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Abstract	
In this paper, we test the effectiveness of predicting the behavior of stocks utilizing sto-
chastic calculus. We begin by exploring the intuition of Brownian motion by explaining 
its birth through the observations of Robert Brown and later through Bachelier’s work 
on its applications to the financial market and finally its rigorous and concretized form 
proposed by Norbert Wiener. The aforementioned motivates a stochastic differential 
equation to model the future price fluctuations of a stock wherein Itô integration is prom-
inent and consequently expanded upon. The final part of this paper focuses on the accu-
racy of the model by back testing it with Apple stock and deriving a correlation coeffi-
cient. 
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1.	Introduction	

This paper begins with the contribution of the works of Robert Brown, Louis Bachelier and 
Norbert Wiener which is then followed by the mathematical definition of Brownian Motion 
and accompanied with the discretized form of a stochastic differential equation. Further-
more, chapter 5 focuses on the introduction to certain preliminary concepts such as sigma 
algebras, filtrations and 𝐿! spaces. Finally, we construct the Itô integral and consequently 
apply it to the limiting form of the stochastic differential equation. Finally, chapter 7 tests 
the equation against Apple Stock. 
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2.	Literature	Review	
2.1.	Robert	Brown	

In 1827, a botanist by the name of Robert Brown was examining the motion of grains of 
pollen suspended under water from a species of plants. Curiously, Brown observed that the 
motion of particles ejected from these pollen grains was "jittery"; this was the first ever 
recorded case of such motion and was thus subsequently named ‘Brownian’. The idea be-
hind this type of motion being that the trajectory follows a completely random and "unpre-
dictable" path. Ever since, the concept of an unpredictable and random trajectory has been 
utilized in numerous fields including financial mathematics in the modeling of stock  
behavior [6]. 

2.2.	Louis	Bachelier	

Several decades later, in 1900, Louis Bachelier built the foundation of mathematical finance 
by integrating Brownian motion with the fluctuation in the price of a stock. He postulated 
that two ideas should be considered when exploring the future value of an asset. First, how 
a collection of anterior (past) events influences the asset and second, how the probability of 
unknown future events could affect it [2]. For example, the C.E.O of Apple just got replaced 
yesterday; that is an anterior event that could influence the future price of an Apple stock. 
On the other hand, if a power outage occurs tomorrow in one of Apple’s factories and halts 
production, that is an unknown future event that might affect the price of the stock and falls 
into the second category. It is said that the fluctuation in the price of a stock attributed to the 
latter follows Brownian motion as it is seemingly unpredictable and random. Bachelier only 
focused on the second idea since the anterior events were not meaningful because Bachelier 
defined the mathematical expectation for an asset to rise or fall to be zero since the market 
constitutes of a pool of people that trade with opposite beliefs on the future value of an asset 
[2]. For example, suppose a person is buying a call option for an asset, they hence believe 
that its price will rise. The person on the other side of the option believes it will fall otherwise 
they would not be selling the option. Hence, since they are both aware of past events that 
can influence the asset and have contradictory beliefs on how it will perform, meaning the 
mathematical expectation of the change in value of the underlying asset is neither positive 
nor negative. The market is therefore said to be fair. [2] 
 

2.3	Norbert	Wiener	

The above considerations by Bachelier were expanded upon within the framework of 
physics by American mathematician Norbert Wiener in his seminal work on ‘differen-
tial spaces’ [12]. This was justified by arguments pertaining to the motion of a particle 
suspended in a fluid, where the movement of said particle depended on impulses by 
fluid particulates – akin to Brown’s scenario - and the initial velocity of the particle, 
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although the influence of the latter was deemed negligible by Einstein. For simplicity, 
one can assume that the particle is constrained in one dimension and so are the impulses. 
Due to the nature of the situation, Wiener, following Einstein assumed that the displace-
ment of the particle between any two-time instants had no bias in any direction and 
large movements relative to the time scale were unlikely. This prompted the use of the 
normal distribution as a way of describing the above behavior. The use of the normal 
distribution and the ‘independence’ of the displacement of the particle in disjoint time 
intervals are crucial in the rigorous definition of Brownian motion given below. 
 

3.	Brownian	Motion	

In probability theory, one usually considers three objects when setting up a probability 
space; namely, the sample space 𝛺, that is the collection of outcomes of a random pro-
cess, a sigma algebra ℱ, a set containing all measurable events and a probability meas-
ure ℙ that measures the probability of said events that obeys certain axioms as laid out 
by Kolmogorov [10]. The above are combined to form the Probability Space (𝛺, ℱ, ℙ). 
 
A stochastic process defined on a probability space (𝛺, ℱ, ℙ) is a measurable function 
𝑋: [0,∞) × 𝛺 → ℝ. More specifically, a stochastic process 𝔅(𝑡, 𝜔) is called a Brown-
ian motion if it satisfies the following conditions [1]: 

 
1. ℙ(𝜔;𝔅(0, 𝑡) = 0) = 1 
2. For any 0 ≤ 𝑠 < 𝑡, the random variable 𝔅(𝑡) − 𝔅(𝑠) is normally distributed with 

mean 0 and variance 𝑡 − 𝑠, i.e., 
 

  ℙ(𝑎 ≤ 𝔅(𝑡) − 𝔅(𝑠) ≤ 𝑏) = "
#$%('())∫ 𝑒

!"#
#(%!&)+

, 𝑑𝑥 

   
3. 𝔅(𝑡, 𝜔) has independent increments, i.e for any 0 ≤ 𝑡" ≤ 𝑡$ ≤. . . ≤ 𝑡-, the random 

variables 
  𝔅(𝑡"), 𝔅(𝑡$) − 𝔅(𝑡"), . . . , 𝔅(𝑡-) − 𝔅(𝑡-(") 

  are independent and identically distributed, as per II. 
4. Almost all sample paths of 𝔅(𝑡, 𝜔) are continuous functions, i.e.: 

  ℙ({𝜔 ∈ 𝛺|𝔅(. , 𝜔) is continuous }) = 1 

Note that the dependence on 𝜔 was dropped in property II and III for simplicity reasons. 
 
 

	

	



Pantelis T., Yorgos P. 
 

 

DOI: 10.4236/***.2020.***** 4 Journal 
 

4.	Applications	to	the	Stock	Market	

 
We now consider a stock that is tradable on a stock market, such as an S&P 500 stock like 
Apple and model it by a stochastic process 𝒴'(𝜔): [0,∞) × 𝛺 → ℝ on the probability 
space (𝛺, ℱ, ℙ). One is prompted to ask 
 

What factors drive the process 𝒴'? 
 

Well, an attempt at answering the above is to view the stock price 𝒴' as a sum of a deter-
ministic component and a stochastic component containing ‘noise’ meant to represent an 
underlying uncertainty. Thus, for a small increment in time from 𝑡 to 𝑡 + 𝑑𝑡, the change 
in log𝒴' i.e., 𝑑log𝒴' is given by 
 

𝑑log𝒴' = 𝛾(𝑡) ⋅ 𝑑𝑡 + 𝜎(𝑡, 𝒴') ⋅ "noise" 
 

where 𝛾(𝑡) is the growth rate of a stock which is deterministic and 𝜎(𝑡, 𝒴'). "noise" is 
the volatility of the stock and is the stochastic component. [11]. The noise part can be 
modeled by a Brownian motion 𝔅' , following Bachelier and Wiener. Thus, the above 
equation can be recast in the following form [7] 
 

𝑑log𝒴' = 𝛾(𝑡) ⋅ 𝑑𝑡 + 𝜎(𝑡, 𝒴') ⋅ 𝑑𝔅(𝑡)       (1) 

where 𝑑𝔅' = 𝔅'./' −𝔅'. Equation 1 is an example of a stochastic differential equation 
[11]. In order to make precise what we mean by this, we consider a discretisation of the 
problem and consider the interval [0, 𝑡] where 𝑡 ≥ 0. We further impose a partition 𝑡0 =
0 < 𝑡" < 𝑡$ <. . . < 𝑡1(" < 𝑡 = 𝑡- of the interval and equation 1 to mean: 

log𝒴'( − log𝒴'(!)
= 𝛾(𝑡1(") ⋅ (𝑡1 − 𝑡1(") + 𝜎O𝑡1(", 𝒴'(!)P ⋅ O𝔅'( −𝔅'(!)P

 

for 𝑘 ranging from 0 to 𝑛 − 1. A summation of the index 𝑘 yields the process 

𝐼-[𝒴'](. ) = log𝒴'*≡' − log𝒴'+

=T𝛾
-("

130

(𝑡1(") ⋅ (𝑡1 − 𝑡1(") +T𝜎
-("

130

O𝑡1(", 𝒴'(!)P ⋅ O𝔅'( −𝔅'(!)P
 

[11]. Now, in a certain sense, we have ‘integrated the process’ and have obtained an ex-
pression for the process at some time 𝑡, given an initial time 𝑡0. Indeed, two summations 
that appear are reminiscent of discrete approximations to Riemann-Stieltjes integrals. One 
is tempted to take a limit of such partitions 𝜋- with mesh |𝜋-| ≡ max(𝑡4 − 𝑡4(") → 0 
and obtain the corresponding equation 

log𝒴'*≡' − log𝒴'+ = Z 𝛾
'

0
(𝑡)𝑑𝑡 + Z 𝜎

'

0
(𝑡, 𝒴')𝑑𝔅' 
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The aim of the next chapter is to show that for suitably well behaved 𝛾(𝑡)(𝜔)  and 
𝑓(𝑡, 𝜔) ≡ 𝜎O𝑡, 𝒴'(𝜔)P, such a limit exists in 𝐿$(𝛺), the space of all square integrable ran-
dom variables on 𝛺. Making this intuition precise leads to the Itô Integral, which will be 
discussed below. 

5.	Preliminaries	

5.1	 𝝈-algebras	

Consider the space 𝑋. A 𝜎-algebra 𝒜 on 𝑋 [5] is a set of subsets of 𝑋 satisfying the 
following conditions: 
1. 𝑋, ∅ ∈ 𝒜 
2. if 𝐴 ∈ 𝒜 then 𝐴 ∈ 𝒜 
3. if 𝐴5 ∈ 𝒜 for 𝑗 ∈ ℕ then ⋃5∈ℕ𝐴5 ∈ 𝒜 

 
A generator 𝒢 is a set of arbitrary subsets such that these subsets generate a 𝜎-algebra 
denoted by 𝜎(𝒢) [5]. This 𝜎-algebra is also known as the smallest or minimal 𝜎-algebra. 
It is defined as: 
 

𝜎(𝒢) := ⋂
 ℋ( is a :(alg

 𝒢⊂ℋ(

ℋ1 

 

for an arbitrary index 𝑘; that is the intersection of all sigma algebras that contain 𝒢. 
 

5.2	Filtrations	&	 𝔽	 -	adapted	processes	

Consider the family 𝔽 := {ℱ'}'∈>  of 𝜎-(sub)algebras of ℱ  defined on a measurable 
space (𝛺, ℱ) is called a filtration if for all 𝑠, 𝑡 ∈ 𝑇 such that 𝑠 ≤ 𝑡, 

ℱ) ⊆ ℱ' 
where 𝑇 is an index set in any of the following: ℝ,ℝ., ℕ, ℤ. [5] 
An ℱ'-measurable function 𝑍 satisfies: 

𝑍("Oℬ(ℝ)P ⊂ ℱ' 
which is a shorthand notation for: 

𝑍("(𝐵) ∈ ℱ' , ∀𝐵 ∈ ℬ(ℝ) 
 
Where ℬ(ℝ) is the standard Borel 𝜎 − algebra. Define a function ℎ: [0,∞) × 𝛺 → ℝ 
with a filtration 𝔽 ⊂ 𝛺. The function is then called ℱ'-adapted if it is ℱ'-measurable 
∀𝑡 ≥ 0. [5] 
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5.3	A.M	-	G.M	Inequality	&	Lebesgue	Integral	

 
The A.M - G.M inequality states the following: 

𝑎? + 𝑏?

2 ≥ √𝑎?𝑏? 

for 𝑎?, 𝑏? ∈ ℝ.. Now replace 𝑎? = 𝑎$ and 𝑏? = 𝑏$. The inequality then becomes: 
𝑎$ + 𝑏$

2 ≥ |𝑎𝑏|. 

for 𝑎, 𝑏 ∈ ℝ. This can be extended to ℙ−measurable functions 𝑓 and 𝑔 in the context 
of integration. Using the fact that the Lebesgue integral with respect to the probability 
measure ℙ is monotonic, we can apply it to the inequality yielding: 

Z(𝑓$ + 𝑔$)
@

𝑑ℙ ≥ 2Z|𝑓𝑔|
@

𝑑ℙ

⟹ 𝔼[𝑓$ + 𝑔$] ≥ 2𝔼[|𝑓𝑔|]
 

5.4	 𝑳𝒑	 Spaces	

Suppose 𝑋:𝛺 → ℝ- is a random variable and 𝑝 ∈ [1,∞). The 𝐿! norm of 𝑋, ∥ 𝑋 ∥A, 
is defined as [11] : 

∥ 𝑋 ∥A,= vZ|𝑋(𝜔)|!
@

𝑑ℙ(𝜔)w
"/!

= (𝔼(|𝑋|!))"/! 

 

6	Itô	Integration	

A process 𝜙: [0,∞) × 𝛺 → ℝ is called elementary if: 

𝜙(𝑡, 𝜔) = T𝑍5

C("

53"

(𝜔)𝟙('-,'-.)](𝑡) 

where 0 ≤ 𝑡" < 𝑡$ <. . . < 𝑡C < ∞ and where 𝑍5 (1 ≤ 𝑖 ≤ 𝐾) is a complex square-inte-
grable ℱ'--measurable random variable. [5] The Itô integral for this process on the interval 
[𝑆, 𝑇] with 𝑆, 𝑇 ∈ [0,∞) is defined as the following random variable: 

Z 𝜙
>

F
(𝑡, 𝜔)𝑑𝔅' = T𝑍5

C("

53"

(𝜔) }𝔅'/.) −𝔅'/~ (𝜔) 

In our case, a square integrable random process is defined as 

𝔼 �Z |𝜙(𝑡)|$
>

F
𝑑𝑡� < ∞ 
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Define 𝔏(𝑆, 𝑇) to be the class of functions [11]: 
𝑓: [0,∞) × 𝛺 → ℝ 

such that: 

1. 𝑓(𝑡, 𝜔) is ℬ(ℝ.) × ℱ - measurable 

2. 𝑓(𝑡, 𝜔) is ℱ'-adapted 

3. 𝔼[∫ |𝑓(𝑡, 𝜔)|$>
F 𝑑𝑡] < ∞ 

6.1	Construction	of	the	Itô	Integral	

We will know construct the Itô integral. We will omit the proofs of the steps needed for 
such a construction for the purpose of brevity. In brief, the construction comprises of ap-
proximation lemmas for processes 𝑔 ∈ 𝔏(𝑆, 𝑇) in terms of elementary functions, and then 
one utilises the isometry property of the Itô integral for elementary processes and the com-
pleteness of the metric space 𝐿$(𝛺) to define a limit and call it the Itô integral. 

	
STEP	I	
 
Let 𝑔 ∈ 𝔏(𝑆, 𝑇) be bounded and continuous for all 𝜔 ∈ 𝛺. Then there exists elementary 
processes 𝜙- ∈ 𝔏(𝑆, 𝑇) such that [11] 

𝔼[∫ (𝑔 − 𝜙-)$
>
F 𝑑𝑡] → 0 , as 𝑛 → ∞ 

	
STEP	II	
 
Let ℎ ∈ 𝔏(𝑆, 𝑇) be bounded. Then there exist bounded functions 𝑔- ∈ 𝔏(𝑆, 𝑇) such that 
they are continuous for all 𝜔 and 𝑛 and [11] 

𝔼 }∫ (ℎ − 𝑔-)$
>
F 𝑑𝑡~ → 0 , as 𝑛 → ∞ 

STEP	III	
 
Let 𝑓 ∈ 𝔏(𝑆, 𝑇). Then there exists a sequence {ℎ-} ⊂ 𝔏(𝑆, 𝑇) such that ℎ- is bounded 
for each 𝑛 and [11] 

𝔼[∫ (𝑓 − ℎ-)$
>
F 𝑑𝑡] → 0  ,as 𝑛 → ∞ 

Now, using the above steps we show that for 𝑓, 𝜙- ∈ 𝔏(𝑆, 𝑇): 
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𝔼[∫ |𝑓 − 𝜙-|$
>
F 𝑑𝑡] → 0  ,as 𝑛 → ∞ 

First, maintain the definition for 𝑓, 𝜙-, 𝑔 and ℎ as they were in steps I, II and III. We 
have by section 4.3: 

𝔼[Z |𝑓 − 𝜙-|$
>

F
𝑑𝑡]

= 𝔼[Z |(𝑓 − ℎ1) + (ℎ1 − 𝑔G) + (𝑔G − 𝜙-)|$
>

F
𝑑𝑡]

≤ 2𝔼[Z |𝑓 − ℎ1|$
>

F
𝑑𝑡] + 4𝔼[Z |ℎ1 − 𝑔G|$

>

F
𝑑𝑡] + 4𝔼[Z |𝑔G − 𝜙-|$

>

F
𝑑𝑡]

 

where for now ℎ1 and 𝑔G are arbitrary functions. Let 𝜖 > 0 be arbitrary. By Step III, 
fix a 𝑘 large enough such that: 

𝔼[Z |𝑓 − ℎ1|$
>

F
𝑑𝑡] <

𝜖
6 

By Step II, fix an 𝑚 large enough such that: 

𝔼[Z |ℎ1 − 𝑔G|$
>

F
𝑑𝑡] <

𝜖
12

 

By Step I, fix an 𝑁 large enough such that for all 𝑛 ≥ 𝑁: 

𝔼[Z |𝑔G − 𝜙-|$
>

F
𝑑𝑡] <

𝜖
12

 

Hence, for all 𝑛 ≥ 𝑁, combining the above parts yields that 

𝔼[Z |𝑓 − 𝜙-|$
>

F
𝑑𝑡] < 𝜖 

We now will state without proof a key property of the Itô integral for elementary processes 
𝜙 ∈ 𝔏(𝑆, 𝑇), known as Itô Isometry and states the following and can be found in [11] 

𝔼 ��Z 𝜙
>

F
(𝑡)𝑑𝔅'�

$

� = 𝔼 �Z 𝜙
>

F
(𝑡)$𝑑𝑡� 

Now, armed with the above results, we are going to show that the sequence  

�Z 𝜙-
>

F
(𝑡, 𝜔)𝑑𝔅'�

-∈ℕ
 

is Cauchy in 𝐿$(𝛺), where the 𝜙-(𝑡, 𝜔) are elementary approximants of 𝑓(𝑡, 𝜔) in the 
sense that 𝔼}∫ (𝑓 − 𝜙-)$

>
F 𝑑𝑡~ → 0 as 𝑛 → ∞. Indeed, 
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∥ Z O𝜙-(𝑡, 𝜔) − 𝜙G(𝑡, 𝜔)P
>

F
𝑑𝔅' ∥A#(@)

$ = 𝔼��Z O𝜙-(𝑡, 𝜔) − 𝜙G(𝑡, 𝜔)P
>

F
𝑑𝔅'�

$

�

= 𝔼 �Z O𝜙-(𝑡, 𝜔) − 𝜙G(𝑡, 𝜔)P
$

>

F
𝑑𝑡�

≤ 2𝔼 �Z O𝑓(𝑡, 𝜔) − 𝜙-(𝑡, 𝜔)P
$

>

F
𝑑𝑡� + 2𝔼 �Z O𝑓(𝑡, 𝜔) − 𝜙G(𝑡, 𝜔)P

$
>

F
𝑑𝑡� → 0

 

as 𝑛,𝑚 → ∞ by the A.M-G.M. inequality, the approximation lemma and the isometry 
property of the Itô integral. The completeness of 𝐿$(𝛺) implies that there is a random 
variable 𝐼[𝑓]F> ∈ 𝐿$(𝛺) such that 

𝔼 ��𝐼[𝑓]F> −Z 𝜙-
>

F
(𝑡, 𝜔)𝑑𝔅'�

$

� → 0 

as 𝑛 → ∞. We can now define the Itô integral of 𝑓(𝑡, 𝜔) as 

Z 𝑓
>

F
(𝑡, 𝜔)𝑑𝔅' : = 𝐼[𝑓]F> ==

A#(@)
lim
-→I

Z 𝜙-
>

F
(𝑡, 𝜔)𝑑𝔅' 

It is also important to mention that the above limit does not depend on the choice of ap-
proximants. So suppose the approximants 𝜙-(𝑡, 𝜔) and 𝜓-(𝑡, 𝜔) converge in the 𝐿$(𝛺) 
sense to 𝐼"[𝑓]F> and 𝐼$[𝑓]F> respectively, then we have 

∥ 𝐼"[𝑓]F> − 𝐼$[𝑓]F> ∥A#(@)
$

≤∥ �𝐼"[𝑓]F> −Z 𝜙-
>

F
(𝑡, 𝜔)𝑑𝔅'� − �𝐼$[𝑓]F> −Z 𝜙-

>

F
(𝑡, 𝜔)𝑑𝔅'� ∥A#(@)

$

≤∥ 𝐼"[𝑓]F> −Z 𝜙-
>

F
(𝑡, 𝜔)𝑑𝔅' ∥A#(@)

$ +∥ 𝐼$[𝑓]F> −Z 𝜙-
>

F
(𝑡, 𝜔)𝑑𝔅' ∥A#(@)

$

≤∥ 𝐼"[𝑓]F> −Z 𝜙-
>

F
(𝑡, 𝜔)𝑑𝔅' ∥A#(@)

$ +∥ 𝐼$[𝑓]F> −Z 𝜓-
>

F
(𝑡, 𝜔)𝑑𝔅' ∥A#(@)

$ +

∥ Z 𝜙-
>

F
(𝑡, 𝜔)𝑑𝔅' −Z 𝜓-

>

F
(𝑡, 𝜔)𝑑𝔅' ∥A#(@)

$ → 0

 

as 𝑛 → ∞. This is because 

∥ Z 𝜙-
>

F
(𝑡, 𝜔)𝑑𝔅' −Z 𝜓-

>

F
(𝑡, 𝜔)𝑑𝔅' ∥A#(@)

$ = 𝔼�Z (𝜙- −𝜓-)$
>

F
(𝑡, 𝜔)𝑑𝑡�

≤ 2𝔼 �Z (𝜙- − 𝑓)$
>

F
(𝑡, 𝜔)𝑑𝑡� + 2𝔼 �Z (𝜓- − 𝑓)$

>

F
(𝑡, 𝜔)𝑑𝑡� → 0

 

by the fact that 𝜙- and 𝜓- are approximants to 𝑓 and the definition of the Itô integral. 
This shows that ∥ 𝐼"[𝑓]F> − 𝐼$[𝑓]F> ∥A#(@)

$ = 0 which means that ℙ({𝜔 ∈ 𝛺|𝐼"[𝑓]F>(𝜔) =
𝐼$[𝑓]F>(𝜔)}) = 1, that is that the limits are ‘almost surely’ equal, hence they are identified 
in 𝐿$(𝛺). 
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7	Numerical	Results	 	

Now, for some numerical results to buttress the theory, we consider the case where the 
stock price process 𝒴' from some initial time 𝑡 = 0 to some final time 𝑡 = 𝑇 follows 
the law 

log𝒴' − log𝒴0 = ∫ 𝛤'0 𝑑𝑡 + ∫ 𝛴'0 𝑑𝔅'      (2) 

for 𝑡 ∈ [0, 𝑇], where 𝛾(𝑡) = 𝛤 and 𝜎(𝒴' , 𝑡) = 𝛴 are constants. The above formula is 
well defined as constant functions are members of the space 𝔏(0, 𝑇) for which the Itô 
integral is defined. The above can be solved analytically, but a numerical treatment will be 
explored within the context of Apple’s stock price. 
 
In the following example, the model will be tested against historical data from January 1 
2020 to December 31 2020. 𝛤 and 𝛴 will be estimated using historical daily log-returns 
from 11 October 2007. By daily log-returns at a given date, we mean the natural logarithm 
of the ratio of the price at said day by the price at the previous date. First, we partition the 
period from 1 January 2020 to 31 December 2020 into 

𝔗 = {𝑇4}4≡4%0trading day in the year 

starting from 𝑖 = 0 and we call the collection of log-returns 

𝔩𝔬𝔤ℜ = {log𝑅'-}'-∈𝔗>+ 

where 

𝑅 =
𝑋4
𝑋4("

 

and 𝑋4 is the price of Apple’s stock at some 𝑡4 ∈ 𝔗{𝑇0}. We use the above to compute 𝛤 
and 𝛴: 

𝛤 =	 𝔩𝔬𝔤ℜ −
Var(𝔩𝔬𝔤ℜ)$

2 	 

𝛴 = 	Var(𝔩𝔬𝔤ℜ) 

where 𝔩𝔬𝔤ℜ is the (sample) mean and Var(𝔩𝔬𝔤ℜ) the (sample) variance of 𝔩𝔬𝔤ℜ respec-
tively. We are now able to consider discrete approximation to equation 1. As per section 4, 
we consider the discrete stock price process 𝒴'|𝔗: 𝔗 × 𝛺 → ℝ given by: 
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𝒴'*|𝔗(𝜔)

= 𝐻'+ × exp�T𝛾
-("

130

(𝑡1(")(𝜔) ⋅ (𝑡1 − 𝑡1(")�

× exp�T𝜎
-("

130

�𝑡1(", 𝒴'(!)(𝜔)  ⋅ �𝔅'((𝜔) − 𝔅'(!)(𝜔) �

 

where 𝒴'+|𝔗 = 𝐻'+, 𝑡- ∈ 𝔗 and 𝜔 ∈ 𝛺. 

 

 
 

 

 

 

 

 

 
 

 

Figure 1.  Plot Apple Stock Price (black) from January 2020 to December 31 2020 and projections (coloured) 
for 10 sample paths generated from the model. 
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Figure 2.  Plot of historical Apple stock price from January 2020 to January 2021 (black) and the area 
enclosed between the maximal and minimal prices in the simulated paths in figure 1, assuming the law in 
equation 2 with 𝜞 = 0.0008316271 and 𝜮 = 0.01648899. 

It is clear from figure 2, the simulated paths capture most of the historical time series of 
Apple’s stock price which is another indicator that the model is qualitatively speaking, a 
good approximation. However, only ten projections were performed, justifiably casting 
doubt on the statistical significance of the above result. 
 
To try and quantify the above intuition, we will try and compute numerically the expected 
value, a central tendency indicator, 𝔼[Cor(𝒴'|𝔗, 𝐻')] of the correlation between 𝒴'|𝔗 
and {𝐻'}'∈𝔗 -𝐻' in short- the historical price time series of Apple Stock in the above pe-
riod. 
 
To achieve this, we consider 𝑁  independent and identically distributed copies 𝒴'-|𝔗 
where 𝑛 ∈ [1, 𝑁] ∩ ℕ, of the discrete process 𝒴'|𝔗 ; intuitively, they correspond to 𝑁 
distinct projections. The correlation between the historical data and the 𝑛th projection is 
denoted by 

Cor(𝒴'-|𝔗, 𝐻') 

with cumulative mean 
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ℭ𝔬𝔯K =
∑ CorK
-3" (𝒴'-, 𝐻')

𝑁  

taking 𝑁 → ∞, we obtain figure 3. 
 

 

 

 
 

 

 
 

 

 

Figure 3.  Plot of mean correlation 𝕮𝖔𝖗𝑵 for values of N in {1,2,3,...., 1000}. The plot seems to converge to a 
value of approximately 0.36. 

According to basic probability theory, ℭ𝔬𝔯K converge in the sense of probability to the 
expected value of the correlation between the discretised path and the historical trial data 
𝔼[Cor(𝒴'|𝔗, 𝐻')] [4]. This means that considering progressively larger values of N (that 
is taking 𝑁 → ∞), ℭ𝔬𝔯K should approach a constant value (see figure 3). 

Figure 3 suggests that  
𝔼[Cor(𝒴'|𝔗, 𝐻')] ≈ ℭ𝔬𝔯K 

tends to a constant value of 0.36 for 𝑁 large. This suggests, in a rather heuristic way, 
that the model ‘captures’ 36% of the variability in stock prices. Granted, further investiga-
tion is warranted over different stocks and more involved models could of course be con-
sidered. 

8.	Conclusion	

A unique contribution of this report was the empirical verification of a theoretical model 
for Apple’s stock price predicated on Brownian Motion as a quantification of the volatility 
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therein. This was achieved by comparing the projected stock price against historical data 
from January 1 2020 to December 31 2020. The model used data going back to 2007, and 
used the discretised version of the price process of the Apple Stock. A limiting value of 
0.36 was observed for the mean correlation between the theoretical and actual stock prices, 
upon numerical simulation for a larger and larger sample size. This suggests that the model 
‘captures’ 36% of the variability in the stock price. Granted, the above method has limita-
tions such as the fact that volatility is estimated from historical data. Further investigation 
is warranted to compute such correlation coefficients over different stocks and one could 
construct more involved models could of course be considered (see [8]). 
 
Since the model considers a deterministic volatility factor, it would be an interesting ex-
tension to derive and test the accuracy of a similar model with volatility being purely sto-
chastic. Brownian Motion has seen extensive use in the world of financial mathematics, 
especially in the construction of pricing models for more involved financial instruments 
including options and other derivatives (see [9] and [3]). 
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