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Following the lecture notes and [1], let Xt be a n-dimensional Itô process. That is,

dXt = b(t,Xt)dt +σ (t,Xt)dWt, X0 = x,

where b(·, ·) : [0,T ] ×Rn → R
n and σ (·, ·) : [0,T ] ×Rn → R

n×m, measurable vector
and matrix valued functions respectively. In lectures, we have seen that the multi-
dimensional Itô formula for the transformation V (t,x) ∈ C1,2([0,T ],Rn) is

dV (t,Xt) =
∂V
∂t

dt +
n∑
i=1

∂V
∂xi

dXi +
1
2

n∑
i,j=1

∂2V
∂xi∂xj

dXi · dXj (1)

where dXi · dXj is computed using the convention dWi · dWj = δijdt,dt · dWi =
0,dt · dt = 0, where Wi , i = 1, . . . ,m are the components of an m-dimensional Brown-
ian motion.

Problems

Question 1

Part (i)

Let Xt solve the Itô SDE

dXt = (m−Xt)dt + σdWt, X0 = x (2)

Find a closed form for Xt.

Part (ii)

CSuppose x is deterministic. Compute the mean and variance of Xt.

Part (iii)

Compute the second moment of Xt for more general initial conditions X0 indepen-
dent of the Brownian motionWt driving 11.

Part (iv)

Find the law of Xt and compute asymptotically the weak limit of the law of Xt as
t→∞.
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Question 2

Part (a)

ai)

Find the generator of the Fokker-Planck equation corresponding to the linear SDE

dXt = b(Xt)dt + σ (Xt)dWt, X0 = x (3)

where b(Xt) = µXt and σ (Xt) = σXt.

aii)

Consider for n ≥ 1,n ∈N, Mn
t = (Xt)n, where Xt is a solution to (12). Compute the

n−th moment E[Xn
t ].

aiii)

Suppose that for all t > 0, Xt > 0 a.s. where the process Xt solves SDE (12). By
considering the SDE satisfied by the process consider g(t,Xt) = log(Xt) ∈ C2, find a
closed form expression for Xt.

aiv)

Consider the Stratonovich interpretation of (12), namely

dXt = µXtdt + σXt ◦ dWt. (4)

Obtain the equivalent Itô SDE corresponding to 13 .

Part (b)

Consider the SDE:
dXt = f (t)Xtdt + h(t)XtdWt, X0 = x

for f ,h continuous. By considering the SDE that the process V (Xt, t) = log(Xt) find a
closed form expression for Xt.

Part(c)

Suppose Xt solves the SDE

dXt = b(Xt)dt +XtdWt

Find the transformed SDE that log(Xt) satisfies.
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Part (d)

Suppose now that Xt is a solution to

dXt =

c+ 1
2

n∑
j=1

αj

Xtdt +Xt

n∑
j=1

αjdWj(t)

By considering the function V (x, t) = log(x), solve the SDE.

Question 3

Part (a)

Find a solution to the SDE

dXt = dt +2
√
XtdWt,X0 = 0 a.s.

Part (b)

Suppose that Xt is a solution to the SDE:

dXt =
(1
4
−Xt

)
dt +

√
XtdWt, X0 = x.

Find a closed form expression for Xt.

Question 4

Part (a)

Let Y1,Y2 be:
Y1(t) = cos(Wt), Y2(t) = sin(Wt),

where Wt is a standard one-dimensional Brownian motion. Find a system of SDEs
satisfied by (Y1,Y2).

Part (b)

Compute the generator for the SDE obtained in part (b).

Part (c)

Let Xt solve the SDEdX1(t) = −X2(t)dWt − 1
2X1(t)dt, X1(0) = 1

dX2(t) = X1(t)dWt − 1
2X2(t)dt, X2(0) = 0.

Find a closed form expression for (X1,X2).
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Question 5

Part (i)

We consider the Stratonovich SDE

dXt = f (Xt) ◦ dWt, X0 = x (5)

where f is positive and differentiable. From lectures, this SDE is equivalent to the
following Itô SDE

dXt =
1
2
f (Xt)f

′(Xt)dt + f (Xt)dWt

Now, using

h(x) =
∫ x

0

1
f (z)

dz

solve the SDE.

Part (ii)

Solve the SDE

dXt = −
1
2
Xtdt +

√
1−X2

t dWt, X0 = x ∈ [−1,1],

Question 6

In this question, we consider the following system of SDEs:
dqt = ptdt, q0 = q,

dpt = −qtdt + ztdt, p0 = p,

dzt = −ztdt − ptdt +
√
2dWt, z0 ∼N (0,1)

(6)

part (i)

Find the generator of the above SDE (18).

Part (ii)

By considering a suitable transformation, show that qt,pt satisfy the following SDE:
dqt
dt = pt
dpt
dt = −qt −

∫ t

0
pse
−(t−s)ds+F(t)

(7)

4



Define the process F(t) by

F(t) = z0e
−t +
√
2
∫ t

0
e−(t−s)dWs (8)

Investigate the properties of F(t). (Compute its mean, auto-correlation function and
law).

Part (iii)

Is (qt,pt) a Markov process? What about (qt,pt, zt)?

Question 7

Part (i)

Suppose Xt satisfies the SDE

dXt = f (Xt)dt + g(Xt)dWt (9)

and let

Z(x) =
f (x)
g(x)

− 1
2
dg

dx
(x).

By considering the function V (t,x) = eθB(x) for some θ to be determined, show one
can pick θ in such a way so that the SDE satisfied by V (t,Xt) = eθB(Xt) is linear in V .

Part (ii)

Consider the SDE
dXt = (λXt −X2

t )dt +XtdWt (10)

By considering the process Yt = V (t,x) = eθB(x) for some θ to be determined, using
the previous part find a linear SDE solved by Yt.
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Solutions

Question 1

Part (i)

Let Xt solve the Itô SDE

dXt = (m−Xt)dt + σdWt, X0 = x (11)

By considering the integrating factor et, we apply Itô’s lemma to Yt = etXt to obtain
the following SDE for Yt = g(t,Xt) with g(t,x) = et · x ∈ C2(R2):

dYt =
∂g

∂t
dt +

∂g

∂x
dXt +

1
2
∂2g

∂x2
(dXt · dXt)

= Ytdt + etdXt +0 · (dXt · dXt).

Now, substituting in (11) for dXt, we obtain:

= Ytdt + et[(m−Xt)dt + σdWt]

= (Yt + et(m−Xt))dt + σetdWt = etmdt + σetdWt

Removing the dependence on Yt on the right-hand side enables us to solve the above
simplified SDE to obtain:

Yt = Y0 +
∫ t

0
metdt + σ

∫ t

0
esdWs

with Y0 = g(0,X0) = g(0,x) = x giving

Xt = xe−t +m(1− e−t) + σ

∫ t

0
e−(t−s)dWs

Part (ii)

Assuming x is deterministic, we compute the mean and variance of Xt:

E[Xt] = E[xe−t] +E[m(1− e−t)] +E

[
σ

∫ t

0
e−(t−s)dWs

]
by linearity. Since the first two terms above contain deterministic expressions and
the last is the expected value of an Itô integral (in particular, the Itô integral of a
smooth deterministic function), it has to mean zero. Thus,

E[Xt] = xe−t +m(1− e−t) =m+ e−t(x −m)

Now, computing the second moment of Xt:

E[X2
t ] = E

[(
xe−t +m(1− e−t)

)2]
+E

[
2
(
xe−t +m(1− e−t)

)
·
∫ t

0
σe−(t−s)dWs

]
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+E

(∫ t

0
σe−(t−s)dWs

)2
=

(
xe−t +m(1− e−t)

)2
+2

(
xe−t +m(1− e−t)

)
E

[∫ t

0
σe−(t−s)dWs

]
+E

(∫ t

0
σe−(t−s)dWs

)2
= E[Xt]

2 +0+E

[∫ t

0
σ2e−2(t−s)ds

]
where linearity of expectation, Itô Isometry and the mean zero property of Itô
integrals for sufficiently regular functions (i.e. progressively measurable and in
L2([0, t]×Ω)) were used. Thus the variance is computed easily as:

Var[Xt] = E[X2
t ]−E[Xt]

2

= E

[∫ t

0
σ2e−2(t−s)ds

]
=

∫ t

0
σ2e−2(t−s)ds = e−2t

∫ t

0
σ2e2sds =

σ2

2
(1− e−2t)

Part (iii)

By part (ii), the equation for the second moment is:

E[X2
t ] =

σ2

2
(1− e−2t) +E[Xt]

2

=
σ2

2
(1− e−2t) +

(
E[X0]e

−t +m(1− e−t)
)2

here we allow for the case that X0 is random, but independent of the Brownian
motion Wt driving (11)

Part (iv)

We first note that Xt is a Gaussian process since for all t, Xt is the sum of a deter-
ministic part and an Itô integral of a deterministic function, which has a Gaussian
distribution. This follows as the integral above is defined as an L2 limit of inte-
grals of simple functions, which palpably are Gaussian, being linear combinations of
independent Gaussians. This means that

Xt ∼N
(
m+ e−t(x −m),

σ2

2
(1− e−2t)

)
Asymptotically, as t → ∞, the mean and variance visibly converge to m, σ

2

2 . This
means that the first and second moments of Xt, converge to the values above, yield-
ing the following convergence in distribution;

Xt
d−→N

(
m,

σ2

2

)
.
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Question 2

Part (a)

*ai)
The generator of the Fokker-Planck equation corresponding to this linear SDE

dXt = b(Xt)dt + σ (Xt)dWt, X0 = x (12)

where b(Xt) = µXt and σ (Xt) = σXt, is:

L∗(·) = ∇ · (−b(x) ·+1
2
∇ · (Σ·))

with Σ(x) = σ (x)σ (x)T = σ2x2. This simplifies to

L∗(·) = − d
dx

(b(x)·) + σ2

2
d2

dx2
(x2·))

= − d
dx

(µx·) + σ2

2
d2

dx2
(x2·))

*aii)
Consider for n ≥ 1,n ∈N, Mn

t = (Xt)n, where Xt is a solution to (12). Applying Itô’s
formula to gn(t,x) = xn ∈ C2 gives:

d(Mn
t ) = d((Xt)

n) = nXn−1
t dXt +

1
2
n(n− 1)Xn−2

t (dXt · dXt)

Now, the last term being a product of two Itô differentials, we obtain

d(Mn
t ) = d((Xt)

n) = nXn−1
t (µXtdt + σXtdWt) +

1
2
n(n− 1)Xn−2

t (σ2X2
t )dt

= nMn
t (µdt + σdWt) +

σ2

2
n(n− 1)Mn

t dt

=
(
nµMn

t +
σ2

2
n(n− 1)Mn

t

)
dt +nσMn

t dWt

Thus, in integral form, the nth moments satisfy:

Mn
t =Mn

0 +
∫ t

0

(
nµMn

s +
σ2

2
n(n− 1)Mn

s

)
ds+

∫ t

0
nσMn

s dWs

where Mn
0 = Xn

0 = xn. Now, taking expectations of both sides, we obtain

E[Xn
t ] = E[Mn

t ] = xn +E

[∫ t

0

(
nµMn

s +
σ2

2
n(n− 1)Mn

s

)
ds

]
+E

[∫ t

0
nσMn

s dWs

]
using linearity of the expectation. Furthermore,

E[Xn
t ] = E[x]n +

∫ t

0
E

[
nµMn

s +
σ2

2
n(n− 1)Mn

s

]
ds+0
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where the expectation and the integration was exchanged, essentially an application
of Fubini’s Theorem and the last term vanishes as it is the expectation of an Itô
integral of the process Mn

t , which is adapted to the filtration of Brownian motion
and is progressively measurable. Now, the above further simplifies to

E[Xn
t ] = E[x]n +

∫ t

0
nµE[Xn

s ] +
σ2

2
n(n− 1)E[Xn

s ]ds

Differentiating both sides now gives,

d
dt

E[Xn
t ] =

(
nµ+

σ2

2
n(n− 1)

)
E[Xn

t ], E[Xn
0 ] = E[xn]

Solving this ODE gives

E[Xn
t ] = E[xn]exp

[(
nµ+

σ2

2
n(n− 1)

)
t

]
*aiii) Suppose that Xt solves (12) and consider g(t,Xt) = log(Xt) ∈ C2, i.e. the natu-
ral logarithm of the process Xt. We now apply Itô’s lemma to obtain:

d(log(Xt)) = dg(t,Xt) =
∂g

∂t
dt +

∂g

∂x
dXt +

1
2
∂2g

∂x2
(dXt · dXt)

=
1
Xt

(µXtdt + σXtdWt)−
σ2

2X2
t

X2
t dt =

(
µ− σ2

2

)
dt + σdWt

The above is now a linear SDE with constant coefficients which can readily be solved
(by inspection) to give:

log(Xt) = log(X0) +
(
µ− σ2

2

)
t + σWt

Thus, exponentiating both sides finally gives the solution to (12):

Xt = X0 exp
[(
µ− σ2

2

)
t + σWt

]
= xexp

[(
µ− σ2

2

)
t + σWt

]
*aiv)
We now consider the Stratonovich interpretation of (12), namely

dXt = µXtdt + σXt ◦ dWt, (13)

From lectures, we apply the Stratonovich correction(
1
2
(σx)

d
dx

(σx)
)
(Xt)

to obtain the following equivalent Itô SDE:

dXt =
(
µ+

σ2

2

)
Xtdt + σXtdWt

This is the same SDE as (12), except with the change of µ →
(
µ+ σ2

2

)
in the drift

term.
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Part (b)

The SDE:
dXt = f (t)Xtdt + h(t)XtdWt, X0 = x

for f ,h continuous can similarly be solved by applying Itô ’s lemma to the function
V (x, t) = log(x). The SDE that the process V (Xt, t) = log(Xt) solves is given by:

d(log(Xt)) = dV (t,Xt) =
∂V
∂t

dt +
n∑
i=1

∂V
∂xi

dXi +
1
2

n∑
i,j=1

∂2V
∂xi∂xj

dXi · dXj

whence

d(log(Xt)) =
1
Xt

(f (t)Xtdt + h(t)XtdWt)−
h2(t)

2X2
t

X2
t dt

=
(
f (t)− h2(t)

2

)
dt + h(t)dWt,

which in integral form becomes

log(Xt) = log(X0) +
∫ t

0

(
f (s)− h2(s)

2

)
ds+

∫ t

0
h(s)dWs

and exponentiating both sides gives

Xt = X0 exp
[∫ t

0

(
f (s)− h2(s)

2

)
ds+

∫ t

0
h(s)dWs

]

= x · exp
[∫ t

0

(
f (s)− h2(s)

2

)
ds+

∫ t

0
h(s)dWs

]
Part(c)

Suppose Xt solves the SDE

dXt = b(Xt)dt +XtdWt

Again, we consider the twice-continuously differentiable transformation log(Xt). Us-
ing Itô’s lemma, the transformed SDE for log(Xt) now becomes:

d(log(Xt)) =
1
Xt

(b(Xt)dt +XtdWt)−
1

2X2
t

X2
t dt

=
(
b(Xt)
Xt
− 1
2

)
dt + dWt.

Now, relabelling the process Yt = log(Xt), we obtain:

dYt =
(
e−Ytb(eYt )− 1

2

)
dt + dWt.

The above being an SDE with additive noise as required.
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Part (d)

Suppose now that Xt is a solution to

dXt =

c+ 1
2

n∑
j=1

αj

Xtdt +Xt

n∑
j=1

αjdWj(t)

Applying Itô ’s lemma to the function V (x, t) = log(x). The SDE that the process
V (Xt, t) = log(Xt) solves is given by:

d(log(Xt)) = dV (t,Xt) =
∂V
∂t

dt +
n∑
i=1

∂V
∂xi

dXi +
1
2

n∑
i,j=1

∂2V
∂xi∂xj

dXi · dXj

yielding

d(log(Xt)) =
1
Xt

dXt −
1

2X2
t

(dXt · dXt)

Using the convention dWi · dWj = δijdt,dt · dWi = 0,dt · dt = 0, where Wi , i = 1, . . . ,n
are the components of an n-dimensional Brownian motion, dXt · dXt becomes:

dXt · dXt = X2
t

n∑
j=1

α2
j dt

The convention can be justified since

E[(dt · dWi)
2]

1
2 = dt

3
2

which can be ignored when considering first-order terms in dt. Hence,

d(log(Xt)) =

c+ 1
2

n∑
j=1

αj

dt + n∑
j=1

αjdWj(t)−
1
2

n∑
j=1

α2
j dt

= cdt +
n∑

j=1

αjdWj(t)

an SDE with additive noise. In integral form, this yields:

log(Xt) = log(X0) + ct +
n∑

j=1

αjWj(t)

Thus, the solution to the SDE is

Xt = X0 · exp

ct + n∑
j=1

αjWj(t)


= x · exp

ct + n∑
j=1

αjWj(t)

.
as Y0 =

√
(X0) =

√
(x).
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Question 3

Part (a)

Applying Itô ’s lemma (1) to the smooth transformation Xt = x2 of Wt, a standard
one-dimensional Brownian motion, gives

dXt = 2WtdWt +
1
2
2dt

= 2WtdWt + dt = dt +2
√
XtdWt

and also observe that X0 =W 2
0 = 0 almost surely as Wt is a Brownian motion. Thus,

Xt indeed solves the SDE in question.

Part (b)

Suppose that Xt is a solution to the SDE:

dXt =
(1
4
−Xt

)
dt +

√
XtdWt, X0 = x.

Consider the twice-continuously differentiable transformation Yt =
√
Xt, from Itô ’s

lemma (1) with V (t,x) =
√
x, the process Yt satisfies the SDE

dYt =
dV
dx

dXt +
1
2
d2V

dx2
(dXt · dXt)

=
dV
dx

(t,Xt)dXt +
1
2
d2V

dx2
(t,Xt)Xtdt

=
1

2
√
Xt

[(1
4
−Xt

)
dt +

√
XtdWt

]
+
1
2

− 1

4(Xt)
3
2

Xtdt

= − 1
2
√
Xt

Xtdt +
1
2
dWt

= −1
2
Ytdt +

1
2
dWt

This SDE, can be by applying Itô ’s lemma to the process Zt = e
t
2Yt, i.e. using (1)

with V (t,y) = e
t
2y yields the SDE

dZt = dV (t,Yt) =
∂V
∂t

(t,Yt)dt +
∂V
∂y

(t,Yt)dYt +
1
2
∂2V

∂y2
(t,Yt)(dYt · dYt)

=
1
2
e
t
2Ytdt + e

t
2dYt =

1
2
e

t
2Ytdt + e

t
2

(
−1
2
Ytdt +

1
2
dWt

)
=
e

t
2

2
dWt
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In integral form, this becomes

e
t
2Yt = Zt = Z0 +

∫ t

0

e
s
2

2
dWs = Y0 +

∫ t

0

e
s
2

2
dWs

Thus,

Xt = Y 2
t =

√xe− t
2 +

∫ t

0

e
−(t−s)

2

2
dWs


2

.

Question 4

Part (a)

By definition, Y1,Y2 are:

Y1(t) =ℜh(Wt), Y2(t) =ℑh(Wt),

where h(x) = eix. Now, Itô ’s lemma (1), applied to V1(t,x) =ℜh(x) and V2(t,x) =
ℑh(x) givesdY1(t) = dV1(t,Wt) =

∂V1
∂t (t,Wt)dt +

∂V1
∂x (t,Wt)dWt +

1
2
∂2V1
∂x2

(t,Wt)(dWt · dWt)

dY2(t) = dV2(t,Wt) =
∂V2
∂t (t,Wt)dt +

∂V2
∂x (t,Wt)dWt +

1
2
∂2V2
∂x2

(t,Wt)(dWt · dWt)

which further simplifies todY1(t) = −Y2(t)dWt − 1
2Y1(t)dt, Y1(0) =ℜh(W0) =ℜh(0) = 1

dY2(t) = Y1(t)dWt − 1
2Y2(t)dt, Y2(0) =ℑh(W0) =ℑh(0) = 0

(14)

by virtue of the fact that

dh(x)
dx

= ih(x),
d2h(x)
dx2

= −h(x)

yielding
dℜh(Wt)

dx
= −ℑh(Wt),

d2ℜh(Wt)
dx2

= −ℜh(Wt)

and
dℑh(Wt)

dx
=ℜh(Wt),

d2ℑh(Wt)
dx2

= −ℑh(Wt).

Part (b)

The above system can be written more compactly as

dY t = b(Y t)dt +σ (Y t)dWt, Y 0 = y (15)

where

b(Y t) =
[
−12Y1(t)
−12Y2(t)

]
, σ (Y t) =

[
−Y2(t)
Y1(t)

]
, Y t =

[
Y1(t)
Y2(t)

]
, y =

[
1
0

]
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The generator of the above SDE (18) is given by

L = b(y) · ∇+ 1
2
Σ(y) :D2

= −1
2
y1

∂
∂y1
− 1
2
y2

∂
∂y2

+
2∑

i,j=1

Σij
∂2

∂yi∂yj

where

Σ = σσT =
[
y22 − y1y2
−y1y2 y21

]
.

Thus, the generator is

L = −1
2
y1

∂
∂y1
− 1
2
y2

∂
∂y2

+
y22
2

∂2

∂y1∂y1
− y1y2

∂2

∂y1∂y2
+
y21
2

∂2

∂y2∂y2

Part (c)

Consider the processes X1(t) = V1(t,Wt) = cos(Wt),X2(t) = V2(t,Wt) = sin(Wt). Since
these processes are smooth transformations of the same standard Brownian motion,
Itô ’s lemma applies yielding the following systemdX1(t) =

∂V1
∂t (t,Wt)dt +

∂V1
∂x (t,Wt)dWt +

1
2
∂2V1
∂x2

(t,Wt)(dWt · dWt)

dX2(t) =
∂V1
∂t (t,Wt)dt +

∂V1
∂x (t,Wt)dWt +

1
2
∂2V1
∂x2

(t,Wt)(dWt · dWt)dX1(t) = −X2(t)dWt − 1
2X1(t)dt, X1(0) = 1

dX2(t) = X1(t)dWt − 1
2X2(t)dt, X2(0) = 0

which is the same SDE as (14). Since the above system is a lienar SDE satisfying the
conditions

|b(x)|+ |σ (x)| ≤ (1 + |x|), x ∈R2

and the initial condition y is deterministic implying boundedness of its second mo-
ment, by the Existence and Uniqueness theorem for SDE’s,

Xt =
[
cos(Wt)
sin(Wt)

]
= Y t

for all t almost surely. Thus,

Y1(t) = cos(Wt), Y2(t) = sin(Wt)

for all t almost surely.
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Question 5

Part (i)

We consider the Stratonovich SDE

dXt = f (Xt) ◦ dWt, X0 = x (16)

where f is positive and differentiable. From lectures, this SDE is equivalent to the
following Itô SDE

dXt =
1
2
f (Xt)f

′(Xt)dt + f (Xt)dWt

Now, define

h(x) =
∫ x

0

1
f (z)

dz

which is well-defined by the positivity of f (x). Also, by the fundamental theorem of
calculus, and the differentiability of f , g(t,x) is twice differentiable. Applying Itô ’s
lemma (1) with V (t,x) = h(x) gives

dh(Xt) =
dh
dx

dXt +
1
2
d2h

dx2
(dXt · dXt)

dh
dx

(1
2
f (Xt)f

′(Xt)dt + f (Xt)dWt

)
+
1
2
d2h

dx2
f 2(Xt)dt

But, by the Fundamental theorem of calculus, we have

dh
dx

=
1

f (x)
, ,

d2h

dx2
= −

f ′(x)
f 2(x)

.

Thus,

dh(Xt) =
1

f (x)

(1
2
f (Xt)f

′(Xt)dt + f (Xt)dWt

)
−

f ′(x)
2f 2(x)

f 2(Xt)dt

=
(1
2
f ′(Xt)dt + dWt

)
−
f ′(x)
2

dt = dWt

This yields that h(Xt) = h(X0) +Wt = h(x) +Wt. Since f (x) is positive, it follows that
dh
dx > 0, meaning h(x) is both strictly increasing and differentiable, hence invertible.
This allows us to express Xt as

Xt = h−1(h(Xt)) = h−1(h(x) +Wt).

Part (ii)

Now, to solve the SDE

dXt = −
1
2
Xtdt +

√
1−X2

t dWt, X0 = x ∈ [−1,1],

15



we notice that it is equivalent to the Stratonovich SDE (16) with f (x) =
√
1− x2,

which is non-negative and differentiable, since the drift term

−1
2
Xtdt

is precisely the Stratonovich correction term

1
2
f (Xt)f

′(Xt)dt

with f as above. Thus, by part (i), the solution to the above SDE is given by

Xt = h−1(h(x) +Wt)

where

h(x) =
∫ x

0

1
f (z)

dz =
∫ x

0

1
√
1− z2

dz = arcsin(x)

Finally giving
Xt = h−1(h(x) +Wt) = sin(arcsin(x) +Wt).

Question 6

In this question, we consider the following system of SDEs:
dqt = ptdt, q0 = q,

dpt = −qtdt + ztdt, p0 = p,

dzt = −ztdt − ptdt +
√
2dWt, z0 ∼N (0,1)

(17)

part (i)

The above system can be written more compactly as

dX t = b(X t)dt +σ (X t)dWt (18)

where

b(x) =

 x2
−x1 + x3
−x3 − x2

 , σ (x) =


0
0√
2

 , X t =

qtpt
zt


The generator of the above SDE (18) is given by

L = b(x) · ∇+ 1
2
Σ(x) :D2

= x2
∂
∂x1

+ (−x1 + x3)
∂
∂x2
− (x3 + x2)

∂
∂x3

+
1
2

3∑
i,j=1

Σij
∂2

∂xi∂xj
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where

Σ = σσT =

0 0 0
0 0 0
0 0 2

 .
Thus, the generator is

L = x2
∂
∂x1

+ (−x1 + x3)
∂
∂x2
− (x3 + x2)

∂
∂x3

+
∂2

∂x3∂x3

Part (ii)

Define the function g(t,x) = etx3. Now, applying Itô ’s lemma (1) to g(t,X t) gives:

dg(t,X t) =
∂g

∂t
(t,X t)dt +Lg(t,X t)dt +

〈
∇g(t,X t),σ (X t)dWt

〉
= g(t,X t)dt − (zt + pt)e

tdt +
√
2etdWt

= −ptetdt +
√
2etdWt

In integral form, this reads

g(t,X t) = g(0,X0)−
∫ t

0
pse

sds+
√
2
∫ t

0
esdWs

or equivalently,

zt = z0 −
∫ t

0
pse
−(t−s)ds+

√
2
∫ t

0
e−(t−s)dWs

In view of the above, we obtain the following for qt,pt in (17):
dqt
dt = pt
dpt
dt = −qt −

∫ t

0
pse
−(t−s)ds+F(t)

(19)

where the process F(t) is given by

F(t) = z0e
−t +
√
2
∫ t

0
e−(t−s)dWs (20)

We now investigate the properties of F(t). First, we see that it is mean zero, as

E[F(t)] = E[z0e
−t] +E

[√
2
∫ t

0
e−(t−s)dWs

]
= 0

by linearity of expectation and that z0 ∼N (0,1) and the second term is an Itô integral
of a smooth deterministic function (is adapted and measurable). To compute the
auto-correlation function, we use Itô ’s isometry to obtain

E[F(s)F(t)] = E

[(
z0e
−t +
√
2
∫ t

0
e−(t−s)dWs

)(
z0e
−s +
√
2
∫ s

0
e−(s−r)dWr

)]
17



= E[z20]e
−(s+t) +2 ·E

[∫ t

0
e−(t−u)dWu

∫ s

0
e−(s−v)dWv

]
where the independence of z0 from Wt allowed us to factorise the cross terms and
use the mean zero property of the Itô integral. Without loss of generality, let t > s.
Now, we compute the second term:

E

[∫ t

0
e−(t−u)dWu

∫ s

0
e−(s−v)dWv

]
= E

[∫ s

0
e−(t−u)dWu

∫ s

0
e−(s−v)dWv

]

+E
[∫ t

s
e−(t−u)dWu

∫ s

0
e−(s−v)dWv

]
= E

[∫ s

0
e−(s+t)e2udu

]
= e−(s+t)

∫ s

0
e2udu =

1
2
e−(s+t)

(
e2s − 1

)
=
1
2

(
e(s−t) − e−(s+t)

)
.

By an extension of the Itô isometry to products of progressively measurable and
square-integrable functions. The second term vanishes since the simple approxima-
tions to the integrals (of deterministic functions)

I1 =
∫ t

s
e−(t−u)dWu , I2 =

∫ s

0
e−(s−v)dWv

involve sums of increments of the Brownian motion Wt over intervals of disjoint
interiors. Thus, by independence all terms vanish when taking the expectation of
the product

0 = E[I1nI2n]→ E[I1I2]

where I1n, I2n → I1, I2 respectively in L2(P), are integrals of simple approximations
to the integrands. Thus,

E[F(s)F(t)] = e−(s+t) +
(
e(s−t) − e−(s+t)

)
= e(s−t) = e−|t−s|

as we assumed t > s. By symmetry, the case for t ≤ s is nearly identical, and we
obtain that the auto-correlation function is

E[F(s)F(t)] = e−|t−s|

as required. Note from (20) that the process F(t) as defined is a Gaussian pro-
cess, being a sum of the Itô integral of a deterministic function and the normal
random variable z0e

−t that is independent of the Brownian motion defining the inte-
gral (Gaussian random variables are closed under L2(P) limits). This is because the
sum of two independent Gaussians is a Gaussian random variable.

Stationarity now follows because the auto-correlation function and the mean of the
process being always zero, both only depend on |s − t|,
the relative separation in time and the fact that the auto-correlation function and
the mean are sufficient to determine finite dimensional joint distributions since F(t)
is a Gaussian process.
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Part (iii)

By inspection of the system derived for the process (qt,pt) (19), we notice that the
derivative of pt depends on the entire history of ps, s ≤ t in a non-trivial way. Hence,
we conclude that (qt,pt) is not a Markov process [2].

However, we note that the system (17) is a linear sde with constant coefficients,
additive noise and only depends on the present state of (qt,pt, zt). Thus, by a result
from lectures, it has a strong solution that is a Markov process.

Question 7

Part (i)

Suppose Xt satisfies the SDE

dXt = f (Xt)dt + g(Xt)dWt (21)

Let V (t,x) = eθB(x). Assuming V (t,x) is sufficiently regular to apply Itô ’s lemma, we
have

dV (t,Xt) =
∂V
∂t

(t,Xt)dt +
∂V
∂x

(t,Xt)dXt +
1
2
∂2V

∂x2
(t,Xt)(dXt · dXt)

= θB′(Xt)e
θB(Xt)dXt +

1
2

(
θB′′(Xt)e

θB(Xt) +θ2B′(Xt)
2eθB(Xt)

)
(dXt · dXt)

= θB′(Xt)e
θB(Xt)

(
f (Xt)dt + g(Xt)dWt

)
+
1
2

(
θB′′(Xt)e

θB(Xt) +θ2B′(Xt)
2eθB(Xt)

)
g2(Xt)dt

Now, we note that

B′(x) =
dB
dx

=
1

g(x)
,B′′(x) =

d2B

dx2
= −

g ′(x)
g2(x)

.

Substituting the above, we obtain:

dV (t,Xt) = θeθB(Xt)
(f (Xt)
g(Xt)

dt + dWt

)
+
1
2

(
−θg ′(Xt)e

θB(Xt) +θ2eθB(Xt)
)
dt

= eθB(Xt)
(
θ
f (Xt)
g(Xt)

− 1
2
θg ′(Xt) +

θ2

2

)
dt +θeθB(Xt)dWt

= eθB(Xt)
(
θZ(Xt) +

θ2

2

)
dt +θeθB(Xt)dWt

where

Z(x) =
f (x)
g(x)

− 1
2
dg

dx
(x)

Now, since

θ = − 1
dZ
dx

d
dx

(
g(x)

dZ
dx

)
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we can rearrange and integrate both sides to obtain

dZ
dx

+
θ

g(x)
Z(x) =

A
g(x)

where A is some constant. We notice that this is a first order linear ODE and is
readily solved by multiplying both sides by the integrating factor

exp
[
θ

∫ x 1
g(s)

ds

]
= V (x)

which gives
d
dx

(Z(x)V (x)) =
A
θ

θ
g(x)

V (x) =
A
θ
dV
dx

(note θ , 0), implying that

Z(x) =
A
θ
+

B
V (x)

(22)

for constants A, B. Returning to the transformed SDE for V (t,Xt) and substituting
for Z(Xt):

dV (t,Xt) = V (t,Xt)
(
A+

Bθ
V (t,Xt)

+
θ2

2

)
dt +θV (t,Xt)dWt

=
[
Bθ +V (t,Xt)

(
A+

θ2

2

)]
dt +θV (t,Xt)dWt

reducing the SDE (21) into a linear one as required.

Part (ii)

Now, we consider the SDE

dXt = (λXt −X2
t )dt +XtdWt (23)

Setting f (x) = λx − x2 and g(x) = x, Z(x) now becomes

Z(x) =
f (x)
g(x)

− 1
2
dg

dx
(x) =

(
λ− 1

2

)
− x.

Now, we also compute θ(x):

θ(x) = − 1
dZ
dx

d
dx

(
g(x)

dZ
dx

)
=

d
dx

(−x) = −1

a constant. Also, we obtain the transformed process Yt = V (t,Xt) = exp(θB(Xt)) with
B(x):

B(x) =
∫ x

1

1
g(s)ds

=
∫ x

1

1
s
ds = log(x)
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as
Yt = V (t,Xt) = exp(θB(Xt)) = exp(− log(x) = 1

Xt

We notice that Z(x) is of the desired form in (22) with A =
(
1
2 −λ

)
,B = −1,V (x) = 1

x .
Thus, the discussion in the previous part applies, that the process Yt is the solution
to the linear SDE

dYt =
[
Bθ +Yt

(
A+

θ2

2

)]
dt +θYtdWt

=
[
−B+Yt

(
A+

1
2

)]
dt −YtdWt.

=
[
1+Yt

(
1−λ

)]
dt −YtdWt.
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