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Problems

Problem set IV, exercise IV.4

Consider the linear map T : ℓ2(R)→ ℓ2(R), given by

T ((xn)n≥1) = (x1 + x2,x2 + x3, . . . ) (1)

Show that it is bounded and compute its operator norm

||T ||L(ℓ2(R),ℓ2(R)) = sup
(xn)n≥1∈ℓ2(R),
||x||2,0

||T ((xn)n≥1)||2
||(xn)n≥1||2

(2)

Problem set VI, exercise VI.2

VI.2.i

Let X be a real normed space and M be a real vector subspace of X. Fix y ∈ X \M.
Show that there exists a bounded linear functional ℓ ∈ X∗ such that ℓ|M ≡ 0 and

||ℓ∗||L(X,R) =
1

dist(y,M)
.

VI.2.ii

Let M be a closed subspace of the normed space X, then one needs to show that

M =
⋂

f ∈X∗:M⊂kerf

kerf . (3)

Problem set VII, exercise VII.5

Let X be a Banach space and let T : X → X be a linear operator such that for all
φ ∈ X∗, the map φ◦T is continuous. Using the closed graph theorem to show that T
is bounded.
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Solutions

Problem set IV, exercise IV.4

Consider the map T : ℓ2(R)→ ℓ2(R), given by

T ((xn)n≥1) = (x1 + x2,x2 + x3, . . . ) (4)

Linearity is easily verified since addition and multiplication of scalars is defined
pointwise in ℓ2(R). More explicitly, for all (xn)n≥1, (yn)n≥1 ∈ ℓ2(R):

T ((xn)n≥1 + (yn)n≥1) = T ((xn + yn)n≥1) = (x1 + y1 + x2 + y2,x2 + y2 + x3 + y3, . . . )

= (x1 + x2,x2 + x3, . . . ) + (y1 + y2, y2 + y3, . . . ) = T ((xn)n≥1) + T ((yn)n≥1)

and for λ ∈R:

T (λ(xn)n≥1) = T ((λxn)n≥1) = (λx1+λx2,λx2+λx3, . . . ) = λ(x1+x2,x2+x3, . . . ) = λ·T ((xn)n≥1)

For boundedness, it suffices to show that for (xn)n≥1 ∈ ℓ2(R) arbitrary

||T ((xn)n≥1)||2 ≤ C · ||(xn)n≥1||2

for some C ∈R independent thereof. Now let (xn)n≥1 ∈ ℓ2(R) be arbitrary. Then,

||T ((xn)n≥1)||22 =
∑
n≥1

(xn + xn+1)
2

Now, since for all x,y ∈R
(x+ y)2 ≤ 2(x2 + y2)

one has the following control over finite partial sums with N ≥ 1:

N∑
n=1

(xn + xn+1)
2 ≤

N∑
n=1

2(x2n + x2n+1) ≤ 2
∑
n≥1

(x2n + x2n+1)

= 2
∑
n≥1

x2n +
∑
n≥1

x2n+1 ≤ 2
∑
n≥1

x2n +
∑
n≥0

x2n+1 = 4
∑
n≥1

x2n = 4 · ||(xn)n≥1||22

Thus, taking N →∞, we have

||T ((xn)n≥1)||22 ≤ 4 · ||(xn)n≥1||22

Equivalently,
||T ((xn)n≥1)||2 ≤ 2 · ||(xn)n≥1||2 ∀(xn)n≥1 ∈ ℓ2(R) (5)

thereby showing boundedness with C = 2.
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In fact we compute its operator norm to be

||T ||L(ℓ2(R),ℓ2(R)) = sup
(xn)n≥1∈ℓ2(R),
||x||2,0

||T ((xn)n≥1)||2
||(xn)n≥1||2

= 2 (6)

By (5),

sup
(xn)n≥1∈ℓ2(R),
||x||2,0

||T ((xn)n≥1)||2
||(xn)n≥1||2

≤ 2

To show equality, consider the sequence

(x)k≥0 =
k∑

j=0

ek ∈ ℓ2(R)

where (ek)k≥1 is the ususal Schauder basis for ℓ2(R), with (ek)(n) = δkn, n ≥ 1. One
easily computes the norms:

||xk ||2 = k
1
2 > 0

||T (xk)||2 = ||(2,2, . . . ,2︸    ︷︷    ︸
k−1

,1,0, . . . )||2 = [4(k − 1) + 1]
1
2

Thus,
||T (xk)||2
||xk ||2

=
[4(k − 1) + 1]

1
2

k
1
2

=
[
4− 4

k
+
1
k

] 1
2
→ 2, k→∞

Thus, ||T ||L(ℓ2(R),ℓ2(R)) = 2, as claimed.
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Problem set VI, exercise VI.2

VI.2.i

Consider the linear functional ℓ :W →R, with W = span{M,y} given by

ℓ(x+ ty) = t, x ∈M,y ∈ X \M,t ∈R

Linearity is clear since M is a real vector subspace space of X, and for x1,x2 ∈
M,t1, t2 ∈R and λ ∈R:

ℓ((x1 + t1y) + (x2 + t2y)) = t1 + t2 = ℓ(x1 + t1y) + ℓ(x2 + t2y)

and
ℓ(λ(x1 + t1y)) = ℓ(λx1 +λt1y)) = λt1 = λℓ(x1 + t1y)

Now, notice for x ∈M,t ∈R \ {0}:

||x+ ty|| = |t| · ||x
t
+ y|| ≥ |t| ·dist(y,M) > 0

since x
t ∈M and dist(y,M) > 0 since y ∈ X \M. Thus,

|ℓ(x+ ty)| = |t| ≤ 1
dist(y,M)

||x+ ty||, x ∈M,t ∈R

Now, since ℓ is dominated on W by the sub-linear functional 1
dist(y,M) || · ||, by the

Hahn -Banach Theorem from lectures, ℓ has an extension ℓ∗ on X with

ℓ∗|W = ℓ and |ℓ∗(z)| ≤ 1
dist(y,M)

||z||, z ∈ X (7)

In particular, it follows ℓ∗ is a bounded linear functional with operator norm

||ℓ∗||L(X,R) ≤
1

dist(y,M)

Now, by (7) for z ∈M, one has

ℓ∗(z) = ℓ(z) = ℓ(z+0 · y) = 0, and, ℓ∗(y) = ℓ(0 + 1 · y) = 1

Finally, since
dist(y,M) := inf

x∈M
||x − y||

choose a sequence (xn)n≥0 ⊂M with

||xn − y|| → dist(y,M), n→∞

Now, noting that y ∈ X \M, implies ||xn − y|| > 0 for n ∈N, one computes

|ℓ∗(xn − y)|
||xn − y||

=
1

||xn − y||
→ 1

dist(y,M)
, n→∞

establishing that indeed

||ℓ∗||L(X,R) =
1

dist(y,M)
as required.
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VI.2.ii

Restating the statement to be proven, let M be a closed subspace of X, then one
needs to show that

M =
⋂

f ∈X∗:M⊂kerf

kerf (8)

The first inclusion
M ⊆

⋂
f ∈X∗:M⊂kerf

kerf

clearly holds since the intersection is taken over sets that include M. Now suppose
for a contradiction that

M ⊊

⋂
f ∈X∗:M⊂kerf

kerf

This means that there exists x ∈ X \M such that

x ∈ kerf , ∀f ∈ X∗ :M ⊂ kerf (9)

Since M is closed, section () implies the existence of a bounded linear functional φ
such that

φ|M ≡ 0, φ(x) = 1, and ||φ||L(X,R) =
1

dist(x,M)

But, (9) implies x ∈ kerφ, a contradiction to the above (φ(x) = 1 , 0), whence the
desired equality of sets is established.
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Problem set VII, exercise VII.5

For the linear operator T : X→ X, let

G(T ) = {(x,T x) : x} ⊆ X ×X

denote its graph. We proceed to show that G(T ) is a closed subset of X×X under the
norm ||(x,y)||X×X = ||x||X + ||y||X ,x,y ∈ X. Suppose now that (zn = (xn,T xn))n≥0 ⊆ G(T )
with

zn
||·||X×X−→ z = (x,y) ∈ X ×X, n→∞, x,y ∈ X

equivalently

xn
||·||X−→ x, T xn

||·||X−→ y

Now, fix φ ∈ X∗, by assumption one has that φ ◦ T is continuous on X, yielding

φ(T (xn)) = φ ◦ T (xn)→ φ ◦ T (x) = φ(T (x)), n→∞

also, one has by the continuity of φ:

φ(T (xn))→ φ(y), n→∞

Since X is a Banach space, limits of {φ(T (xn))}n≥0 are unique giving

φ(T (x)) = φ(y) (10)

Now, suppose for a contradiction that T x , y. let W = span{T x − y} , {0X} ⊆ X.
Define the linear functional ℓ :W →R by

ℓ(λ(T x − y)) = λ · ||T x − y||X , λ ∈R

Clearly, ℓ is dominated by the sub-linear functional || · ||X on W . Thus, by an applica-
tion of the Hahn-Banach Theorem from lectures, one obtains an extension ℓ∗ : X→R

such that
ℓ∗|W = ℓ, and |ℓ∗(z)| ≤ ||z||X , z ∈ X

Now, since it was assumed that T x , y,

ℓ∗(T x − y) = ℓ(T x − y) = ||T x − y||X > 0

But, since ℓ∗ ∈ X∗, (10) implies that

ℓ∗(T x) = ℓ∗(y) =⇒ ℓ∗(T x − y) = 0

by linearity, a contradiction. Thus, T x = y implying that the graph G(T ) of T is
closed. Since the domain of T , D(A) = X, is closed (complete too), the Closed Graph
Theorem from lectures implies that the operator T : X → X is indeed bounded, as
desired.
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