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Problems

Problem set IV, exercise IV.4
Consider the linear map T : £?(R) — ¢%(R), given by
T((xp)n>1) = (x1 + X2, X2 + x3,...) (1)

Show that it is bounded and compute its operator norm
1T ()
ITllz@2m)e2my) = sup T ()2l

(xn)z1€C2(R), ”(x?l)nzl ”2
llxll>#0

(2)

Problem set VI, exercise VI.2

VI.2.i

Let X be a real normed space and M be a real vector subspace of X. Fix y € X \ M.
Show that there exists a bounded linear functional ¢ € X* such that ¢|3; = 0 and

B 1

1Nz x,r) = dist(y, M)’

VI.2.ii

Let M be a closed subspace of the normed space X, then one needs to show that

M = m kerf. 3)
feX*:Mckerf

Problem set VII, exercise VII.5

Let X be a Banach space and let T : X — X be a linear operator such that for all
¢ € X*, the map ¢ o T is continuous. Using the closed graph theorem to show that T
is bounded.




Solutions

Problem set IV, exercise IV.4
Consider the map T : £?(R) — ¢?(R), given by

T((xp)n=1) = (x1 +x2,%p + X3,...) 4)

Linearity is easily verified since addition and multiplication of scalars is defined
pointwise in £2(R). More explicitly, for all (x,,),s1, (Vn)ns1 € €*(R):

T((xn)nz1 + Wn)ns1) = T((xy +Vp)ns1) = (X1 + V1 + X0 + 92, X0 + Vo + X3+ 3,...)

= (X1 +x0, X +x3,... )+ (V1 + V2,92 +93,...) = T((xp)nz1) + T (V) nz1)
and for A € R:

T(AMxp)n=1) = T((Axy)n1) = (Ax1+Ax0, Axp+Ax3,...) = A(xy+X2, X0+x3,...) = AT ((x)4>1)
For boundedness, it suffices to show that for (x,),>; € ¢?(R) arbitrary

IT((xp)nz1)ll2 < C - [[(xn)ux1ll2

for some C € R independent thereof. Now let (x,),>1 € £>(R) be arbitrary. Then,

IT(Cen)usDIB = )~ (e + X1)?

n>1

Now, since for all x,y e R
(x+v)* < 2(x* +v?)

one has the following control over finite partial sums with N > 1:

N N
) Gt xi) <) 2 +x,)<2) (4+x,)
n=1

= n=1 7121
2 2 2 2 2 2
:Zan+an+1 <2 xn+Z’xn+1 :4an:4'||(xn)n21”2
n>1 n>1 n>1 n>0 n>1

Thus, taking N — co, we have

IT(()us1)lI5 < 4-(xa)uz1ll5

Equivalently,
IT ()2 < 2-I(x)usillz - V(Xn)us1 € C(R) (5)

thereby showing boundedness with C = 2.




In fact we compute its operator norm to be

T (X))l
Tl ez (m),e2(m)) = sup M -9
(xn)n=1€C2(R), (Xp)uz1ll2

llxll>=0

By (5),
T ((x4)ns1)ll2
sup —_—_

(xn)uz1€C2(R), () nz1ll2
[Ix[[2=0

<2

To show equality, consider the sequence

k

(k=0 = ) _ex € L(R)

j=0

(6)

where (ex)is; is the ususal Schauder basis for £?(R), with (ex)(n) = Oy, n > 1. One

easily computes the norms:
1
llxkll = k2 >0

D=

IT (il =11(2,2,...,2,1,0,...)ll2 = [4(k = 1) + 1]
—_—
k-1

Thus,

TGl [4(k—1)+1]2 4 l%
e (e 23]

Thl.IS, ||T||£(€2(R),€2(R)) =2, as claimed.




Problem set VI, exercise VI.2

VI.2.i

Consider the linear functional ¢: W — R, with W = span{M, y} given by
lx+ty)=t, xeM,yeX\M,teR
Linearity is clear since M is a real vector subspace space of X, and for x;,x, €
M,t;,t, e Rand A € R:
C((x1 + 1Y)+ (X2 +120)) =t + 1 = C(x1 + 1)) + {(x2 + 1)

and
C(A(x) +119)) = 0(Ax; + At1y)) = Aty = Al(x; + 1Y)

Now, notice for x € M,t € R\ {0}:
x .
b+ tpll = ¢l -1 + yll > |#] - dist(y, M) > O
since ¥ € M and dist(y, M) > 0 since y € X \ M. Thus,

0(x + ty)| = |t < Ix+tyl, xeM,teR

1
dist(y, M)

Now, since ¢ is dominated on W by the sub-linear functional Tt y ) ———||-||, by the

Hahn -Banach Theorem from lectures, ¢ has an extension ¢* on X Wlth

Clw=¢ and |(z) < o t(y, )IIZII zeX (7)
In particular, it follows ¢* is a bounded linear functional with operator norm
1
* < -
Nl 2x,m) < ist(y, M)

Now, by (7) for z € M, one has
C(z)=4€(z)=€(z+0-y)=0, and, (y)=€00+1-y)=1

Finally, since
dist(y, M) := inf ||x — p|
xeM

choose a sequence (x,),>9g C M with
|lx,, — || = dist(y, M), n— oo

Now, noting that y € X \ M, implies ||x,, — y|| > 0 for n € N, one computes

1€ (x, —y)l 1 1
= — — , Nn— o
o, =2l llx, =2l dist(y, M)
establishing that indeed
. B 1
1Nz x,r) = Jist(y, M)

as required.
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VI.2.ii

Restating the statement to be proven, let M be a closed subspace of X, then one

needs to show that
M= (] kerf (8)
feX*:Mckerf

The first inclusion

M C ﬂ kerf

feX :Mckerf

clearly holds since the intersection is taken over sets that include M. Now suppose
for a contradiction that
M ¢ ﬂ kerf
feX :Mckerf

This means that there exists x € X \ M such that
xekerf, VfeX :McCkerf 9)

Since M is closed, section () implies the existence of a bounded linear functional ¢

such that .

IPllzxr) = dist(x, M)

But, (9) implies x € ker¢, a contradiction to the above (¢(x) =1 # 0), whence the
desired equality of sets is established.

oly=0, ¢(x)=1, and




Problem set VII, exercise VII.5

For the linear operator T : X — X, let
G(T)={(x,Tx): x} S Xx X

denote its graph. We proceed to show that G(T) is a closed subset of X x X under the
norm [|(x, p)llxxx = llxllx +lyllx,x,y € X. Suppose now that (z, = (x,, Tx,))n=0 € G(T)
with

z, ”'”ﬁf{z: (x,y)eXxX, n—ooo, x,peX

equivalently

II-1x II1x
X, — X, Xp—7Y

Now, fix ¢p € X*, by assumption one has that ¢ o T is continuous on X, yielding
P(T(xn) =poT(xy) = poT(x)=P(T(x)), n—oo

also, one has by the continuity of ¢:

O(T(xn)) = P(y), 1n— 00

Since X is a Banach space, limits of {¢(T(x,,))},>0 are unique giving

P(T(x)) = ¢(y) (10)

Now, suppose for a contradiction that Tx = y. let W = span{Tx —p} = {0x} C X.
Define the linear functional ¢: W — R by

((MTx-y))=A-ITx-ylx, AeR

Clearly, ¢ is dominated by the sub-linear functional || -||xy on W. Thus, by an applica-
tion of the Hahn-Banach Theorem from lectures, one obtains an extension £* : X — R
such that

Clw=¢ and |C°(z)|<|lzllx, ze€eX

Now, since it was assumed that Tx = v,
C(Tx-y)=6Tx-y)=|Tx-yllx >0
But, since £* € X*, (10) implies that
C(Tx)=C(y) = (Tx-y)=0

by linearity, a contradiction. Thus, Tx = y implying that the graph G(T) of T is
closed. Since the domain of T, D(A) = X, is closed (complete too), the Closed Graph
Theorem from lectures implies that the operator T : X — X is indeed bounded, as
desired.




