
Department of Mathematics
Imperial College London
Academic Year 2021-2022

M2R Project report: Darboux Transformation
Group 3

Pantelis Tassopoulos, Michael Pristin, Ronkgai Zhang, Yuhao Liu, Ana
Ciupala

Abstract

This is a report of our group’s study of Darboux Transformaions and its role
in the spectral analysis of one dimensional Schrödinger operators. This method
allows us to find the eigenvalues and eigenfunctions of such an operator via it-
eration in an algebraic manner.

We begin with some preliminary theory about the Hilbert spaces and linear
operators of functions thereof. After developing this formalism, we will dis-
cuss successful applications of this approach for three Schrödinger equations
(Schrödinger operator eigenvalue problems) with the method of Darboux Trans-
formaions, which are as follows: the simple harmonic oscillator equation, the
equation with reflectionless potential equation, and the equation with Coulomb
potential. These problems have far reaching implications in the field of Quantum
Mechancis and mathematical physics more broadly and are thus of fundamental
physical interest.
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1 Background

1.1 Hilbert Spaces

In this report, Hilbert spaces play a central role and are crucial in any analy-
sis of the Schrodinger equation. Thus, we present a definition and some basic
properties and constructions that will prove useful.

A Hilbert space is a vector space H with an inner product ⟨., .⟩ : H ×H → C
that becomes a complete normed vector space when equipped with the norm
||f |||H =

√
⟨(f, f⟩ [17]. We introduce some notions that are going to be relevant

later on.

On a Hilbert spaceH, there are two types of convergence of a sequence of vectors
(fn)n∈N that are commonly found in the literature [10]. First, we say that the
sequence above converges in the weak sense to a vector f ∈ H if and only if for
any u ∈ H,

⟨u, fn⟩ → ⟨u, f⟩

as n → ∞ in the usual sense, and this will be denoted as f = w − lim
n→∞

fn.

This is well defined since it its uniqueness is a direct consequence of the inner
product on H. Similarly, if the sequence above is such that

||f − fn||H → 0

as n → ∞, we say that f is the strong limit of the sequence above denoted
byf = s − lim

n→∞
fn. Uniqueness follows from the standard properties of the

norm, hence this limit is well-defined. It is also easy to show that strong con-
vergence implies weak convergence.

In our analysis we will almost exclusively consider the space L2(R) that is defined
below.

1.2 L2 spaces

The L2 space is an inner product space of measurable functions, with the inner
product of two measurable functions f, g is defined as

(f, g) =

∫ ∞

−∞
f(x)g∗(x)dx

[18]

and the norm of a function f is defined as (∥f∥)2 =
∫∞
−∞ | f(x) |2dx.

It it not difficult to verify that the above definitions are indeed inner product
and norm.
The inner product under this definition is left-linear and symmetric under con-
jugation by the definition of integrals; and (f, f) =

∫∞
−∞ f(x)

2
dx ≥ 0 by the
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property of integrals.
And for the norm, the non-negativity follows from the properties of integral,

and ∥λf∥ =
√∫∞

−∞ | λf(x) |2dx = λ
√∫∞

−∞ | f(x) |2dx = λ∥f∥, and the triangle

inequality can be proved by Minkowski’s inequality for L2.[14]

It is a standard result that the space L2 is a Hilbert space, where two func-
tions being identified if they disagree on a set of measure zero. Please refer to
literature [14] for a proof of the completeness of Lp space, where p is a positive
number.
It is also noteworthy to mention that the L2(R) space has a subset, namely that
of smooth functions with compact support denoted by C∞

c (R) that is dense,
meaning that for all u ∈ L2(R), there exists a sequence (fn)n∈N ⊂ C∞

c (R) such
that

||fn − u|| → 0

as n→ ∞. Proofs of this standard result can be found in the literature [15].

1.3 Self-Adjoint linear operators

Suppose we consider a self-adjoint linear operator, that is a linear map

T : D(H) → H

in the usual sense, where D(H) can be any dense (in the topology induced by
the norm ||v||H = ⟨v, v⟩) subset of the Hilbert space H under consideration,
endowed with the following property:

⟨Tx, y⟩ = ⟨x, Ty⟩

for all x, y in H. That is T is its own adjoint, T ∗ which satisfies

⟨Tx, y⟩ = ⟨x, T ∗y⟩

for all x, y in H. Existence and uniqueness of the adjoint for bounded linear
operators T , bounded in the sense that ||Tx|| ≤M ||x|| for some M <∞ for all
x in H, is guaranteed by the Riesz Representation Theorem, that can be found
in any reference on the topic [17].

We proceed with an important definition: the spectrum σ(T ) of a self-adjoint
linear operator is the set given by the following characterisation due to Weyl
[19]: λ ∈ R is in σ(T ) if and only if there exists a sequence (ψn)n∈N ⊆ H with
normalisation condition ||ψn|| = 1,∀n ∈ N such that

∥Tψn − λψn|| → 0

as n→ ∞.
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The essential spectrum of T, σess(T ) is exactly as above, except for the fact
that the sequence is a singular one, that is it has no convergent subsequence. It
immediately follows that σess(T ) ⊆ σ(T ).

Furthermore, the discrete spectrum of T, σdisc(T ) is defined as the compliment
of the essential spectrum in the regular spectrum, that is σ(T )\σess(T ). Intu-
itively, it corresponds to the set of normal eigenvalues of a linear operator in
the finite dimensional setting [17]. This intuition turns out to be true but this
will not be explored here.

Next we will discuss an important result from [5] regarding the stability of the
essential spectrum σess(T ) under a ’compact perturbation’ by an operator B.
Let us be more precise and define the above kind of perturbation: consider a
bounded, self-adjoint and compact linear operator B, where by compact
we mean that for all bounded subsets W (bounded by the norm) of the Hilbert
space H, one has that the closure of B(W ) is compact in the topology induced
by the inner-product norm. Then, B + T is self-adjoint and

σess(B + T ) = σess(T )

By linearity of T and B, it is plain that B + T is self-adjoint. Suppose now
that λ ∈ σess(T ), by definiton, there exists a singular sequence (ψn)n∈N that
converges weakly to 0. Since B is compact, it follows that s − lim

n→∞
Bψn = 0.

Thus, by the algebra of limits, it follows that s − lim
n→∞

(T + B)ψn − λψn = 0

yielding λ ∈ σess(T + B) and σess(T ) ⊆ σess(T + B). The reverse inclusion is
obtained by applying the above argument to T + B and −B and checking the
conditions apply.

1.4 Schrödinger Operators

In this report, we will be considering operators of the form

− d2

dx2
+ V (x) : D(H) → H

for some D(H) dense inH = L2(R), typically, we will consider C∞
c (R). Consider

the expression ⟨ ddxf, g⟩. Integration by parts and compact supportedness of f
and g yields that 〈

d

dx
f, g

〉
=

〈
f,− d

dx
g

〉
Thus,

(
d
dx

)∗
= − d

dx and by repeated application of the above
(
d2

dx2

)∗
= d2

dx2 .

Since, we will assume that V (x) is real-valued, by linearity, it follows that H is
self-adjoint.
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Perhaps rather surprisingly, according to [13], there are a few properties about
the spectrum of the above operators that can be deduced from the limit of V (x)
as |x| → ∞. The first case is when

V (x) → ∞

as |x| → ∞, where the spectrum of the operator T = − d2

dx2 + V (x)

σ(T ) = σdisc(T )

Another important case that will crop up in later analysis is when

V (x) → 0

|x| → ∞ for V (x) continuous, where one has

σess(T ) = [0,∞)

2 Method

The method we mainly use is Darboux transformation, considering the one-
dimensional Schrödinger equation (Sturm-Liouville equation):

−ψxx + u(x)ψ = λψ

If ψ(x, λ), ϕ(x, λ) ∈ C2 are solutions of the above equation, then the Darboux
transformation (DT) ψ → ψ[1] of the arbitrary solution is defined [9] by

ψ[1] = ψx − σ1ψ; σ1 =
ϕ1x
ϕ1

Darboux’s theorem states that the function ψ[1] is the solution of the dif-
ferential equation

−ψxx[1] + u[1]ψ[1] = λψ[1],

where
u[1] = u− 2σ1x

[9]
From Darboux’s theorem, the one-dimensional Schrödinger equation (Sturm-
Liouville equation) −ψxx+u(x)ψ = λψ is covariant with respect to the Darboux
transformation

ψ → ψ[1], u→ u[1]

Being covariant, the Darboux transformation can be iterated an arbitrary
number of times to produce new solvable equations. The iterated Darboux
transformation is expressed in Wronskian determinant W :

W (f1, f2, ..., fk) = detA, Aij =
di−1fi
dxi−1

, i, j = 1, 2, ..., k.
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[9]
The Crum theorem states that the function

ψ[N ] =
W (ψ1, ψ2, ..., ψN , ψ)

W (ψ1, ψ2, ..., ψN )
,

is the solution of the differential equation

−ψxx[N ] + u[N ]ψ[N ] = λψ[N ],

with potential u[N ] = u−2 d2

dx2 lnW (ψ1, ψ2, ..., ψN ). In case N = 1, the Darboux
theorem follows.[9]

3 Properties of Creation Annihilation Operator

Let us consider Schrödinger’s equation −ψ′′ + uψ = λψ for which we have a
known eigenvalue λ1 with its corresponding eigenfunction ψ1. Hence it satisfies
the following equation

−ψ′′
1 + uψ1 = λ1ψ1.

We consider the following two operators:

• creation operator: Q = d
dx − ψ′

1

ψ1

• annihilation operator: Q∗ = − d
dx − ψ′

1

ψ1
.

We have constructed them such that Q and Q∗ are adjoint operators, satisfying
(Qψ, ϕ) = (ψ,Q∗ϕ), for all the functions ψ, ϕ ∈ L2(R) and the inner product
defined in 1. We compute the value of QQ∗ and Q∗Q:

QQ∗ψ =

(
d

dx
− ψ′

1

ψ1

)(
d

dx
− ψ′

1

ψ1

)
ψ = −ψ′′ +

d

dx

(
ψ′
1

ψ1
ψ

)
+
ψ′
1

ψ1
ψ′ +

(
ψ′
1

ψ1

)2

ψ

= −ψ′′ − ψ′′
1

ψ1
ψ +

(
ψ′
1

ψ1

)2

ψ − ψ′
1

ψ1
ψ +

ψ′
1

ψ1
ψ +

ψ′′
1

ψ1
ψ +

(
ψ′
1

ψ1

)2

ψ

= −ψ′′ − ψ′′
1

ψ1
ψ + 2

(
ψ′
1

ψ1

)2

ψ.

By rearranging the equation −ψ′′
1 + uψ1 = λ1ψ1, we obtain

ψ′′
1

ψ1
= u− λ1.

Hence, we get

QQ∗ψ = −ψ′′ − (u− λ1)ψ + 2

(
ψ′
1

ψ1

)2

ψ =

(
λ− λ1 +

(
ψ′
1

ψ1

)2
)
ψ
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Similarly we compute Q∗Q:

Q∗Qψ =

(
− d

dx
− ψ′

1

ψ1

)(
d

dx
− ψ′

1

ψ1

)
ψ = −ψ′′ − ψ′

1

ψ1
ψ′ +

d

dx

(
ψ′
1

ψ1
ψ

)
+

(
ψ′
1

ψ1

)2

ψ

= −ψ′′ − ψ′
1

ψ1
ψ′ +

ψ′′
1

ψ1
ψ +

ψ′
1

ψ1
ψ′ −

(
ψ′
1

ψ1

)2

ψ +

(
ψ′
1

ψ1

)2

ψ.

Using again that
ψ′′

1

ψ1
= u− λ1, we obtain that

Q∗Qψ = −ψ′′ + (u− λ1)ψ = (λ− λ1)ψ.

4 the Harmonic Oscillator

Let us consider now the harmonic oscillator which satisfies the equation:

−ψ′′ + x2ψ = λψ.

Notice that the function ψ1 = e−
x2

2 is an eigenfunction for the corresponding
eigenvalue λ1 = 1. Therefore the creation and annihilation operators become:

Q =
d

dx
+ x and Q∗ = − d

dx
+ x.

Similarly we obtain that

QQ∗ψ =

(
d

dx
+ x

)(
− d

dx
+ x

)
ψ = −ψ′′ + (x2 + 1)ψ ⇒ QQ∗ψ = (λ+ 1)ψ

and

Q∗Qψ =

(
− d

dx
+ x

)(
d

dx
+ x

)
ψ = −ψ′′ + (x2 − 1)ψ ⇒ QQ∗ψ = (λ− 1)ψ.

An important property of these operators is that QQ∗ and Q∗Q have the
same eigenvalues.
Let us consider the function ψ which satisfies the Schrödinger’s equation with the
eigenvalue λ. We have Q∗Qψ = αψ, where α, the eigenvalue of the operators,
depends on the eigenvalue (of the differential equation) λ. For example, in the
case of the harmonic oscillator, α = λ − 1. If we apply the operator Q to this
equation, we obtain

Q(Q∗Q)ψ = αQψ ⇐⇒ (QQ∗)(Qψ) = α(Qψ).

If we denote Qψ = ϕ, we obtain the following equation that QQ∗ϕ = αϕ. Hence
α is also an eigenvalue of the operator QQ∗. This implies that Q∗Q and QQ∗

have the same eigenvalues.
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4.1 Spectrum of Harmonic Oscillator

From the above discussion, the creation and annihilation operators Q and Q∗

satisfy

Q∗Qψ = − d2

dx2
ψ + x2ψ − ψ

= Hψ − 1ψ

and

QQ∗ψ = − d2

dx2
ψ + x2ψ + ψ

= Hψ + 1ψ

where 1 is the identity operator for all ψ in the Hilbert space L2(R) as defined
in section 1 and H = − d2

dx2 + x2.

This enables one to compute the discrete spectrum of the Hamiltonian operator
H by computing the discrete spectrum of the new operator N = Q∗Q through

σdisc(H) = σdisc(N) + 1

This follows simply from the fact that if λ ∈ σdisc(H), then there exists a non-
trivial (henceforth, all eigenfunctions are assumed non-trivial, that is no-zero)
ψ ∈ L2(R) such that Nψ = λψ = Hψ − ψ, giving ψ such that Hψ = (λ+ 1)ψ.
this yields the inclusion σdisc(H) ⊆ σdisc(N) + 1. The reverse inclusion is simi-
larly obtained, thereby leading to the desired equality.

Now we consider the spectrum of N . In that direction, as per [16], we make the
observation that the spectrum of N must be non-negative, that is σdisc(N) ⊆
R≥0. This follows by considering λ ∈ σdisc(N). This implies the existence of a
non-trivial ψ such that Nψ = Q∗Qψ = λψ. We notice that multiplying both
sides of the previous equation by ψ gives

ψQ∗Qψ = λψ2

Integrating over R yields ∫
R
ψQ∗Qψdx = λ

∫
R
ψ2dx

∥Qψ∥2L2(R) = λ ∥ψ∥2L2(R)

hence, λ =
∥Qψ∥2

L2(R)
∥ψ∥2

L2(R)
≥ 0, since ψ is non-trivial and using the fact that ∥.∥2L2(R)

is a norm on L2(R).
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Furthermore, we consider the following operators [N,Q∗] := NQ∗ − Q∗N and
[N,Q] := NQ−QN . More explicitly, we compute

[N,Q∗] =

(
− d2

dx2
+ x2 − 1

)(
− d

dx
+ x

)
−
(
− d

dx
+ x

)(
− d2

dx2
+ x2 − 1

)
and

[N,Q] =

(
− d2

dx2
+ x2 − 1

)(
d

dx
+ x

)
−
(
d

dx
+ x

)(
− d2

dx2
+ x2 − 1

)
An easy computation yields that [N,Q∗] = 2Q∗ and [N,Q] = −2Q.

Now suppose λ ∈ σdisc(N) and ψ a corresponding eigenfunction. We claim that
Q∗ψ is an non-trivial eigenfunction with eigenvalue λ + 2. The fact that Q∗ψ
is non-trivial follows from

∥Q∗ψ∥2L2(R) =

∫
R
ψQQ∗ψdx =

∫
R
ψQ∗Qψdx+ 2

∫
R
ψ2dx

= ∥Qψ∥2L2(R) + 2 ∥ψ∥2L2(R) ≥ 2 ∥ψ∥2L2(R) > 0

.
Also,

NQ∗ψ = [N,Q∗]ψ +Q∗Nψ = 2Q∗ψ + λQ∗ψ = (λ+ 2)Q∗ψ

Additionally, for λ ∈ σdisc(N), λ ≥ 2 and ψ a corresponding non-trivial eigen-
function, Qψ is an non-trivial eigenfunction with eigenvalue λ − 2. The fact
that Qψ is non-trivial follows from

∥Qψ∥2L2(R) =

∫
R
ψQ∗Qψdx =

∫
R
ψNψdx =

∫
R
λψ2dx = λ ∥ψ∥2L2(R) > 0

.
Also,

NQψ = [N,Q]ψ +QNψ = −2Qψ + λQψ = (λ− 2)Qψ

Thus, λ ∈ σdisc(N) implies (λ+ 2) ∈ σdisc(N) and (λ− 2) ∈ σdisc(N) if λ ≥ 2.
We claim that

σdisc(N) = 2N ∪ {0}
Consider λ ∈ σdisc(N), then λ has the unique decomposition λ = 2n+ r, n ∈ N
and r ∈ [0, 2). If we assume that λ is not an even non-negative integer, then
r is strictly positive (an assumption made below). By the above, a repeated
application of Q to ψ n + 1 times gives the non-trivial Qn+1ψ with eigenvalue
r − 2 < 0, in contradiction to the non-negativity of the spectrum of N . Thus,
σdisc(N) ⊆ 2N ∪ {0}. The reverse inclusion is obtained by considering the
sequence of eigenfunctions (

(Q∗)nψ1

)
n∈N∪{0}
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with eigenvalues λn = 2n respectively; where ψ1 = exp(−x2

2 ) ∈ L2(R) is an
eigenvector of N , with eigenvalue λ = 0. Thus,

σdisc(H) = σdisc(N) + 1 = {1, 3, 5, 7, . . . }

that is, the odd positive integers.

4.2 Solution

As we now know the eigenvalues take the form 2n + 1, we go about finding
corresponding eigenfunctions that solve the equation. We understand that re-
peated applications of Q∗ yield eigenfunctions with increased eigenvalues, and
repeated applications of Q lower the eigenvalues. We proceed as follows:
Consider the ground state solution ψ0 to:

−ψ′′ + x2ψ = λψ

such that Qψ0 = 0. This means that ( ddx + x)ψ0 = 0 =⇒ dψ0

dx + xψ0 = 0.
Therefore we have 1

ψ0
dψ0 = −xdx, easily yielding an initial solution ψ0 =

Ce
−x2

2 , from which we take e
−x2

2 as our initial solution.

Reinjecting this solution into the original differential operator ( d
2

dx2 + x2) yields

− d2

dx2
e

−x2

2 + x2e
−x2

2 = e
−x2

2

Thus, we have confirmed that our initial solution also gives rise to the lowest
eigenvalue in our sequence, such that λ0 = 1.
As mentioned earlier, finding the remaining eigenfunctions now reduces to ap-
plying Q∗ repeatedly to our initial solution.

Q∗e
−x2

2 = (− d

dx
+ x)e

−x2

2 = 2xe
−x2

2 = ψ1

This, when reinjected, also produces an eigenvalue λ1 = 3, adhering to the
expected sequence. One more iteration yields

ψ2 = Q∗ψ1 = (x− d

dx
)2xe

−x2

2 = (4x2 − 2)e
−x2

2 = (4x2 − 2)ψ0

A straightforward reinjection shows that this solution ψ2 has an eigenvalue
λ2 = 5. Additionally, a pattern begins to emerge where our solutions take the
form of a polynomial multiplied by our initial Gaussian function ψ0. This is
confirmed when we consider arbitrary many iterations:

ψn = (Q∗)
n
ψ0 = (x− d

dx
)nψ0

We proceed with an inductive argument to find ψn in general. Firstly, notice

that ψ0 corresponds to H0(x)e
− x2

2 , where Hn(x) denotes the nth Hermite poly-

nomial. Similarly, our computations for ψ1 and ψ2 yield solutions H1(x)e
− x2

2
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and H2(x)e
− x2

2 , respectively, suggesting that solutions take the form of a Her-

mite polynomial multiplied by e−
x2

2 .

Suppose that for some n, ψn = Hn(x)e
− x2

2 . We therefore have that

ψn+1 = Q∗ψn = (x− d

dx
)Hn(x)e

− x2

2

= xHn(x)e
− x2

2 −H ′
n(x)e

− x2

2 + xHn(x)e
− x2

2

= (2xHn(x)−H ′
n(x))e

− x2

2 = Hn+1(x)e
− x2

2

where in the final equality we have used the fact that the recurrence relation for
Hermite polynomials defines Hn+1(x) = 2xHn(x)−H ′

n(x). Thus, as ψ0 satisfies
the base case, the induction on n for ψn is complete.
All that is left to check is that ψn does indeed have eigenvalue λn = 2n+1. We
proceed by injecting our general solution into the Hamiltonian and solving for
λ:

(− d2

dx2
+x2)ψn = (− d2

dx2
+x2)Hn(x)e

− x2

2 = − d2

dx2
[Hn(x)e

− x2

2 ]+x2Hn(x)e
− x2

2

yielding

(Hn(x) + 2xH ′
n(x)−H ′′

n(x))e
− x2

2

We use the following property of Hermite polynomials to simplify:

H ′
n(x) = 2nHn−1(x)

Which when applied to the expression yields

(Hn(x)+4xnHn−1(x)−4n2Hn−2(x))e
− x2

2 = (Hn(x)+2n(2xHn−1(x)−2nHn−2(x)))e
− x2

2

Finally, we use the recurrence relation for Hermite polynomials: Hn(x) =
2xHn−1(x)− 2nHn−2(x):

(Hn(x)+2n(2xHn−1(x)−2nHn−2(x)))e
− x2

2 = (2n+1)Hn(x)e
− x2

2 = (2n+1)ψn

Thus confirming that each ψn takes eigenvalue λn = 2n+ 1, as expected.

5 Pöschl–Teller Potentials

In this section, we will be considering the Schrödinger operator

H = − d2

dx2
− ℓ(ℓ+ 1) sech2(x)

and its spectrum.
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5.1 Hamiltonian related to Q∗Q and QQ∗

Let’s denote the Hamiltonian operator with respect to ℓ by Hℓ, considering the
one-dimensional Schrödinger equation with a Pöschl-Teller potential:

Hℓψ = − d2

dx2
ψ − ℓ(ℓ+ 1)

cosh2 x
ψ = λψ

The lowest eigenfunction (eigenfunction corresponds to the most negative eigen-
value) is

ψ1 =
1

coshℓ x

Therefore, the creation and annihilation operators become:

Q =
d

dx
− ψ′

1

ψ1
=

d

dx
−

d
dx (sech

ℓ x)

sechℓ x
=

d

dx
− ℓ sechℓ−1 x(− sechx tanhx)

sechℓ x

=
d

dx
− ℓ tanhx sechℓ x

sechℓ x
=

d

dx
− ℓ tanhx

Q∗ = − d

dx
− ψ′

1

ψ1
= − d

dx
−

d
dx (sech

ℓ x)

sechℓ x
= − d

dx
− ℓ sechℓ−1 x(− sechx tanhx)

sechℓ x

= − d

dx
− ℓ tanhx sechℓ x

sechℓ x
= − d

dx
− ℓ tanhx

[7]
We compute the values of Q∗Q and QQ∗:

Q∗Q =

(
d

dx
− ℓ tanhx

)(
− d

dx
− ℓ tanhx

)
= − d2

dx2
− ℓ sech2 x+ ℓ2 tanh2 x

= − d2

dx2
− ℓ sech2 x+ ℓ2(1− sech2 x)

= − d2

dx2
+ ℓ2 − ℓ(ℓ+ 1) sech2 x

Q∗Q =

(
− d

dx
− ℓ tanhx

)(
d

dx
− ℓ tanhx

)
= − d2

dx2
+ ℓ sech2 x+ ℓ2 tanh2 x

= − d2

dx2
+ ℓ sech2 x+ ℓ2(1− sech2 x)

= − d2

dx2
+ ℓ2 − ℓ(ℓ− 1) sech2 x

Since we know

Hℓ = − d2

dx2
− ℓ(ℓ+ 1)

cosh2 x
= − d2

dx2
− ℓ(ℓ+ 1) sech2 x

Hℓ−1 = − d2

dx2
− ℓ(ℓ− 1)

cosh2 x
= − d2

dx2
− ℓ(ℓ− 1) sech2 x

13



The following relations of H, Q∗Q and QQ∗ can be deduced:

Q∗Q = Hℓ + ℓ2

QQ∗ = Hℓ−1 + ℓ2

5.2 Spectrum of the Hamiltonian

As seen in the previous section we have found a relation between Hℓ, Hℓ+1 and
the operators Qℓ and Q

∗
ℓ :

Q∗Q = Hℓ + ℓ2

QQ∗ = Hℓ−1 + ℓ2.

By using the property proved in section 3, that QQ∗ and Q∗Q have the same
eigenvalues. We can conclude that the spectrum of Hℓ coincides with the spec-
trum of Hℓ+1 except for the eigenvalue corresponding to the ground state. In
other words, ℓ eigenvalues are coming from the eigenvalues of the Hℓ operator
to which we apply Q∗

l+1 and one eigenvalue yields from the ground state, which
means Qℓ+1ψ = 0. We have seen in the previous sections that the eigenvalue
for the bounded solution for ℓ = 1 is λ = −1. Similarly for the case ℓ = 2, the
eigenvalues are λ = −1,−4. Therefore, by induction, for fixed ℓ, the eigenvalues
for the bounded solutions are λ = −1,−22, . . . ,−ℓ2.

5.3 ℓ = 0: Free Hamiltonian

In this case, H = − d2

dx2 ; it corresponds to the ’free’ particle in QuantumMechan-
ics, that is a particle under the influence of no external forces. One immediately
notices that the spectrum for this operator is likely to be radically different than
that of the harmonic oscillator due to the qualitatively different asymptotics of
the potentials in question. This can be seen by considering for k ∈ R arbitrary,
the function ψk = exp(ikx). It is plain that Hψk = k2ψk. But, ψk /∈ L2(R).

This necessitates the broadening of the definition of the ’spectrum’ of an oper-
ator that we have been suppressing in favour of the more naive definition for
linear operators on finite dimensional vector spaces. Using the theory developed
in previous sections, this can be made precise. We claim that such functions
are ’generalised eigenvectors’ in the sense that their eigenvalues belong to the
essential spectrum of H. In other words, we claim that [0,∞) ⊆ σess(H).

We begin, following [5], by constructing a suitable singular sequence for k ∈
[0,∞). Let w(x) = exp(ikx) and furthermore, let ψ(x) ∈ C∞

c (R) be the smooth
cutoff function that equals to unity inside the interval B1 = [−1, 1] and zero
outside the interval B2 = [−2, 2]. Existence is guaranteed, see [11]. Further
define ψ(x)n = ψ( xn ); note it equals to unity inside the interval Bn = [−n, n]

14



and zero outside the interval B2n = [−2n, 2n].

Now, set ηn = ψn(x)w(x) and cn = 1
||ηn|| . We claim that un = cnηn is the

desired singular sequence.

The fact that ||un|| = 1 is clear; to show that w − lim
n→∞

un = 0, it suffices to

consider ⟨f, un⟩ for f ∈ C∞
c (R) by density in L2(R). This follows from the

Cauchy-Schwartz inequality obeyed by the inner product on H = L2(R) as

|⟨f − fn, u⟩| ≤ ||f − fn|.|||u|| → 0

for a sequence fn ∈ C∞
c (R) converging strongly to f ∈ L2(R). Fix f ∈ C∞

c (R)
and consider the inner product

|⟨f, un⟩| =

∣∣∣∣∣
∫
B2n

f
ηn

||ηn||
dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Bn

f
1

||ηn||
dx

∣∣∣∣∣+
∣∣∣∣∣
∫
B2n\Bn

f
ηn

||ηn||
dx

∣∣∣∣∣
≤ ||f ||1

||ηn||
+

∣∣∣∣∣
∫
B2n\Bn

f
ηn

||ηn||
dx

∣∣∣∣∣→ 0

as ||ηn|| ≥
√∣∣∣∫Bn

dx
∣∣∣ = √

2n and due to the compactness of the support of f ,

∣∣∣∣∣
∫
B2n\Bn

f
ηn

||ηn||
dx

∣∣∣∣∣ = 0

for sufficiently large n such that supp(f) ⊆ Bn.

To finish the proof of the claim, it suffices to show that

||Hun − kun|| → 0

as n→ ∞. Now,

||Hun − kun||2 =

∫
R

∣∣∣∣∣∣
(
− d2

dx2
− k

)
ηn

||ηn||

∣∣∣∣∣∣
2

dx

=
1

||ηn||2

∫
Bn

∣∣∣∣∣∣
(
− d2

dx2
− k

)
w(x)

∣∣∣∣∣∣
2

dx+

∫
B2n\Bn

∣∣∣∣∣∣
(
− d2

dx2
− k

)
ψnw(x)

∣∣∣∣∣∣
2

dx


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The first integral vanishes due to w(x) = exp(ikx) which plainly yields that∣∣∣∣(− d2

dx2 − k
)
w(x)

∣∣∣∣ = 0,∀x ∈ R. Thus,

||Hun − kun||2 =
1

||ηn||2

∫
B2n\Bn

∣∣∣∣∣∣
(
− d2

dx2
− k

)
ψnw(x)

∣∣∣∣∣∣
2

dx



=
1

||ηn||2

∫
B2n\Bn

∣∣∣∣∣∣
(
−d

2ψn
dx2

w(x)− 2
dψn
dx

dw(x)

dx
− d2w(x)

dx2
ψn(x)− kψnw(x)

)∣∣∣∣∣∣
2

dx



=
1

||ηn||2

∫
B2n\Bn

∣∣∣∣∣∣
(
−d

2ψn
dx2

w(x)− 2
dψn
dx

dw(x)

dx

)∣∣∣∣∣∣
2

dx


by the product rule for one-dimensional functions and again that

∣∣∣∣(− d2

dx2 − k
)
w(x)

∣∣∣∣ =
0,∀x ∈ R. Using the Cauchy-Schwarz inequality for the inner product, we get

||Hun−kun||2 ≤ 2

||ηn||2

∫
B2n\Bn

∣∣∣∣∣d2ψndx2
w(x)

∣∣∣∣∣
2

dx+

∫
B2n\Bn

∣∣∣∣2dψndx dw(x)

dx

∣∣∣∣2 dx


=
2

||ηn||2

∫
B2n\Bn

∣∣∣∣∣d2ψndx2

∣∣∣∣∣
2

dx+

∫
B2n\Bn

∣∣∣∣2dψndx dw(x)

dx

∣∣∣∣2 dx


=
2

||ηn||2

∫
B2n\Bn

∣∣∣∣∣d2ψndx2

∣∣∣∣∣
2

dx+ 4k2
∫
B2n\Bn

∣∣∣∣dψndx
∣∣∣∣2 dx


The fact that ψ(x) ∈ C∞

c (R) means that dψ(x)
dx , d

2ψ(x)
dx2 are continuous and com-

pactly supported, thus bounded by some M < ∞ in absolute value. Thus, in
conjunction with the chain rule, one obtains∣∣∣∣dψ(x)dx

∣∣∣∣ ≤ M

n
,

∣∣∣∣∣d2ψ(x)dx2

∣∣∣∣∣ ≤ M

n2

This enables us to give the following bound

||Hun − kun||2 ≤ 2

2n

[
2n
M2

n4
+ 4k22n

M2

n4

]

= 2

[
M2

n4
+ 4k2

M2

n4

]
→ 0

as n→ ∞ completing the proof of the claim.
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5.4 ℓ = 1:

For the case ℓ = 1, the equation is

−ψ′′ − 2

cosh2(x)
ψ = λψ (1)

and our Hamiltonian is H1 = − d2

dx2 − 2
cosh2(x)

.

For this equation, the creation and annihilation operators are as below:

Q1 =
d

dx
− ψ′

1

ψ1
=

d

dx
− − sinh(x) sech2(x)

sech(x)
=

d

dx
+ tanh(x) (2)

Q∗
1 = − d

dx
− ψ′

1

ψ1
= − d

dx
− − sinh(x) sech2(x)

sech(x)
= − d

dx
+ tanh(x) (3)

[7]
According to the previous parts, and according to [4] the spectrum of H1 is the
same as that of H0 except for the 0 eigenvalue. Thus, we can see that there
exists a continuum of eigenvalue and eigenfunctions for positive eigenvalues.[4]
When (Q∗

1Q1)ψ = 0, it is another eigenfunction of H1. Since we have H1 =
Q∗

1Q1 + ℓ2 = Q∗
1Q1 + 1, and

(Q∗
1Q1)ψ = 0 ⇒ (H1 + 1)ψ = 0 ⇒ H1ψ = −ψ

such ψ is an eigenfunction with eigenvalue −1. And it satisfies the differential
equation

(
d

dx
+ tanhx)ψ = 0

hence we have ψ
(0)
1 = N1sechx.[4]

And the solutions corresponding to the continuum can be obtained by applying
Q∗

1 to the continuum eigenfunctions of H0. That is,

Q∗
1 exp(ikx) = (− d

dx
+ tanhx) exp(ikx) = exp(ikx)(ik + tanhx)

5.5 ℓ = n, n ∈ N
Similar to the previous case, for a ℓ = n, there is a continuum for positive
eigenvalues. And there is going to be n negative eigenvalues for Hn.[4]
The n eigen values are {−j2 | 1 ≤ j ≤ n}. When (Q∗

1Q1)ψ = 0, we get the
eigenfunction with eigenvalue −n2, similar to the case for ℓ = 1,

(Q∗
nQn)ψ = 0 ⇒ (Hn + n2)ψ = 0 ⇒ H1ψ = −n2ψ

And such a function is the solution of the differential equation(
d

dx
+ n · tanhx

)
ψ = 0
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that is, Nn sech
n x.[4]

While the eigenfunctions and eigenvalues {−j2 | 1 ≤ j ≤ (n− 1)} are obtained
by applying Q∗ to the eigenfunction with eigenvalue −j2 of operator Hj for
cases that ℓ = j for j ∈ {1, 2, ..., n− 1}, which have the form

(
d

dx
+ n tanh(x))Nj sech

j(x) = −Njj sinh(x) sechj+1(x) + nNj tanh(x) sech
j(x)

The eigenfunctions for the continuum can be obtained by the same method as
in the case for ℓ = 1: by repeatedly applying Q∗

n to their counterparts for the
equation with ℓ = n− 1. That is,

(− d

dx
+ n tanh(x))n exp(ikx)

5.6 Eigenstates for general ℓ: Legendre functions

Section 5.5 outlines a general method for now finding all solutions for integer
values of ℓ. Recall that relationships between Q∗Q and QQ∗ imply that the
Hamiltonians with respect to each ℓ have the same spectrum, with the excep-
tion of the ground state case. This also holds true for the essential spectrum
σess = [0,∞). In the ℓ = 1 case we have already computed the eigenfunctions
as being exp(ikx), and in section 5.3 we have already shown the solution for
the essential spectrum, which is not technically admissible as it lies outside of
L2(R).
Calculating the bound state solutions, on the other hand, is rather straightfor-
ward. As we know that for each ℓ, σdisc(Hℓ) ⊃ σdisc(Hℓ−1). Where the proper
superset property is provided based off of the fact that σdisc(Hℓ) contains ex-
actly one more element than σdisc(Hℓ−1), namely when Qℓ = 0. In this sense,
the solutions follow a recursive pattern, where for any ℓ + 1, ℓ solutions are
provided by raising existing solutions using the creation operator Q∗

ℓ , and 1
additional solution is provided by calculating the ground state for each ℓ, such

that Qψ
(ℓ+1)
1 = 0. Furthermore, the eigenvalue of each state is preserved (by

definition), and the energy value of each ground state is given by:

Qℓψ
(ℓ)
1 = 0 =⇒ [

d

dx
+ ℓ tanhx]ψ

(ℓ)
1 = 0 =⇒ ψ

(ℓ)
1 = sechℓx

A straightforward reinjection shows that the ground state eigenvalue is equal
to −ℓ2, and so we deduce that the eigenvalues for each ℓ are exactly the set
σℓ = {−m2|m ∈ N,m ≤ ℓ}
We consider now the general form of the eigenfunctions for arbitrary ℓ, each of

which will be denoted by ψ
(ℓ)
n , where n indexes each eigenfunction in terms of

ascending eigenvalues. Clearly, as the eigenvalues are a decreasing sequence, we
wish to move backwards - that is, we begin with the ground state for ℓ, then
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the eigenfunction inherited from the ground state of ℓ− 1, and so on.
The sequence is thus as follows:

ψ
(ℓ)
1 , ψ

(ℓ)
2 = Q∗

ℓψ
(ℓ−1)
1 , ψ

(ℓ)
3 = Q∗

ℓψ
(ℓ−1)
2 = Q∗

ℓQ
∗
ℓ−1ψ

(ℓ−2)
1

And in general, a pattern forms where the nth solution can be reduced to:

ψ(ℓ)
n = Q∗

ℓQ
∗
ℓ−1 . . . Q

∗
ℓ−n+2ψ

(ℓ−n+1)
1

Which can be further expanded to:

ψ(ℓ)
n = (− d

dx
+ℓ tanhx)(− d

dx
+(ℓ−1) tanhx) . . . (− d

dx
+(ℓ−n+2) tanhx)ψ

(ℓ−n+1)
1

And so we have devised a system for calculating the bound states of the sys-
tem through application of computationally simple operators to known ground
states. The derivation of the closed form solution, as associated Legendre poly-
nomials, however, requires more calculus which will be addressed further on.

5.7 Non-reflectivity

• explicit calculation for case ℓ = 1
As seen in the previous part, we find the explicit solution for ℓ = 1 from
ψ1(x) = Q∗

ℓψ1, which gives us that

ψ1(k, x) = (k + i tanhx) exp(ikx).

To observe the continuum states, we apply the usual parametrization of
the form

lim
x→−∞

ψ(k, x) = eikx +R(k)e−ikx

lim
x→∞

ψ(k, x) = T (k)eikx,

where the function R(k) is the reflection coefficient and T (k) is the trans-
mission coefficient. Applying these to the solution ψ1, we obtain:

lim
x→−∞

ψ1(k, x) = (k − i)eikx

lim
x→∞

ψ(k, x) = (k + i)eikx,

hence we obtain that the reflection coefficient is R(k) = 0, in other words
the equation is reflectionless, and the transmission coefficient is T (k) =
k+i
k−i (or T (k) = exp (2i) tan−1( 1k )).
For the case l = 2, we obtain

ψ2 = Q∗
2ψ1 = (−i d

dx
+2i tanhx)(k+i tanhx)eikx = (1+k2+3i tanhx−3 tanh2 x)eikx.
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Proceeding with the same computations, we obtain that R(k) = 0, which
implies that the equation is reflectionless and

T (k) =
(k + i)(k + 2i)

(k − i)(k − 2i)
= exp(2i(tan−1

(
1

k

)
+ tan−1

(
2

k

)
)).

• Transmission coefficient
We apply this argument to the general case for ℓ, aiming to prove that
the equation is reflectionless, which in other words means that R(k) = 0
and to find a general form of the transmission coefficient T (k).
From the previous section, we can find that

ψℓ(k, x) = Q∗
ℓψℓ−1(k, x).

Hence, if we take the limits to −∞ and ∞, we obtain

lim
x→−∞

ψℓ(k, x) = lim
x→−∞

(
−i d
dx

+ ℓi tanhx

)
ψℓ−1

= −i d
dx

(
T (ℓ− 1)eikx

)
+ ℓi tanhxT (ℓ− 1)eikx

= kT (ℓ− 1) + ℓiT (ℓ− 1))eikx = (k + ℓi)T (ℓ− 1)eikx

and

lim
x→∞

ψℓ(k, x) = lim
x→∞

(
−i d
dx

+ ℓi tanhx

)
ψℓ−1

= −i d
dx

(
T (ℓ− 1)eikx

)
+ ℓi tanhxT (ℓ− 1)eikx

= (kT (ℓ− 1)− ℓiT (ℓ− 1))eikx = (k − ℓi)T (ℓ− 1)eikx.

Therefore, we can conclude that the transmission coefficient is T (ℓ) =
k+ℓi
k−ℓiT (ℓ− 1), which implies that

T (ℓ) =
(k + i)(k + 2i) . . . (k + ℓi)

(k − i)(k − 2i) . . . (k − ℓi)
= exp

2i

ℓ∑
j=1

tan−1(
j

ℓ
)

 .

On the other hand, we obtain that R(k) = 0, which again implies that the
equation is reflectionless. In the context of the physical world, the solution
is a travelling wave to the right with no reflected wave. Also notice that

lim
x→∞

|ψℓ(x)|2 = lim
x→−∞

|ψℓ(x)|2,

which implies that any particle coming from the left side will pass straight
through to the right with no reflection.
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5.8 Alternative Solution to the Poschl-Teller Potential

There is an alternative approach towards solving the Poschl-Teller potential
without usage of the Creation and Annihilation operators, and it yields solutions
in closed form, which is not straightforward using the Creation and Annihilation
operators. Consider once again Schrodinger’s equation with a Poschl-Teller
Potential:

−ψ′′ − ℓ(ℓ+ 1)

cosh2 x
ψ = λψ

And the substitution u = tanhx [1]. From this substitution we consider now
the following associated equalities:

x = tanh−1 u,
1

cosh2 tanh−1 x
= 1− x2,

d

dx
tanh−1 x =

1

1− x2

Therefore we now have:

ψ′′ =
d

dx

[
dψ

dx

]
= (1−u2)

d

du

[
(1− u2)

dψ

du

]
= (1−u2)2

d2ψ

du2
+(1−u2)(−2u

dψ

du
)

And so the entire Poschl-Teller equation can be rewritten as:

−(1− u2)

[
(1− u2)

d2ψ

du2
− 2u

dψ

du

]
− ℓ(ℓ+ 1)(1− u2)ψ − λψ = 0

Simplification yields

(1− u2)
d2ψ

du2
− 2u

dψ

du
+

[
ℓ(ℓ+ 1) +

λ

1− u2

]
ψ = 0

Defining λ = −µ2 finally yields:

(1− u2)ψ′′ − 2uψ′ +

[
ℓ(ℓ+ 1)− µ2

1− u2

]
= 0

And this happens to exactly be the Legendre equation, whose solutions in gen-
eral are written in the form ψ(u) = Pµℓ (u), where P

µ
ℓ denotes the associated

Legendre polynomial, which is admissible in the case where ℓ is an integer, which
is assumed to be true.
Thus, our solution reads:

ψ(x) = Pµℓ (tanhx), λ = −µ2

And in general, µ = 1, 2, 3 . . . ℓ− 1, ℓ.
One major point to notice is that this solution does not independently give way
to the same free particle solutions as the prior method, in that the substitution
solution only allows for bound state eigenvalues (note that the substitution
λ = −µ2 restricts λ exclusively to negative integers).
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6 Coulomb potential

6.1 The operator and spectrum of the Hamiltonian

It can be verified that the function ψ1 = rℓ+1e−
κr

2(ℓ+1) is a solution for the
equation, for some λ.[8]

The Hamiltonian for ℓ is

Hℓ = − d2

dr2
+
ℓ(ℓ+ 1)

r2
− κ

r
(4)

As in the previous cases, we define the operators for the Darboux Transforma-
tion, for a fixed arbitrary ℓ as below:

Qℓ =
d

dr
−

dψ1

dr

ψ1
=

d

dr
− ℓ+ 1

r
+

κ

2(ℓ+ 1)
(5)

Q∗
ℓ = − d

dr
−

dψ1

dr

ψ1
= − d

dr
− ℓ+ 1

r
+

κ

2(ℓ+ 1)
(6)

[8]
Applying (3) and (4) to a function ψ, we can obtain:

(Q∗
ℓQℓ)ψ =

(
− d

dx
− ℓ+ 1

r
+

κ

2(ℓ+ 1)

)(
d

dr
− ℓ+ 1

r
+

κ

2(ℓ+ 1)

)
ψ

= −d
2ψ

dr2
+

d

dr

(
ℓ+ 1

r
ψ

)
− d

dr

(
− κ

2(ℓ+ 1)
ψ

)
− ℓ+ 1

r

dψ

dr
+

(ℓ+ 1)2

r2
ψ − κ

2r
ψ

+
κ

2(ℓ+ 1)

dψ

dr
− κ

2r
ψ +

κ2

4(ℓ+ 1)2
ψ

= −d
2ψ

dr2
+
ℓ(ℓ+ 1)

r2
− κ

r
ψ +

κ2

4(ℓ+ 1)2
ψ

(7)

and

(QℓQ
∗
ℓ )ψ =

(
d

dx
− ℓ+ 1

r
+

κ

2(ℓ+ 1)

)(
− d

dr
− ℓ+ 1

r
+

κ

2(ℓ+ 1)

)
ψ

= −d
2ψ

dr2
− d

dr

(
ℓ+ 1

r
ψ

)
+

d

dr

(
− κ

2(ℓ+ 1)
ψ

)
+
ℓ+ 1

r

dψ

dr
+

(ℓ+ 1)2

r2
ψ − κ

2r
ψ

− κ

2(ℓ+ 1)

dψ

dr
− κ

2r
ψ +

κ2

4(ℓ+ 1)2
ψ

= −d
2ψ

dr2
+

(ℓ+ 1)(ℓ+ 2)

r2
− κ

r
ψ +

κ2

4(ℓ+ 1)2
ψ

(8)

Comparing the Hamiltonian Hℓ, Qℓ and Q∗
ℓ , we can establish the following

relations:

Q∗
ℓQℓ = Hℓ +

κ2

4(ℓ+ 1)
(9)
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QℓQ
∗
ℓ = Hℓ+1 +

κ2

4(ℓ+ 1)
(10)

Thus, we can deduce the relation between the spectrum of Hℓ and QℓQ
∗
ℓ , Q

∗
ℓQℓ:

σ(Hℓ) = σ(Q∗
ℓQℓ)−

κ2

4(ℓ+ 1)2
(11)

and

σ(Hℓ) = σ(Qℓ−1Q
∗
ℓ−1)−

κ2

4(ℓ+ 1)2
(12)

The kernel of Q∗
ℓQℓ are therefore eigenfunctions of Hℓ with eigenvalue − κ2

4(ℓ+1)2 ,

and similarly, the kernel of QℓQ
∗
ℓ are eigenfunctions of Hℓ+1 with eigenvalue

− κ2

4(ℓ+1)2 . The spectrum of Hℓ is equal to the spectrum of Hℓ+1 apart from the

the added eigenvalue, which comes from the ground state of Hℓ+1 (similar to the
case of the Poschl-Teller equation). Out of the ℓ+1 eigenvalues, ℓ are obtained
by applying the operator Q to the previously existing solutions and 1 additional
value obtained by calculating the ground state, Qℓ+1ψ = 0.

The final Schrödinger operator to be considered is

H = − d2

dr2
+
ℓ(ℓ+ 1)

r2
− κ

r

with ℓ > − 1
2 , κ > 0 and its discrete spectrum corresponding to the bound, that

is normalisable, or in L2(R).

6.2 Asymptotics of eigen-functions of bound states

Having the goal of computing the discrete spectrum and its corresponding family
of eigen functions corresponding to ’bound’ states in the physics literature, we
shall follow [12] consider the following limiting situations r → ∞ and r → 0 in
the eigenvalue problem

Hψ = −d
2ψ

dr2
+
ℓ(ℓ+ 1)ψ

r2
− κψ

r
= λψ

with λ ∈ (−∞, 0]. First, we first consider the limit as r → ∞ and obtain

Hψ = O

(
1

r

)
ψ ∼ − d2

dr2
ψ = λψ

which yields
ψ ∼ exp(±

√
−λr)

as r → ∞ [3]. The solutions with asymptotics exp(
√
λr) for large r are discarded

as they yield non-normalisable solutions, that is not in L2(R). Thus, we restrict
our attention to normalisable eigenfunctions of the form ψ = exp(−

√
λr)η(r),

that satisfy [
− d2

dr2
+
ℓ(ℓ+ 1)

r2
− κ

r
− λ

]
ψ = 0
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which, when one substitutes ψ yields[
− d2

dr2
+ 2

√
−λ d

dr
+
ℓ(ℓ+ 1)

r2
− κ

r
− λ

]
η = 0

Assuming η ∼ rs as r → 0 gives upon substitution to the above

s(s− 1)rs−2 + 2
√
−λsrs−1 + ℓ(ℓ+ 1)rs−2 − κrs−1 − λrs = 0[

s(s− 1)
1

r2
+ 2

√
−λs1

r
+ ℓ(ℓ+ 1)

1

r2
− κ

1

r
− λ

]
rs = 0

Taking r → 0, we neglect terms of order O
(
1
r

)
) and obtain

s(s− 1) = ℓ(ℓ+ 1)

giving two solutions for s, namely s = −ℓ, ℓ + 1. The first solution yields a
divergent solution, near r = 0 and so is discarded. Thus, s = ℓ + 1 and we
obtain η(r) ∼ rℓ+1 as r → 0. This prompts us to consider the following yielding

ψ = exp(−
√
λr)η(r) = rℓ+1 exp(−

√
λr)

∞∑
q=0

cqr
q

6.3 Power series solution

From above we are looking for a solution for

η(r) = rℓ+1
∞∑
q=0

cqr
q

Substituting η into the equation[
− d2

dr2
+ 2

√
−λ d

dr
+
ℓ(ℓ+ 1)

r2
− κ

r
−

]
η = 0

we obtain

∞∑
q=0

[−(q + ℓ+ 1)(q + ℓ)cqr
q+ℓ−1 + 2

√
−λ(q + ℓ+ 1)cqr

q+ℓ

+ℓ(ℓ+ 1)cqr
q+ℓ−1 − κcqr

q+ℓ] = 0

By combining the terms that contain the same power of r,

∞∑
q=0

[
−q(q + 2ℓ+ 1)cqr

q+ℓ−1 + (2
√
−λ(q + ℓ+ 1)− κ)cqr

q+ℓ
]
= 0
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Then, shifting the summation index q → q − 1 [3] in the second term rq+ℓ of
the above sum, the equation becomes:

∞∑
q=0

[
−q(q + 2ℓ+ 1)cq + (2

√
−λ(q + ℓ)− κ)cq−1

]
rq+ℓ−1 = 0

Therefore, we deduce that

−q(q + 2ℓ+ 1)cq + (2
√
−λ(q + ℓ)− κ)cq−1 = 0

and this is a recursion relation between the coefficients of the Taylor expansion
of

η(r)

rℓ+1
=

∞∑
q=0

cqr
q

Considering the limit as q → ∞,

q(q + 2ℓ+ 1)cq = (2
√
−λ(q + ℓ)− κ)cq−1

cq
cq−1

=
2
√
−λ(q + ℓ)− κ

q(q + 2ℓ+ 1)

cq
cq−1

∼ 2
√
−λ
q

, cq ∼
(2
√
−λ)q

q!

The asymptotic behaviour for cq yields a solution η(r) ∼ rℓ+1exp(2
√
−λr),

which conversely, yielding a ψ that is non-normalisable. Hence, there must be
cq ̸= 0 for some finite value of q (denoting them by q = n > 0), according to the
equation

−q(q + 2ℓ+ 1)cq + (2
√
−λ(q + ℓ)− κ)cq−1 = 0

this can only happen if:

2
√
−λ(q + ℓ)− κ = 0 =⇒ 2

√
−λ =

κ

n+ ℓ
=⇒ λ = − κ2

4(n+ ℓ)2

As a result, the expansion in η(r) = rℓ+1

∞∑
q=0

cqr
q only contains a finite number

of terms, and it is therefore, a polynomial in r of finite order n. We can also see
that as

Hψ = λψ and λ = − κ2

4(n+ ℓ)2
,

the spectrum is discrete, and

σdisc(Hℓ) = − c

(n+ ℓ)2
,∀n ∈ N.
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6.4 Laguerre polynomials

We have found in the previous section that the solution has to be of the form

ψℓ,m = rℓ+1e−
κr

2(ℓ+1) fm,

where fm is a polynomial of degree m = n, n− 1, . . . , 1, 0 corresponding to the
states of ℓ = 0, 1, . . . , n − 1. We substitute this form of the solution into the
modified equation (

− d2

dr2
+ 2

√
−λ+

ℓ(ℓ+ 1)

r2
− κ

r

)
η = 0

where η = rℓ+1f and f is a polynomial of order n. Firstly, we compute the

derivatives of η, we have η′ = rℓ+1
(
ℓ+1
r f + f ′

)
and η′′ = rℓ+1

(
ℓ(ℓ+1)
r2 + 2 ℓ+1

r f ′ + f ′′
)
.

Hence the differential equation from above becomes

− f ′′ − 2(ℓ+ 1)

r
f +

2(ℓ+ 1)
√
−λ

r
f + 2

√
−λ− κ

r
f = 0

⇐⇒ rf ′′ + f ′(2ℓ+ 2− 2
√
−λr) + f((ℓ+ 1)2

√
−λ− κ) = 0

which is similar to the equation of the Laguerre polynomials

xLαn(x)
′′ + (α+ 1− x)Lαn

′ + nLαn = 0.

We aim to find suitable substitutions for r such that our differential equation
becomes of the form

xy′′ + (1 + k − x)y′ + jy = 0,

which gives us as the solution the Laguerre polynomial Lkj .

Notice that ykj (x) = e−x/2x
k+1
2 Lkj (x) solves the equation

ykj
′′ +

(
−1

4
+

2j + k + 1

2x
− k2 − 1

4x2

)
ykj = 0. (13)

We can easily compute the derivatives of ykj . For the simplicity of writing we

denote ykj = y and Lkj = v. We have:

y′ = e−x/2x
k+1
2

(
−1

2
v +

k + 1

2x
v + v′

)
⇐⇒ ex/2x−

k+1
2 y′ = −1

2
v +

k + 1

2x
v + v′

ex/2x−
k+1
2 y′′ = −1

2
v′ − k + 1

2x2
v′ + v′′ +

1

4
v − k + 1

4x
v − 1

2
v′ − k + 1

4x
+

(k + 1)2

4x2
v +

k + 1

2x
v.

If we plug this in the 13, we obtain:

−1

2
v′−k + 1

2x2
v′+v′′+

1

4
v−k + 1

4x
v−1

2
v′−k + 1

4x
+
(k + 1)2

4x2
v+

k + 1

2x
v+

(
−1

4
+

2j + k + 1

2x
− k2 − 1

4x2

)
v = 0
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which reduces itself after simplifications to

v′′ − v′ +
k + 1

x
v′ +

j

x
v = 0 ⇐⇒ xv′′ + (k + 1− x)v′ + jv = 0.

Hence, if our solution is of the form ϕ = e−x/2x
k+1
2 v, then v = Lkj is a Laguerre

polynomial.
It remains to find suitable substitutions which can lead us to the exact form
of the differential equation which is solved by the Laguerre polynomial. The
method used is based on the idea found in the article [12]. Let us start again
from the initial equation

−d
2ψ

dr2
+
ℓ(ℓ+ 1)ψ

r2
− κψ

r
− λψ = 0, (14)

where λ = − κ2

4(ℓ+n)2 . We make the change of variable x = r κ
ℓ+n . Let us

denote κ
n+ℓ = ϵ. Hence the derivatives will bedr = dx

ϵ and d2ψ(r)
dr2 = ϵ2 d

2ψ(x)
dx2 .

Therefore 14 becomes

ϵ2
d2y(x)

dx2
+

(
κϵ

x
− ϵ2

4
+ ϵ2

ℓ(ℓ+ 1)

x2

)
y(x) = 0

y′′ +

(
−1

4
+

κ

ϵx
− ℓ(ℓ+ 1)

x2

)
y = 0.

Notice that that we can put the condition

ℓ(ℓ+ 1) =
k2 − 1

4
⇐⇒ k = 2ℓ+ 1

and
κ

ϵ
=

2j + k + 1

2
.

Hence, using this change of notations we obtain that our solution is of the form

ykj (x) = e−x/2x(k+1)/2Lkj (x).

Another way of writing the coefficients is by using k = 2ℓ + 1, which implies
that 2j+k+1

2 = j + ℓ+ 1 = n. Hence the Laguerre polynomial can be written as

follows L2ℓ+1
n−ℓ−1, provided that n− ℓ− 1 is not a negative integer, in other words

ℓ = 0, 1, . . . , n − 1. Additionally 2ℓ + 1 > 0 (by a condition of the Laguerre
polynomial), which is true by the initial condition of ℓ > − 1

2 .

6.5 Darboux Solution

We understand from the discussion regarding the Hamiltonian that Q and Q∗

behave similarly to the Poschl-Teller potential, in that Q∗Q and QQ∗ yield

Hℓ +M and Hℓ+1 +M , respectively, where M denotes the constant κ2

4(ℓ+1)2
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This relationship allows us to approach the problem in a similar manner to the
Poschl-Teller potential, in that we know that for each ℓ, Hℓ has the same spec-
trum as Hℓ+n, where n ∈ Z, excluding the case in which λ = 0.

We begin by applying the same method as the Poschl-Teller case, finding the
ground state for generic ℓ

Qℓψ
(ℓ)
1 = 0 =⇒ (

d

dr
− ℓ+ 1

r
+

κ

2(ℓ+ 1)
)ψ

(ℓ)
1 = 0

And up to a multiplicative constant, it is quick to verify that ψ
(ℓ)
1 = rℓ+1e−

κ
2(ℓ+1)

satisfies this equation for arbitrary ℓ and κ.

We now seek to determine how applications of Q∗ influences the solution

ψ
(ℓ)
1 , ψ

(ℓ)
2 , ψ

(ℓ)
3 . . .

Q∗
ℓ+1−−−→ ψ

(ℓ+1)
2 , ψ

(ℓ+1)
3 , ψ

(ℓ+1)
4 , . . .

Q∗
(ℓ+2)−−−−→ ψ

(ℓ+2)
3 , , ψ

(ℓ+2)
4 , ψ

(ℓ+2)
5 ,

And in this process a method of recovering ψ
(ℓ)
n reveals itself, by applying

operators Q∗
n strategically. Indeed, application of Q∗

l+1 shifts the state from l
to l + 1, and also increases the excitement state of the particle. Explicitly:

ψ(ℓ)
n = Q∗

ℓψ
(l−1)
n−1 = Q∗

ℓQ
∗
ℓ−1...Q

∗
ℓ−n+2ψ

ℓ−n+1
1

And in general this yields:

ψ(ℓ)
n =

(
− d

dr
− ℓ+ 1

r
+

k

2(ℓ+ 1)

)(
− d

dr
− ℓ

r
+

k

2(ℓ)

)
. . .

(
d

dr
− ℓ− n

r
+

k

2(ℓ− n)

)
rℓ+1e−

κr
2(ℓ+1)

As with the harmonic oscillator case, we can approach these solutions as being
Laguerre Polynomials multiplied by the ground state inductively.

7 The ground state has no zero

Considering again the one-dimensional Schrödinger equation for some potential
V (x):

−ψ′′ + V (x)ψ = λψ

An interesting result is that the ground state of the equation never assumes the
value zero (i.e. the eigenfunction ψ1 corresponding to the lowest eigenvalue λ1
is non-zero). And we can prove this result by contradiction.
Since we are working with the L2 space, we may scale a solution ψ with a
constant and have

∫
|ψ|2dx = 1.

Then multiplying our equation by ψ on both sides :

(−ψ′′ + V (x)ψ)ψ = (λψ)ψ
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Taking λ to be the lowest eigenvalue λ1 and integrating both sides with respect
to x from −∞ to ∞:∫ ∞

−∞
(−ψ′′ + V (x)ψ)ψ dx =

∫ ∞

−∞
(λ1ψ)ψ dx∫ ∞

−∞
(−ψψ′′ + V |ψ|2)dx = λ1

∫ ∞

−∞
|ψ|2dx

Integrating
∫∞
−∞(ψψ′′)dx by parts:

u = ψ, dv = ψ′′dx, du = ψ′dx, v = ψ′∫ ∞

−∞
(ψψ′′)dx = [ψψ′]∞−∞ −

∫ ∞

−∞
|ψ′|2dx

[−ψψ′]∞−∞ +

∫ ∞

−∞
(|ψ′|2 + V |ψ|2)dx = λ1 · 1

Therefore, we obtain

λ1 = inf
ψ,ψ′∈L2(R)

∫ ∞

−∞
(|ψ′|2 + V |ψ|2)dx

as λ1 is the smallest eigenvalue[6].

Then we define ϕ = ψ+|ψ|
2 , the equation of λ1 above also holds true for ϕ[6].

As a result, ϕ must also be an eigenfunction with the eigenvalue λ1, because
the infimum of the spectrum λ1 is achieved on the Sobolev class (H denotes the
Hilbert space):

H1(R) = {ψ : ∥ψ∥L2 + ∥ψ′∥L2 <∞}

[6]

However, when ψ is negative, ϕ = ψ+|ψ|
2 = ψ−ψ

2 = 0, and this is impossible
for ϕ to be an eigenfunction with the same eigenvalue λ1 as the ground state ψ
because a part of ϕ is identically zero, and if a function f satisfies the Schrodinger
equation and that both f = 0 and f ′ = 0 at a point, then f is the constant zero
function.[2]
This is a contradiction, as ϕ is positive where ψ > 0, while it is also required
that ψ is identially zero.
Thus, the ground state ψ of the one-dimensional Schrödinger equation cannot
have a value zero.
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