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Problems

Question 1

Part (a)

Let f ∈ L1(R). Show that
∞∑

j=−∞
f (x+2πj), x ∈R

is in L1([−π,π]).

Part (b)

With φ as in part (a), let cn for n in N be the Fourier series coefficients given by:

cn =
1
2π

∫ π

−π
φ(x)e−inxdx

Show that the Fourier transform of f evaluated at n

F [f ](n) =
∫
R

f (x)e−inxdx = cn.

Part (c)

Suppose that

lim
N→∞

2π
N∑

n=−N
f (2πn) =

∞∑
n=−∞

cn (1)

Then deduce that ∞∑
n=−∞

cn = 2π
∞∑

n=−∞
f (2πn)

as required.

Part (d)

For t , 0, set
ft(x) = f (tx), f ∈ L1(−∞,∞)

yielding ft ∈ L1(−∞,∞) for all t as above. Show that

2πt
∞∑

n=−∞
f (2πtn) =

∞∑
n=−∞

F [f ]
(n
t

)
, t , 0.
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Question 2

Part (a)

Let

φn(x) =Hn(x)exp
(
−x

2

2

)
, x ∈R

and

Hn(x) =

1, n = 0
(−1)n exp(x2) dn

dxn

[
exp(−x2)

]
, n ≥ 1

Show that the sequence (φn)n∈N is an orthogonal one in L2(R).

Part (b)

With (φn)n∈N and (Hn)n∈N be as above. Show that

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1 (2)

and
d
dx

Hn(x) = 2xHn(x)−Hn+1(x) = 2nHn−1(x), n ≥ 1.

Part (c)

Find eigenfunctions of the Fourier transform with eigenvalues cn =
√
2π(−i)n for

n ≥ 0.

1 Solutions

Question 1

Part (a)

It suffices to show that

φN (x) =
N∑

j=−N
f (x+2πj), x ∈R

is Cauchy in L1(−π,π). To this end, consider without loss of generality the norms for
n > m both in N:

||φn −φm||L1(−π,π) = 2π
∫
[−π,π]

∣∣∣∣∣∣∣∣
n∑

j=−n
f (x+2πj)−

m∑
j=−m

f (x+2πj)

∣∣∣∣∣∣∣∣dx (3)

= 2π
∫
[−π,π]

∣∣∣∣∣∣∣∣
n∑

j=m+1

f (x+2πj) +
−n∑

j=−m−1
f (x+2πj)

∣∣∣∣∣∣∣∣dx
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≤ 2π
n∑

j=m+1

∫
[−π,π]

|f (x+2πj)|dx+2π
−n∑

j=−m−1

∫
[−π,π]

|f (x+2πj)|dx

by the triangle inequality. Furthermore, by the change of variables formula for the
Lebesgue integral, one obtains:

||φn−φm||L1(−π,π) ≤ 2π
n∑

j=m+1

∫
[−π+2πj,π+2πj]

|f (x)|dx+2π
−n∑

j=−m−1

∫
[−π+2πj,π+2πj]

|f (x)|dx

≤ 2π
∫
[2πm+π,∞)

|f (x)|dx+2π
∫
(−∞,−2πm−π]

|f (x)|dx

since the sets
Aj = [−π+2πj,π+2πj], j ∈Z (4)

have disjoint interiors. Additionally, the fact that f is in L1(−∞,∞) gives (by the
Dominated convergence theorem) that∫

[M,∞)
|f (x)|dx+

∫
(−∞,M]

|f (x)|dx→ 0, as M→∞

which yields that

limsup
n≥m

||φn−φm||L11(−π,π) ≤ 2π
∫
[2πm+π,∞)

|f (x)|dx+2π
∫
(−∞,−2πm−π]

|f (x)|dx→ 0, m→∞

showing that the sequence of φN is Cauchy in L[−π,π], thereby converging to some φ
in L[−π,π] by completeness, as required.

Now, by definition of the φN and the triangle inequality, we have for all N ≥ 1:

||φN ||L1[−π,π] ≤ 2π
N∑

j=−N
||f (x+2πj)||L1[−π,π]

= 2π
N∑

j=−N
||f (x)||L1[−π+2πj,π+2πj] = 2π

N∑
j=−N

||f (x)1Aj
||L1(−∞,∞) ≤ 2π · ||f ||L1(−∞,∞)

using the fact that the sets (4) have pairwise disjoint interiors. Now, by the reverse
triangle inequality, passing to the limit as N →∞ gives:

||φ||L1[−π,π] ≤ 2π · ||f ||L1(−∞,∞)

as required.

3



1 SOLUTIONS

Part (b)

The Fourier series coefficients cn for n in N are given by:

cn =
1
2π

∫ π

−π
φ(x)e−inxdx

Since φN → φ in L1[−π,π],

αn,N =
1
2π

∫ π

−π
φN (x)e

−inxdx→ cn, N →∞

which we now compute. Now, by (3):

αn,N =
N∑

j=−N

∫ π

−π
f (x+2πj)e−inxdx =

N∑
j=−N

∫ π+2πj

−π+2πj
f (x)e−inx+2πjidx

=
N∑

j=−N

∫ π+2πj

−π+2πj
f (x)e−inxdx =

∫
R

N∑
j=−N

1Aj
(x)f (x)e−inxdx

with the Aj as in (4). Since,∣∣∣∣∣∣∣∣
N∑

j=−N
1Aj

(x)f (x)e−inx

∣∣∣∣∣∣∣∣ ≤ |f (x)| ∈ L1(−∞∞)

and
N∑

j=−N
1Aj

(x)f (x)e−inx→ f (x)e−inx, N →∞

both almost everywhere, it follows from the Dominated convergence theorem that

αn,N =
∫
R

N∑
j=−N

1Aj
(x)f (x)e−inxdx→

∫
R

f (x)e−inxdx = F [f ](n)

the Fourier transform of f evaluated at n, as required.

Part (c)

The assumption in the statement of this question is equivalent to:

lim
N→∞

2π
N∑

n=−N
f (2πn) =

∞∑
n=−∞

cn (5)

The previous sub-question then yields:
∞∑

n=−∞
cn =

∞∑
n=−∞

F [f ](n) = 2π
∞∑

n=−∞
f (2πn)

as required.
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Part (d)

Now, for t , 0, one can define

ft(x) = f (tx), f ∈ L1(−∞,∞)

yielding ft ∈ L1(−∞,∞) for all t as above. This means that one can replace f with ft
in questions one part (a) and (b) to deduce that

∞∑
n=−∞

ctn =
∞∑

n=−∞
F [ft](n)

where

ctn =
1
2π

∫ π

π
φt(x)e

−inxdx

are the Fourier coefficients of

φt(x) = L1[−π,π]− lim
|N |→∞

N∑
j=−N

ft(x+2πj)

This means that the same assumptions as in question one part (c) for φt and ft,
enable one to arrive at:

lim
N→∞

2π
N∑

n=−N
ft(2πn) = 2π

∞∑
n=−∞

f (2πtn)

=
∞∑

n=−∞
ctn =

∞∑
n=−∞

F [ft](n) =
∞∑

n=−∞

∫
R

ft(x)e
−inxdx

=
∞∑

n=−∞

∫
R

f (tx)e−inxdx =
∞∑

n=−∞

1
t

∫
R

f (x)e−i
n
t xdx

by the change of variables tx→ x, finally giving

2πt
∞∑

n=−∞
f (2πtn) =

∞∑
n=−∞

∫
R

f (x)e−i
n
t xdx =

∞∑
n=−∞

F [f ]
(n
t

)
, t , 0

Question 2

Part (a)

It suffices to check that the inner products:

(φn,φm)L2(−∞,∞) =

0, m , n

> 0,m = n
, m,n ∈N

where
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φn(x) =Hn(x)exp
(
−x

2

2

)
, x ∈R

and

Hn(x) =

1, n = 0
(−1)n exp(x2) dn

dxn

[
exp(−x2)

]
, n ≥ 1

We first show by induction on n ≥ 0 that dn

dxn

[
exp(−x2)

]
= pn(x)

[
exp(−x2)

]
pn(x) = (−1)n · 2nxn + · · ·

(6)

i.e., pn(x) is a polynomial of degree n with leading coefficient (−1)n ·2n. Now, assum-
ing the inductive hypothesis (6), one can differentiate the first expression therein
and apply the product rule to obtain:

dn+1

dxn+1

[
exp(−x2)

]
=

[
−2x · pn(x) +

d
dx

pn(x)
]
exp(−x2)

Clearly,

pn+1(x) := −2x · pn(x) +
d
dx

pn(x)

is a polynomial of degree n+1 with leading coefficient (−1)n+1 ·2n+1. Noting that the
case n = 0, holds trivially, we complete the proof by induction. This readily yields
that

Hn(x) = (−1)n exp(x2)pn(x)
[
exp(−x2)

]
= (−1)n [(−1)n · 2nxn + · · · ] = 2nxn + · · · , n ≥ 0. (7)

a polynomial of degree n with leading coefficient 2n. Now, fix n > m in N and
compute:

(φn,φm)L2(−∞,∞) =
∫
R

φn(x)φm(x)dx

=
∫
R

φn(x)φm(x)dx =
∫
R

Hn(x)exp
(
−x

2

2

)
Hm(x)exp

(
−x

2

2

)
dx

=
∫
R

Hn(x)Hm(x)exp
(
−x2

)
dx = (−1)n

∫
R

dn

dxn
[
exp(−x2)

]
Hm(x)dx

Since
dn

dxn
[
exp(−x2)

]
Hm(x) = pn(x)Hm(x)exp(−x2)

and
f (x)exp(−x2)

is integrable for all polynomials f (x) and vanishes as |x| → ∞, we can integrate by
parts m+1 times to obtain (just note that pn(x)Hm(x) is polynomial in x):

(φn,φm)L2(−∞,∞) = (−1)n+m+1
∫
R

dn−m−1

dxn−m−1

[
exp(−x2)

] dm+1

dxm+1Hm(x)dx = 0

6



1 SOLUTIONS

since Hm(x) is a polynomial of degree m. An identical computation also gives for
n ≥ 0:

(φn,φn)L2(−∞,∞) = (−1)2n
∫
R

dn−n

dxn−n
[
exp(−x2)

] dn

dxn
Hn(x)dx

=
∫
R

exp(−x2) d
n

dxn
Hn(x)dx = 2n ·n!

∫
R

exp(−x2)dx =
√
π2n ·n! > 0

by (7) and the standard formula for the integral of a Gaussian. This shows that the
system {φn}n∈N is indeed orthogonal.

Part (b)

For n ≥ 1, consider xHn(x); it is an n + 1 degree polynomial and hence can be ex-
panded in terms of Hk(x), k ≤ n + 1, as they are linearly independent polynomials
(this follows from the orthogonality of the φn(x)). Thus. we have the expansion:

xHn(x) = αn+1Hn+1(x) +αnHn(x) +αn−1Hn−1(x) + · · ·

where the α’s are real coefficients and can be computed as:

αk =
(xφn,φk)L2(−∞,∞)

(φk ,φk)L2(−∞,∞)
=
(φn,xφk)L2(−∞,∞)

(φk ,φk)L2(−∞,∞)

by the orthogonality property of the φn again and the definition of the inner product
as an integral. Now, notice that for k ≤ n− 2,

xHk(x) ∈ span{H0, · · · ,Hn−1}

thus, (φn,xφk)L2(−∞,∞) = 0 by orthogonality yielding αk = 0 and

xHn(x) = αn+1Hn+1(x) +αnHn(x) +αn−1Hn−1(x).

First, we notice that

αn−1 =
(xφn,φn−1)L2(−∞,∞)

(φn,φn−1)L2(−∞,∞)
=

∫
R
x ·φn(x)φn−1(x)dx

(φn−1,φn−1)L2(−∞,∞)

=
(−1)n

∫
R
xHn−1(x)

dn

dxn exp(−x
2)dx

(φn,φn)L2(−∞,∞)
=

∫
R

dn

dxn [xHn−1(x)]exp(−x2)dx
(φn,φn)L2(−∞,∞)

=
√
πn!2n−1

√
π(n− 1)!2n−1

= n

Similarly, we have

αn+1 =
(xφn,φn+1)L2(−∞,∞)

(φn+1,φn+1)L2(−∞,∞)
=

∫
R
x ·φn(x)φn+1(x)dx

(φn+1,φn+1)L2(−∞,∞)

=
(−1)n+1

∫
R
xHn(x)

dn+1

dxn+1
exp(−x2)dx

(φn+1,φn+1)L2(−∞,∞)
=

∫
R

dn+1

dxn+1
[xHn(x)]exp(−x2)dx

(φn+1,φn+1)L2(−∞,∞)
=
√
π(n+1)!2n

√
π(n+1)!2n+1
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=
1
2

Finally, notice that by the definition of the Hn(x), they can only be either even or
odd. This can be seen inductively. The base case is trivially true. For the inductive
case, if Hn−1(x) is either even or odd, one has that

Hn−1(x)exp(−x2)

is either even or odd. But, Hn can be expressed as

Hn(x) = (−1)exp(x2) d
dx

[
Hn−1(x)exp(−x2)

]
which is either even or odd, since derivatives of even functions are odd and vice
versa. This enables us to show that

αn =
(xφn,φn)L2(−∞,∞)

(φn,φn)L2(−∞,∞)
=

∫
R
x ·φn(x)φn(x)dx

(φn,φn)L2(−∞,∞)

=

∫
R
xH2

n (x)exp(−x2)dx
(φn,φn)L2(−∞,∞)

= 0

since xH2
n (x)exp(−x2) is an odd integrable function. This finally yields the desired

equality
Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1 (8)

Now, for the second property:

d
dx

Hn(x) =
d
dx

[
(−1)n exp(x2) d

n

dxn
exp(−x2)

]

= 2x(−1)n exp(x2) d
n

dxn
exp(−x2)− (−1)n+1 exp(x2) d

n+1

dxn+1
exp(−x2)

= 2xHn(x)−Hn+1(x) = 2nHn−1(x), n ≥ 1 (9)

by (8).

Part (c)

I claim that the φn(x) are eigenvectors of the Fourier transform with eigenvalues
cn =
√
2π(−i)n for n ≥ 0. The base case n = 0 can be checked directly giving

F [φ0(x)](λ) =
∫
R

exp
(
−x

2

2

)
exp(−iλx)dx

=
√
2πexp

(
−λ

2

2

)
= c0φ0(λ)
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by example four on pages 35-36 of the lecture notes. Now for the inductive part,
suppose that

F [φn(x)](λ) = cnφn(x)

and
F [φn−1(x)](λ) = cn−1φn−1(x)

with cn, cn−1 as above. One now computes

F [φn+1(x)](λ) =
∫
R

Hn+1(x)exp
(
−x

2

2

)
exp(−iλx)dx

=
∫
R

(2xHn(x)− 2nHn−1(x))exp
(
−x

2

2

)
exp(−iλx)dx

=
∫
R

2xHn(x)exp
(
−x

2

2

)
exp(−iλx)dx − 2nF [φn+1(x)](λ)

using (8). Furthermore, integration by parts yields:∫
R

2xHn(x)exp
(
−x

2

2

)
exp(−iλx)dx

= −2
[
Hn(x)exp

(
−x

2

2

)
exp(−iλx)

]∞
−∞

+2
∫
R

d
dx

(Hn(x)exp(−iλx))exp
(
−x

2

2

)
dx

= 2
∫
R

(
d
dx

Hn(x)− iλHn(x)
)
exp(−iλx)exp

(
−x

2

2

)
dx

Now, using property (9):

= 2
∫
R

(2nHn−1(x)− iλHn(x))exp(−iλx)exp
(
−x

2

2

)
dx

= 4nF [φn−1(x)](λ)− 2iλF [φn(x)](λ)

Combining everything together, we have:

F [φn+1(x)](λ) = 4nF [φn−1(x)](λ)− 2iλF [φn(x)](λ)− 2nF [φn+1(x)](λ)

= 2nF [φn−1(x)](λ)− 2iλF [φn(x)](λ)

Finally, the induction hypotheses imply:

F [φn+1(x)](λ) = 2ncn−1φn−1(λ)− iλcnφn(λ) = 2ncn−1φn−1(λ) + 2(−i)2cn−1λφn(λ)

= −cn−1φn+1(λ) = (−i)2cn−1φn+1(λ) = cn+1φn+1(λ)

using property (8) and that cn = (−i)n = (−i)cn−1. This completes the proof by induc-
tion as required.
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