)



 = − log

(

L(θ|N)

L(θ̂|N)

)

= −





∑

i,j

Nij log(θij)−
∑

i,j

Nij log(θ̂ij)



 ∈ [0,∞]

where θ̂ = P3, a known result in likelihood optimisation. Note that if L(θ1|N) <
L(θ2|N), then we have RL(θ1|N) > RL(θ2|N). We now compute the log-
relative likelihoods of models θ = P1,P2:

11

RL(P1|N) RL(P2|N)

157 512

Table 1: Relative likelihoods of Markov models given data N .

7 Conclusion

Now that we have computed the limiting distributions from the three models
discussed above, it is time to give them an interpretation. This will be achieved
through the Ergodic theorem for Markov chains (see [NN98]), where for an
irreducible and aperiodic homogeneous Markov chain {Xn}n∈N with limiting
distribution π, with probability one the ratio counting the ratio of time spent
in state i

Vi(n) =
1

n

n
∑

k=1

1{Xk=i} →
1

πi

as n → ∞.

Applying the above result to our models which can be seen to satisfy the above
conditions, the limiting distributions

π1 =
(

0.73 0.08 0 0.19
)

π2 =
(

0.7 0.1 0 0.2
)

π3 =
(

0.78 0.05 0 0.17
)

are taken to measure as measuring the fraction of time spent in each optimal
strategy for γ in the long run, where optimality is taken in the sense of [GP18a].

The log-likelihood analysis in section 6, the first model, namely P1 achieved a
higher relative likelihood than the model P2, due to the relative log likelihoods
computed in table 1.

We note that this observed difference with respect to the numerical data is
due to the different theoretical premises they were derived from. For instance,
the first model collapsed the intervals for γ into their midpoints, whereas the
second model exploited the non linear interaction of all of the interiors of said
intervals, provided by the kernel κ(x, y). Although, as discussed the paper, the
qualitative features were broadly similar for they were meant to model the same
underlying stochastic process γ.

Moreover, we see that even if the attacker has a hashrate of 20% in the Bitcoin
network, the limiting distributions π1, π2, π3 show that honest mining is strongly

12

dominant in the long run, where it is used more than 70% of the time spent
mining, as opposed to rogue mining strategies.

8 Author Contribution Statement

Y.P. conceived of the presented idea, namely the construction of Markov models
for γ. Y.P. developed the theoretical formalism for the first analytical model
and performed the calculations of the transition matrices and limiting distribu-
tions.

P.T. conceived of the theoretical formalism of second analytical model and the
numerical model. P.T. produced the code in the appendix to perform numerical
simulations and performed the log-likelihood analysis of the analytical models
using the numerical model as a benchmark.

Both authors discussed the results and contributed to the final manuscript.

9 Appendix

9.1 Proof of Properties for Probability Models

In this section we will only prove the first property for the first model. The
remaining proof is similar and is left as an exercise to the reader. Let X1 =
[x1, x2], X2 = [x3, x4] and Y1 = [y1, y2].

Let β =
∑

ξ∈Ξ

∫ x2

x1

1− dp([x1, x2], ξ) dx

dp(X1, Y) ≥ dp(X2, Y)

1− dp(X1, Y) ≤ 1− dp(X2, Y)

d(x1, x2)(1 − dp(X1, Y1)) ≤ d(x3, x4)(1 − dp(X2, Y1))

(x2 − x1)(1 − dp(X1, Y1)) ≤ (x4 − x3)(1 − dp(X2, Y1))
∫ x2

x1

1− dp(X1, Y1) dx ≤

∫ x4

x3

1− dp(X2, Y1) dx

1

β
·

∫ x2

x1

1− dp(X1, Y1) dx ≤
1

β
·

∫ x4

x3

1− dp(X2, Y1) dx

∴ P(Xn = [x1, x2]|Xn−1 = [y1, y2]) ≤ P(Xn = [x3, x4]|Xn−1 = [y1, y2])

13

9.2 Numerical Model Implementation

1 # Transitions constructed using hash rate of mining pool = 0.2

2 Transitions = {0:[0 ,0.675] , 1: [0.675000001 , 0.76] , 2:

[0.76000000001 , 0.761] , 3: [0.761000001 , 1]}

3

4

5 P = [[0 for _ in range (4)] for _ in range (4)]

6

7 for n in range (T -1):

8 if Transitions [0][0] <= y[1][n] <=Transitions [0][1] and

Transitions [0][0] <=y[1][n+1] <=Transitions [0][1]:

9 P[0][0]+=1

10 elif Transitions [0][0] <=y[1][n] <=Transitions [0][1] and

Transitions [1][0] <=y[1][n+1] <=Transitions [1][1]:

11 P[0][1]+=1

12 elif Transitions [0][0] <=y[1][n] <=Transitions [0][1] and

Transitions [2][0] <=y[1][n+1] <=Transitions [2][1]:

13 P[0][2]+=1

14 elif Transitions [0][0] <=y[1][n] <=Transitions [0][1] and

Transitions [3][0] <=y[1][n+1] <=Transitions [3][1]:

15 P[0][3]+=1

16

17 elif Transitions [1][0] <= y[1][n] <= Transitions [1][1] and

Transitions [0][0] <=y[1][n+1] <=Transitions [0][1]:

18 P[1][0]+=1

19 elif Transitions [1][0] <=y[1][n] <=Transitions [1][1] and

Transitions [1][0] <=y[1][n+1] <=Transitions [1][1]:

20 P[1][1]+=1

21 elif Transitions [1][0] <=y[1][n] <=Transitions [1][1] and

Transitions [2][0] <=y[1][n+1] <=Transitions [2][1]:

22 P[1][2]+=1

23 elif Transitions [1][0] <=y[1][n] <=Transitions [1][1] and

Transitions [3][0] <=y[1][n+1] <=Transitions [3][1]:

24 P[1][3]+=1

25

26 elif Transitions [2][0] <= y[1][n] <= Transitions [2][1] and

Transitions [0][0] <=y[1][n+1] <=Transitions [0][1]:

27 P[2][0]+=1

28 elif Transitions [2][0] <=y[1][n] <=Transitions [2][1] and

Transitions [1][0] <=y[1][n+1] <=Transitions [1][1]:

29 P[2][1]+=1

30 elif Transitions [2][0] <=y[1][n] <=Transitions [2][1] and

Transitions [2][0] <=y[1][n+1] <=Transitions [2][1]:

31 P[3][2]+=1

32 elif Transitions [2][0] <=y[1][n] <=Transitions [2][1] and

Transitions [3][0] <=y[1][n+1] <=Transitions [3][1]:

33 P[2][3]+=1

34

35 elif Transitions [3][0] <= y[1][n] <= Transitions [2][1] and

Transitions [0][0] <=y[1][n+1] <=Transitions [0][1]:

36 P[3][0]+=1

37 elif Transitions [3][0] <=y[1][n] <=Transitions [2][1] and

Transitions [1][0] <=y[1][n+1] <=Transitions [1][1]:

38 P[3][1]+=1

39 elif Transitions [3][0] <=y[1][n] <=Transitions [2][1] and

Transitions [2][0] <=y[1][n+1] <=Transitions [2][1]:

14

40 P[3][2]+=1

41 elif Transitions [3][0] <=y[1][n] <=Transitions [3][1] and

Transitions [3][0] <=y[1][n+1] <=Transitions [3][1]:

42 P[3][3]+=1

43

44

45

46

47 for i in range (4):

48 a = sum (P[i])

49 for j in range (4):

50 P[i][j] = P[i][j]/a

51

52 #Transition matrix

53 P

Listing 1: Transition probabilities

1 from random import choices

2 T = 1000

3 T = [n for n in range (T)]

4

5 M = choices (list(range (1 ,100)),k = T)

6 N = choices (list(range (1 ,100)),k = T)

7 for i in N:

8 if N[i] == M[i]:

9 v = list(range (1 ,100))

10 v.remove (N[i])

11 M[i] = choices (v,k = 1) [0]

12

13 y = stopping_time_simulator (T, N, M)

14 Y = [sum (y[1][:n])/n for n in range (1, T+1)]

15

16

17 plt.plot(T, y[1], linewidth = 0.8, label = "\gamma time series ")

18 plt.xlabel ("Time")

19 plt.ylabel ("gamma ")

20 plt.legend ()

21 plt.plot(T, Y, "Moving average ")

22 plt.xlabel ("Time")

23 plt.ylabel ("gamma ")

24 plt.legend ()

25 plt.show()

Listing 2: τ strategy γ simulator including moving average

1 import numpy as np

2 import matplotlib .pyplot as plt

3 from math import sqrt

4

5 class Graph ():

6

7 def __init__ (self , vertices):

8 self.V = vertices

9 self.graph = [[0 for column in range (vertices)]

10 for row in range (vertices)]

11

12 def printSolution(self , dist):

15

13 print ("Vertex \t Distance from Source ")

14 for node in range(self.V):

15 print (node , "\t\t", dist[node])

16

17 # A utility function to find the vertex with

18 # minimum distance value , from the set of vertices

19 # not yet included in shortest path tree

20 def minDistance (self , dist , sptSet):

21

22 # Initialize minimum distance for next node

23 Min = 1e7

24 min_index = 0

25 # Search not nearest vertex not in the

26 # shortest path tree

27 for v in range(self.V):

28 if dist[v] < Min and sptSet [v] == False :

29 Min = dist[v]

30 min_index = v

31

32 return min_index

33

34 # Function that implements Dijkstra ’s single source

35 # shortest path algorithm for a graph represented

36 # using adjacency matrix representation

37

38 def dijkstra (self , src):

39

40 dist = [1e7] * self.V

41 dist[src] = 0

42 sptSet = [False] * self.V

43

44 for cout in range(self.V):

45

46 # Pick the minimum distance vertex from

47 # the set of vertices not yet processed .

48 # u is always equal to src in first iteration

49 u = self.minDistance (dist , sptSet)

50

51 # Put the minimum distance vertex in the

52 # shortest path tree

53 sptSet [u] = True

54

55 # Update dist value of the adjacent vertices

56 # of the picked vertex only if the current

57 # distance is greater than new distance and

58 # the vertex in not in the shortest path tree

59 for v in range (self.V):

60 if (self.graph [u][v] > 0 and

61 sptSet [v] == False and

62 dist[v] > dist[u] + self.graph[u][v]):

63 dist[v] = dist[u] + self.graph[u][v]

64

65 #self. printSolution(dist)

66 return dist

67

68 def Eigenvector_Centrality (self):

69 # normalize starting vector

16

70 x = dict([(n,1.0/ self.V) for n in range (self.V)])

71 s = 1.0/ sum (x.values ())

72 for k in x:

73 x[k] *= s

74 Number_Nodes = self.V

75

76 # make up to max_iter iterations

77 max_iter = 50

78 for i in range(max_iter):

79 xlast = x

80 x = dict.fromkeys (xlast , 0)

81

82 # do the multiplication y = Cx

83 # C is the matrix with entries

84 Alpha = [xlast[k] for k in range (self.V)]

85 C = [[0 for _ in range(self.V)] for _ in range (self.V)]

86 for i in range (self.V):

87 for j in range (self.V):

88 if self.graph [i][j] != 1E7:

89 C[i][j] = 1

90 B = np.matrix (C).dot(Alpha)

91 x = dict ((n, B.item(n)) for n in range (self.V))

92

93 # normalize vector

94 try :

95 s = 1.0/ sqrt(sum (v**2 for v in x.values ()))

96

97 # this should never be zero?

98 except ZeroDivisionError:

99 s = 1.0

100 for n in x:

101 x[n] *= s

102

103 # check convergence

104 tol = 1E-5

105 err = sum ([abs (x[n]-xlast[n]) for n in x])

106 if err < Number_Nodes*tol:

107 return x

108 return x

Listing 3: Graph Class

1 class Node:

2 import time

3 def __init__ (self , dataval =None , Time=time.time ()):

4 self.dataval = dataval

5 self.time = Time

6 self.nextval = None

7

8 class time_series ():

9 def __init__ (self):

10 self.headval = None

Listing 4: Time Series Class

1 def generate_blockchain(Number_Nodes):

2 Blockchain = Graph (Number_Nodes)

3 #adjacency matrix

17

4 W = [[0 for _ in range (Number_Nodes)] for _ in range (

Number_Nodes)]

5

6 for i in range (Number_Nodes -1):

7

8 for j in range(i+1, Number_Nodes):

9 for l in range (5):

10 for m in range (l,6):

11 if (i in Intervals [l]) and (j in Intervals [m]):

12

13 if np.random .uniform (0,1) <0.1:

14

15 #if connection is not active - SimBlock

Paper implementation

16 W[i][j] = 1E7

17 W[j][i] = 1E7

18 else:

19 #latency if connection is active -

SimBlock Paper implementaiton

20 mean = Region_Latency[l][m]

21 rand = np.random .poisson (mean)

22 shape = 0.2 * mean;

23 scale = mean - 5;

24 rand = int (scale / pow (np.random .

uniform (0,1) , 1.0 / shape))

25 W[i][j] = rand

26 W[j][i] = rand

27 #count +=1

28 Blockchain .graph = W

29 return Blockchain

Listing 5: Initialise Bitcoin Network

1 def stopping_time_simulator (Tau , N, M):

2 # give time series of gamma between two nodes on the blockchain

sampled at times T

3 gamma = []

4 Number_Nodes = 100

5 Network = time_series ()

6 network_init = generate_blockchain(Number_Nodes)

7 Omega = network_init. Eigenvector_Centrality ()

8 #bias parameter for activaiton in network :

9

10

11 dist_N = network_init.dijkstra (N[0])

12 dist_M = network_init.dijkstra (M[0])

13 N_close = 0

14 G = 0

15

16 for i in set (range(Number_Nodes))-{N[0],M[0]}:

17 #Effect of time interval on next iteration of network

18 if dist_N [i] < dist_M [i]:

19 N_close += 1

20 G = N_close / Number_Nodes

21 gamma += [G]

22

23 Network .headval = Node(network_init , Tau [0])

24 pointer = Network .headval

18

25

26 for n in range (1, len (Tau)):

27 prevNetwork = pointer .dataval

28 Alpha = gamma_dist (N[n],M[n],1, Tau[n]-Tau[n-1],

prevNetwork)

29 pointer .nextval = Node(Alpha [0], Tau[n])

30 pointer = pointer .nextval

31 gamma += Alpha [1]

32 return (Network , gamma)

Listing 6: Network γ time series simulator

1

2 \label{lst :Stochastic simulation Btc }

3

4 import numpy as np

5 from scipy .stats import skewnorm

6

7

8 #Latency distribution:

9

10 #Use heavy -tail skew distribution (skew -normal)

11

12 Regions_Distribution = {"NORTH_AMERICA": 0.3316 , "EUROPE ": 0.4998 ,

"SOUTH_AMERICA":0.0090 , "ASIA_PACIFIC":0.1177

13 , "JAPAN ":0.0224 ,

14 "AUSTRALIA ":0.0195}

15

16 Region_Latency = [[32, 124, 184, 198, 151, 189],

17 [124, 11, 227, 237, 252, 294],

18 [184, 227, 88, 325, 301, 322],

19 [198, 237, 325, 85, 58, 198],

20 [151, 252, 301, 58, 12, 126],

21 [189, 294, 322, 198, 126, 16]]

22

23 Nodes_Region = [33,50,1,12,2,2]

24 Number_Nodes = 100

25 Nodes_Cumulative = np.cumsum (Nodes_Region)

26 Intervals = [list(range (Nodes_Cumulative [0]))]+[list(range (

Nodes_Cumulative[i], Nodes_Cumulative[i+1])) for i in range (5)]

27

28

29 def gamma_dist (N,M,C, DeltaT , prevNetwork):

30 Gamma = []

31 for k in range (C):

32

33 Blockchain = Graph(Number_Nodes)

34 W = [[0 for _ in range (Number_Nodes)] for _ in range(

Number_Nodes)]

35 ’’’

36 from math import comb

37 K = comb(Number_Nodes ,2)

38 P = [np.random .uniform (-1,1) for _ in range (K)]

39 #M is the Correlation weight matrix - specific

interpretation will be assigned later

40 M = [[np.random .randint (1) for _ in range (K)] for _ in

range(K)]

41 #B = Bias , perhaps relate to bandwidth

19

42 B = [np.random .uniform (0,1) for _ in range (K)]

43

44 count = 0

45 ’’’

46 #adjacency matrix

47 A = [[0 for _ in range (Number_Nodes)] for _ in range(

Number_Nodes)]

48

49 for i in range(Number_Nodes -1):

50 for j in range (i+1, Number_Nodes):

51 #previous network state influences connectivity

52 if np.random .uniform (0,1) >= 0.1:

53 A[i][j] = 1

54 A[j][i] = 1

55

56

57 Blockchain_unweighted = Graph(Number_Nodes)

58 Blockchain_unweighted .graph = A

59

60 #Eigenvector Centrality ranking of nodes - high score means

node is connected to many highly connected nodes

61 #The latency in the network is adjusted by the above

centrality measure that accounts for topological properties of

network

62

63

64 Omega = Blockchain_unweighted .Eigenvector_Centrality ()

65

66 for i in range(Number_Nodes -1):

67 for j in range (i+1, Number_Nodes):

68 for l in range (5) :

69 for m in range(l,6) :

70 if (i in Intervals [l]) and (j in Intervals [

m]):

71 #previous network state influences

connectivity

72 if prevNetwork .graph [i][j] != 1E7:

73 c = (Omega [i]+ Omega [j])

74 if A[i][j] == 1:

75

76 rand = prevNetwork .graph[i][j]

+ prevNetwork .graph[i][j]* DeltaT *skewnorm .rvs (3*c, size = None

)

77 W[i][j] = rand

78 W[j][i] = rand

79

80 else:

81 W[i][j] = 1E7

82 W[j][i] = 1E7

83 else:

84 c = (Omega [i]+ Omega [j])

85

86 rand = Region_Latency[l][m] +

Region_Latency[l][m]* DeltaT *skewnorm .rvs (3*c, size = None)

87 W[i][j] = rand

88 W[j][i] = rand

89

20

90

91

92 Blockchain .graph = W

93 dist_N = Blockchain .dijkstra (N)

94 dist_M = Blockchain .dijkstra (M)

95 N_close = 0

96 gamma = 0

97

98 for i in set (range (Number_Nodes)) -{N,M}:

99

100 if dist_N [i] < dist_M [i]:

101 N_close += 1

102 gamma = N_close /Number_Nodes

103 Gamma .append (gamma)

104 return (Blockchain , Gamma)

Listing 7: Stochastic simulation model of Bitcoin Network

References

[Aok+19] Yusuke Aoki et al. SimBlock: A Blockchain Network Simulator. 2019.
doi: 10.48550/ARXIV.1901.09777. url: https://arxiv.org/abs/1901.09777.

[Dav03] Anthony Christopher Davison. Statistical models. Vol. 11. Cam-
bridge university press, 2003.

[Gen+18] Adem Efe Gencer et al. “Decentralization in bitcoin and ethereum
networks”. In: International Conference on Financial Cryptography
and Data Security. Springer. 2018, pp. 439–457.

[GP18a] Cyril Grunspan and Ricardo Pérez-Marco. On profitability of selfish
mining. 2018. doi: 10.48550/ARXIV.1805.08281. url: https://arxiv.org/abs/1805.08281.

[GP18b] Cyril Grunspan and Ricardo Pérez-Marco. On profitability of stub-
born mining. 2018. doi: 10.48550/ARXIV.1808.01041. url: https://arxiv.org/abs/1808.01041.

[GP20] Cyril Grunspan and Ricardo Pérez-Marco. “The mathematics of Bit-
coin”. In: (2020). doi: 10.48550/ARXIV.2003.00001. url: https://arxiv.org/abs/2003.00001.

[Nay+16] Kartik Nayak et al. “Stubborn mining: Generalizing selfish min-
ing and combining with an eclipse attack”. In: 2016 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). IEEE. 2016,
pp. 305–320.

[New08] Mark EJ Newman. “The mathematics of networks”. In: The new
palgrave encyclopedia of economics 2.2008 (2008), pp. 1–12.

[NN98] James R Norris and James Robert Norris. Markov chains. 2. Cam-
bridge university press, 1998.

[Tru13] Richard J Trudeau. Introduction to graph theory. Courier Corpora-
tion, 2013.

21

https://doi.org/10.48550/ARXIV.1901.09777
https://arxiv.org/abs/1901.09777
https://doi.org/10.48550/ARXIV.1805.08281
https://arxiv.org/abs/1805.08281
https://doi.org/10.48550/ARXIV.1808.01041
https://arxiv.org/abs/1808.01041
https://doi.org/10.48550/ARXIV.2003.00001
https://arxiv.org/abs/2003.00001

	1 Abstract
	2 Introduction
	3 Bitcoin Network
	3.1 Construction
	3.2 Modelling Assumptions

	4 Exploration of Models
	4.1 1st Markov Model
	4.2 2nd Markov model

	5 Numerical Results
	6 Likelihood Analysis
	7 Conclusion
	8 Author Contribution Statement
	9 Appendix
	9.1 Proof of Properties for Probability Models
	9.2 Numerical Model Implementation

