Imperial College London

Coursework 2

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

MATH60029 Functional Analysis

Author: Pantelis Tassopoulos

Date: December 2022

Problems

Problem set IV, exercise IV.4

Consider the linear map $T: \ell^2(\mathbb{R}) \to \ell^2(\mathbb{R})$, given by

$$T((x_n)_{n\geq 1}) = (x_1 + x_2, x_2 + x_3, \dots)$$
(1)

Show that it is bounded and compute its operator norm

$$||T||_{\mathcal{L}(\ell^{2}(\mathbb{R}),\ell^{2}(\mathbb{R}))} = \sup_{\substack{(x_{n})_{n\geq1}\in\ell^{2}(\mathbb{R}),\\||x||_{2}\neq0}} \frac{||T((x_{n})_{n\geq1})||_{2}}{||(x_{n})_{n\geq1}||_{2}}$$
(2)

Problem set VI, exercise VI.2

VI.2.i

Let *X* be a real normed space and *M* be a real vector subspace of *X*. Fix $y \in X \setminus \overline{M}$. Show that there exists a bounded linear functional $\ell \in X^*$ such that $\ell|_{\overline{M}} \equiv 0$ and

$$\|\ell^*\|_{\mathcal{L}(X,\mathbb{R})} = \frac{1}{\operatorname{dist}(\gamma, M)}.$$

VI.2.ii

Let M be a closed subspace of the normed space X, then one needs to show that

$$M = \bigcap_{f \in X^*: M \subset \ker f} \ker f.$$
(3)

Problem set VII, exercise VII.5

Let *X* be a Banach space and let $T : X \to X$ be a linear operator such that for all $\phi \in X^*$, the map $\phi \circ T$ is continuous. Using the closed graph theorem to show that *T* is bounded.

Solutions

Problem set IV, exercise IV.4

Consider the map $T: \ell^2(\mathbb{R}) \to \ell^2(\mathbb{R})$, given by

$$T((x_n)_{n\geq 1}) = (x_1 + x_2, x_2 + x_3, \dots)$$
(4)

Linearity is easily verified since addition and multiplication of scalars is defined pointwise in $\ell^2(\mathbb{R})$. More explicitly, for all $(x_n)_{n\geq 1}, (y_n)_{n\geq 1} \in \ell^2(\mathbb{R})$:

$$T((x_n)_{n\geq 1} + (y_n)_{n\geq 1}) = T((x_n + y_n)_{n\geq 1}) = (x_1 + y_1 + x_2 + y_2, x_2 + y_2 + x_3 + y_3, \dots)$$

$$= (x_1 + x_2, x_2 + x_3, \dots) + (y_1 + y_2, y_2 + y_3, \dots) = T((x_n)_{n \ge 1}) + T((y_n)_{n \ge 1})$$

and for $\lambda \in \mathbb{R}$:

$$T(\lambda(x_n)_{n\geq 1}) = T((\lambda x_n)_{n\geq 1}) = (\lambda x_1 + \lambda x_2, \lambda x_2 + \lambda x_3, \dots) = \lambda(x_1 + x_2, x_2 + x_3, \dots) = \lambda \cdot T((x_n)_{n\geq 1})$$

For boundedness, it suffices to show that for $(x_n)_{n\geq 1} \in \ell^2(\mathbb{R})$ arbitrary

$$||T((x_n)_{n\geq 1})||_2 \le C \cdot ||(x_n)_{n\geq 1}||_2$$

for some $C \in \mathbb{R}$ independent thereof. Now let $(x_n)_{n \ge 1} \in \ell^2(\mathbb{R})$ be arbitrary. Then,

$$|T((x_n)_{n\geq 1})||_2^2 = \sum_{n\geq 1} (x_n + x_{n+1})^2$$

Now, since for all $x, y \in \mathbb{R}$

$$(x+y)^2 \le 2(x^2+y^2)$$

one has the following control over finite partial sums with $N \ge 1$:

$$\sum_{n=1}^{N} (x_n + x_{n+1})^2 \le \sum_{n=1}^{N} 2(x_n^2 + x_{n+1}^2) \le 2 \sum_{n \ge 1} (x_n^2 + x_{n+1}^2)$$
$$= 2 \sum_{n \ge 1} x_n^2 + \sum_{n \ge 1} x_{n+1}^2 \le 2 \sum_{n \ge 1} x_n^2 + \sum_{n \ge 0} x_{n+1}^2 = 4 \sum_{n \ge 1} x_n^2 = 4 \cdot ||(x_n)_{n \ge 1}||_2^2$$

Thus, taking $N \to \infty$, we have

$$||T((x_n)_{n\geq 1})||_2^2 \le 4 \cdot ||(x_n)_{n\geq 1}||_2^2$$

Equivalently,

$$||T((x_n)_{n\geq 1})||_2 \le 2 \cdot ||(x_n)_{n\geq 1}||_2 \quad \forall (x_n)_{n\geq 1} \in \ell^2(\mathbb{R})$$
(5)

thereby showing boundedness with C = 2.

In fact we compute its operator norm to be

$$||T||_{\mathcal{L}(\ell^{2}(\mathbb{R}),\ell^{2}(\mathbb{R}))} = \sup_{\substack{(x_{n})_{n\geq 1}\in\ell^{2}(\mathbb{R}),\\||x||_{2}\neq 0}} \frac{||T((x_{n})_{n\geq 1})||_{2}}{||(x_{n})_{n\geq 1}||_{2}} = 2$$
(6)

By (5),

$$\sup_{\substack{(x_n)_{n\geq 1}\in\ell^2(\mathbb{R}),\\\|x\|_2\neq 0}}\frac{\|T((x_n)_{n\geq 1})\|_2}{\|(x_n)_{n\geq 1}\|_2}\leq 2$$

To show equality, consider the sequence

$$(x)_{k\geq 0} = \sum_{j=0}^{k} e_k \in \ell^2(\mathbb{R})$$

where $(e_k)_{k\geq 1}$ is the usual Schauder basis for $\ell^2(\mathbb{R})$, with $(e_k)(n) = \delta_{kn}$, $n \geq 1$. One easily computes the norms:

$$\|x_k\|_2 = k^2 > 0$$

$$\|T(x_k)\|_2 = \|(\underbrace{2, 2, \dots, 2}_{k-1}, 1, 0, \dots)\|_2 = [4(k-1)+1]^{\frac{1}{2}}$$

Thus,

$$\frac{\|T(x_k)\|_2}{\|x_k\|_2} = \frac{[4(k-1)+1]^{\frac{1}{2}}}{k^{\frac{1}{2}}} = \left[4 - \frac{4}{k} + \frac{1}{k}\right]^{\frac{1}{2}} \to 2, \quad k \to \infty$$

Thus, $||T||_{\mathcal{L}(\ell^2(\mathbb{R}),\ell^2(\mathbb{R}))} = 2$, as claimed.

Problem set VI, exercise VI.2

VI.2.i

Consider the linear functional $\ell: W \to \mathbb{R}$, with $W = \operatorname{span}\{M, y\}$ given by

$$\ell(x + ty) = t, \quad x \in M, y \in X \setminus \overline{M}, t \in \mathbb{R}$$

Linearity is clear since *M* is a real vector subspace space of *X*, and for $x_1, x_2 \in M, t_1, t_2 \in \mathbb{R}$ and $\lambda \in \mathbb{R}$:

$$\ell((x_1 + t_1y) + (x_2 + t_2y)) = t_1 + t_2 = \ell(x_1 + t_1y) + \ell(x_2 + t_2y)$$

and

$$\ell(\lambda(x_1+t_1y)) = \ell(\lambda x_1 + \lambda t_1y)) = \lambda t_1 = \lambda \ell(x_1+t_1y)$$

Now, notice for $x \in M, t \in \mathbb{R} \setminus \{0\}$:

$$||x + ty|| = |t| \cdot ||\frac{x}{t} + y|| \ge |t| \cdot \operatorname{dist}(y, M) > 0$$

since $\frac{x}{t} \in M$ and dist(y, M) > 0 since $y \in X \setminus \overline{M}$. Thus,

$$|\ell(x+ty)| = |t| \le \frac{1}{\operatorname{dist}(y,M)} ||x+ty||, \quad x \in M, t \in \mathbb{R}$$

Now, since ℓ is dominated on W by the sub-linear functional $\frac{1}{\operatorname{dist}(y,M)} \|\cdot\|$, by the Hahn -Banach Theorem from lectures, ℓ has an extension ℓ^* on X with

$$\ell^*|_W = \ell$$
 and $|\ell^*(z)| \le \frac{1}{\operatorname{dist}(y, M)} ||z||, \quad z \in X$ (7)

In particular, it follows ℓ^* is a bounded linear functional with operator norm

$$\|\ell^*\|_{\mathcal{L}(X,\mathbb{R})} \leq \frac{1}{\operatorname{dist}(y,M)}$$

Now, by (7) for $z \in M$, one has

$$\ell^*(z) = \ell(z) = \ell(z + 0 \cdot y) = 0$$
, and, $\ell^*(y) = \ell(0 + 1 \cdot y) = 1$

Finally, since

$$dist(y, M) := \inf_{x \in M} ||x - y||$$

choose a sequence $(x_n)_{n\geq 0} \subset M$ with

$$||x_n - y|| \to \operatorname{dist}(y, M), \quad n \to \infty$$

Now, noting that $y \in X \setminus \overline{M}$, implies $||x_n - y|| > 0$ for $n \in \mathbb{N}$, one computes

$$\frac{|\ell^*(x_n - y)|}{||x_n - y||} = \frac{1}{||x_n - y||} \to \frac{1}{\operatorname{dist}(y, M)}, \quad n \to \infty$$

establishing that indeed

$$\|\ell^*\|_{\mathcal{L}(X,\mathbb{R})} = \frac{1}{\operatorname{dist}(y,M)}$$

as required.

VI.2.ii

Restating the statement to be proven, let M be a closed subspace of X, then one needs to show that

$$M = \bigcap_{f \in X^*: M \subset \ker f} \ker f \tag{8}$$

The first inclusion

$$M \subseteq \bigcap_{f \in X^*: M \subset \ker f} \ker f$$

clearly holds since the intersection is taken over sets that include M. Now suppose for a contradiction that

$$M \subsetneq \bigcap_{f \in X^*: M \subset \ker f} \ker f$$

This means that there exists $x \in X \setminus M$ such that

$$x \in \ker f, \quad \forall f \in X^* : M \subset \ker f$$
 (9)

Since M is closed, section () implies the existence of a bounded linear functional ϕ such that

$$\phi|_M \equiv 0, \quad \phi(x) = 1, \quad \text{and} \quad ||\phi||_{\mathcal{L}(X,\mathbb{R})} = \frac{1}{\operatorname{dist}(x,M)}$$

But, (9) implies $x \in \ker \phi$, a contradiction to the above ($\phi(x) = 1 \neq 0$), whence the desired equality of sets is established.

Problem set VII, exercise VII.5

For the linear operator $T: X \to X$, let

$$G(T) = \{(x, Tx) : x\} \subseteq X \times X$$

denote its graph. We proceed to show that G(T) is a closed subset of $X \times X$ under the norm $||(x, y)||_{X \times X} = ||x||_X + ||y||_X$, $x, y \in X$. Suppose now that $(z_n = (x_n, Tx_n))_{n \ge 0} \subseteq G(T)$ with

$$z_n \xrightarrow{\|\cdot\|_{X \times X}} z = (x, y) \in X \times X, \quad n \to \infty, \quad x, y \in X$$

equivalently

$$x_n \xrightarrow{\|\cdot\|_X} x$$
, $Tx_n \xrightarrow{\|\cdot\|_X} y$

Now, fix $\phi \in X^*$, by assumption one has that $\phi \circ T$ is continuous on *X*, yielding

$$\phi(T(x_n)) = \phi \circ T(x_n) \to \phi \circ T(x) = \phi(T(x)), \quad n \to \infty$$

also, one has by the continuity of ϕ :

$$\phi(T(x_n)) \to \phi(y), \quad n \to \infty$$

Since *X* is a Banach space, limits of $\{\phi(T(x_n))\}_{n\geq 0}$ are unique giving

$$\phi(T(x)) = \phi(y) \tag{10}$$

Now, suppose for a contradiction that $Tx \neq y$. let $W = \text{span}\{Tx - y\} \neq \{0_X\} \subseteq X$. Define the linear functional $\ell : W \to \mathbb{R}$ by

$$\ell(\lambda(Tx-y)) = \lambda \cdot ||Tx-y||_X, \quad \lambda \in \mathbb{R}$$

Clearly, ℓ is dominated by the sub-linear functional $\|\cdot\|_X$ on W. Thus, by an application of the Hahn-Banach Theorem from lectures, one obtains an extension $\ell^* : X \to \mathbb{R}$ such that

 $\ell^*|_W = \ell$, and $|\ell^*(z)| \le ||z||_X$, $z \in X$

Now, since it was assumed that $Tx \neq y$,

$$\ell^*(Tx - y) = \ell(Tx - y) = ||Tx - y||_X > 0$$

But, since $\ell^* \in X^*$, (10) implies that

$$\ell^*(Tx) = \ell^*(y) \implies \ell^*(Tx - y) = 0$$

by linearity, a contradiction. Thus, Tx = y implying that the graph G(T) of T is closed. Since the domain of T, $\mathcal{D}(A) = X$, is closed (complete too), the Closed Graph Theorem from lectures implies that the operator $T : X \to X$ is indeed bounded, as desired.