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Problems

1. Let u : Rn → R be continuous, non-negative and bounded. Prove using Har-
nack’s inequality that u is a constant.

2. Let u ∈ C2(Ω)∩C0(Ω), g ∈ C0(∂Ω) and f ∈ C0(Ω) such that ∆u = f in Ω.

Show that

max
Ω

|u| ≤max
∂Ω
|g |+CM = C

max
∂Ω
|g |+ sup

Ω

|f |


where C is a positive constant, that only depends on the domain Ω and not on
u,f ,g.

3. Let H2
0 (Ω) denote the closure of the space C∞0 (Ω) with the H2 norm; it is a

closed subspace of the Hilbert space H2, thus a Hilbert space in its own right.
Consider the map,

B :H2
0 (Ω)×H2

0 (Ω)→R

where
B[u,v] =

∫
Ω

∆u∆v, u,v ∈H2
0 (Ω) (1)

Show that for any bounded linear functional f on H2
0 (Ω), there exists a unique

u ∈H2
0 (Ω) such that

B[u,v] = f [v], ∀v ∈H2
0 (Ω)

4. [1, p.107] For p , 2 and t , 0 show that

sup
ϕ∈S\0

∥S(t)ϕ∥Lp
∥ϕ∥Lp

=∞

Hint. Consider ϕ = e−(a+ib)|x|
2/2 with a > 0 and b ∈ R. Let a tend to zero or

infinity depending on the value of p. Discussion. There is a general principle.
Suppose that S is an operator which respects the Lr norm in the sense that

c∥ϕ∥Lr ≤ ∥Sϕ∥Lr ≤ C∥ϕ∥Lr

If there are functions such that ϕn and Sϕn are spread regularly over their
support and the supp(Sϕn) is incomparably smaller than supp(ϕn), then S
cannot be bounded in Lp for any p > r. The reason is that if Mn ( resp.
mn) is a typical magnitude for ϕn (resp. Sϕn ), then respect for Lr yields
Mr
nvol(suppϕn) ∼ mr

nvol(suppSϕn). Thus mn/Mn→∞, so S is not bounded
on L∞. Similarly, ∥Sϕn∥Lp / ∥ϕn∥Lp →∞ for any p > r.

If there are functions whose support is compressed, one finds that S is not
bounded on Lp for any p < r. In our case r = 2, the L2 norm is conserved and
Gaussians of size a−1/2 are spread by S(t) over a region of size a1/2t which,
letting a tend to infinity (resp. 0), is incomparably larger (resp. smaller) than
the original spread. The conclusion is that S is unbounded on Lp for all p , 2.
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The test functions of the hint are suggested by the solutions

S(t)δ = (4πit)−d/2ei|x|
2/4t

and
S(t)

(
(−4πit)−d/2e−i|x|

2/4t
)
= δ,

which spread from a point to all of Pd and contract from all of Rd to a point.
These are extreme examples of dispersion.

The operator S(t) is the Fourier mutiplier F ∗e−it|ξ |
2
F and the multiplier e−it|ξ |

2

is smooth and bounded but gives an operator which is unbounded on Lp for
p , 2. This discontinuity is not obvious. Viewed from the point of view of the
multiplier, the problem comes from the fact that e−it|ξ |

2
oscillates faster and

faster as |ξ | tends to infinity.

5. Let u : Rd ×R→ C be such that u(t, ·),ut(t, ·) ∈ S(Rd) for all t ∈ R. Suppose u
satisfies the Schrödinger equation

i∂tu +∆u = u|u|2. (2)

Show that the energy

E(t) =
1
2

∫
R
d
∇uT∇u + 1

4

∫
R
d
u2u2

is constant.
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Solutions

1. From problem sheet five, Harnack’s inequality was derived. Restating it one
has for f :Rn→R,u ≥ 0 continuous on the ball B(x0,R) ⊂R

n and harmonic in
its interior, one has for all |x − x0| = r < R:

1− r
R

[1 + r
R ]
n−1 f (x0) ≤ f (x) ≤

1+ r
R

[1− r
R ]
n−1 f (x0) (3)

Since u is bounded on R
n, take

M = sup
R
n
|u| <∞

and define
ũ = u +M

Now one has that ũ ≥ 0 on R
n and that it is harmonic on R

n. Fix y ∈ R
n

arbitrary. For all R > |y|+1, the conditions for Harnack’s inequality (3) are met
with y ∈ B(0, |y|+1) ⊂ B(0,R) yielding

1− |y|+1R
[1 + y|+1

R ]n−1
ũ(0) ≤ ũ(y) ≤

1+ y|+1
R

[1− y|+1R ]n−1
ũ(0)

Taking R→∞ gives that

1− |y|+1R
[1 + y|+1

R ]n−1
and

1+ y|+1
R

[1− y|+1R ]n−1
both → 1

Finally giving that ũ(0) ≤ ũ(y) ≤ ũ(0). Thus, ũ ≡ ũ(0) giving that u is constant
on Rn as required.

2. Assuming f is bounded on Ω ⊂ R
n (otherwise there is nothing to show), let

M = sup
x∈Ω
|f (x)|. Consider the functions

ũ+(x) = u(x) +M
|x|2

2n
, ũ−(x) = u(x)−M

|x|2

2n
, x ∈Ω

and let C = sup
x∈Ω

|x|2

2n
<∞. Note that they are both C2(Ω)∩C(Ω), where |.| = ||.||2.

By linearity, one has that

∆ũ+ = ∆u +M = f +M ≥ 0, ∆ũ− = ∆u −M = f −M ≤ 0 on Ω.

Thus, ũ+ is sub-harmonic in Ω and sufficiently regular for the weak maximum
principle to yield

max
Ω

(
u +M

|x|2

2n

)
=max

Ω

ũ+ =max
∂Ω

ũ+ =max
∂Ω

(
u +M

|x|2

2n

)
=max

∂Ω

(
g +M

|x|2

2n

)
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Now, one has

u(x) ≤ ũ+(x) = u(x) +M
|x|2

2n
≤max

Ω

(
u +M

|x|2

2n

)
=max

∂Ω

(
g +M

|x|2

2n

)
≤max

∂Ω
g +CM ≤max

∂Ω
|g |+CM

by the sub-additivity of max. Thus, taking maxima over the compact Ω

max
Ω

u ≤max
∂Ω
|g |+CM (4)

Similarly, −ũ− is sub-harmonic in Ω and sufficiently regular for the weak max-
imum principle to yield

max
Ω

(
−u +M |x|

2

2n

)
=max

Ω

−ũ− =max
∂Ω
−ũ− =max

∂Ω

(
−u +M |x|

2

2n

)
=max

∂Ω

(
−g +M |x|

2

2n

)
and by the same reasoning, one obtains

−u(x) ≤ ũ−(x) = −u(x) +M
|x|2

2n
≤max

Ω

(
−u +M |x|

2

2n

)
=max

∂Ω

(
−g +M |x|

2

2n

)
≤max

∂Ω
−g +CM ≤max

∂Ω
|g |+CM

yielding
max
Ω

−u ≤max
∂Ω
|g |+CM (5)

Since |u| =max{u+,u−}, where u+ =max{u,0},u− =max{−u,0}, the inequalities
4 and 5 imply for C̃ =max{1,C}:

max
Ω

|u| ≤max
∂Ω
|g |+CM = C̃(max

∂Ω
|g |+M) = C̃

max
∂Ω
|g |+ sup

Ω

|f |


as required. Finally, note that C̃ = max

1,sup
x∈Ω

|x|2

2n

, only depends on the do-

main Ω and not on u,f ,g.

3. H2
0 (Ω), defined as the closure of the space C∞0 (Ω) with the H2 norm is a closed

subspace of the Hilbert spaceH2, thus a Hilbert space in its own right. Consider
the map,

B :H2
0 (Ω)×H2

0 (Ω)→R

where
B[u,v] =

∫
Ω

∆u∆v, u,v ∈H2
0 (Ω) (6)
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By the linearity of the Lebesgue integral, clearly the map B is bilinear. If
one maages to show that this map B is both bounded and coercive, then Lax-
Milgram from lectures can be used to obtain that for any bounded linear func-
tional f on H2

0 (Ω), there exists a unique u ∈H2
0 (Ω) such that

B[u,v] = f [v], ∀v ∈H2
0 (Ω)

Now, boundedness follows from

|B[u,v]|2 =
∣∣∣∣∣∫

Ω

∆u∆v

∣∣∣∣∣2 ≤ (∫
Ω

|∆u| · |∆v|
)2
≤

∫
Ω

|∆u|2 ·
∫
Ω

|∆u|2

by Cauchy-Schwarz. Notice also for u ∈H2
0 (Ω) that

∫
Ω

|∆u|2 =
∫
Ω

 n∑
i=1

∂2i u

2 = ∫
Ω

 n∑
i=1

1 ·∂2i u

2 = n ·∫
Ω

n∑
i=1

(
∂2i u

)2
≤ n · ||u||2

H2
0 (Ω)

by another application of Cauchy Schwarz to the integrand. Thus, by a two-
fold application of the above:

|B[u,v]|2 ≤
∫
Ω

|∆u|2 ·
∫
Ω

|∆u|2 ≤ n2 · ||u||2
H2
0 (Ω)
· ||v||2

H2
0 (Ω)

or equivalently,
|B[u,v]| ≤ ||u||H2

0 (Ω) · ||v||H2
0 (Ω) (7)

Now, for coercivity, using (6)

B[u,u] =
∫
Ω

(∆u)2 (8)

Since the domain Ω is bounded, and u ∈ H2
0 (Ω), one can use Poincaré’s in-

equality ∫
Ω

u2 ≤ CΩ

∫
Ω

|∇u|2 (9)

where CΩ ≥ 0 only depends on the domain Ω. Additionally,∫
Ω

|∇u|2 = −
∫
Ω

u ·∆u ≤
∫
Ω

|u| · |∆u|

Since, by the definition ofH2
0 (Ω) (using smooth approximation by smooth com-

pactly supported functions), the integration by parts formula used in the first
equality above holds. Further, using a weighted Cauchy-Schwarz inequality
with ϵ > 0 pointwise on the integrand above∫

Ω

|u| · |∆u| ≤ ϵ
∫
Ω

u2 +
C
ϵ

∫
Ω

(∆u)2
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Now, combining the above yields∫
Ω

u2 ≤ CΩ · ϵ
∫
Ω

u2 +
C ·CΩ

ϵ

∫
Ω

(∆u)2

Choose ϵ = ϵ̃ = 1
2CΩ+1 > 0 which gives

1
2

∫
Ω

u2 ≤ (1−CΩϵ̃)
∫
Ω

u2 ≤ C ·CΩ

ϵ

∫
Ω

(∆u)2

Thus, ∫
Ω

u2 ≤ 2C ·CΩ

ϵ

∫
Ω

(∆u)2 (10)

from which we can similarly bound∫
Ω

|∇u|2 ≤
∫
Ω

|u| · |∆u| ≤ 1
2

∫
Ω

|u|2 + 1
2

∫
Ω

|∆u|2

≤
[C ·CΩ

ϵ
+
1
2

]∫
Ω

(∆u)2 (11)

By another application of Cauchy-Schwarz and of integration by parts. Now
for u ∈ C∞0 (Ω), repeated integration by parts yields∫

Ω

∂iiu∂jju = −
∫
Ω

∂iiju∂ju =
∫
Ω

∂iju∂iju

Now, by smooth approximation, any u ∈H2
0 (Ω) satisfies∫

Ω

∂iiu∂jju =
∫
Ω

∂iju∂iju

Thus, ∫
Ω

∑
1≤i,j≤n

(
∂iju

)(
∂iju

)
=

∫
Ω

∑
1≤i,j≤n

(∂iiu)
(
∂jju

)
=

∫
Ω

(∆u)2 (12)

Combining (10), (11) and (12) one obtains

||u||2
H2
0 (Ω)

=
∫
Ω

u2 +
∫
Ω

|∇u|2 +
∫
Ω

∑
1≤i,j≤n

(
∂iju

)(
∂iju

)

≤ 2C ·CΩ

ϵ

∫
Ω

(∆u)2 +
[C ·CΩ

ϵ
+
1
2

]∫
Ω

(∆u)2 +
∫
Ω

(∆u)2

and finally,

||u||2
H2
0 (Ω)
≤

[C ·CΩ

ϵ
+
3
2

]∫
Ω

(∆u)2 (13)

Thus, for

β =
1

C·CΩ

ϵ + 3
2

> 0
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one has that
B[u,u] ≥ β · ||u||2

H2
0 (Ω)

showing coercivity. To complete the proof of existence and uniqueness, it is
indeed that case that the linear functional

v 7→
∫
Ω

f v, v ∈H2
0 (Ω)

is bounded. This is easily seen by applying Cauchy Schwarz yielding∣∣∣∣∣∫
Ω

f v

∣∣∣∣∣ ≤ ∫
Ω

|f ||v| ≤ ||f ||2 · ||v||H2
0 (Ω)

thereby enabling the use of Lax-Milgram, showing existence and uniqueness of
weak solutions finishing the proof.

4. Consider the function

ψ(x) = exp[−(a+ ib)|x|2], x ∈Rd , a > 0,b ∈R.

Its Lp norm (1 ≤ p ≤ ∞,p , 2)is computed using the standard formula for the
integral of a Gaussian:

||ψ||p =


(∫

R
d
|ψ|p

) 1
p

=
(∫

R
d
exp

(
−ap|x|2

)) 1
p

=
(
π
ap

) d
2p

,p <∞

esssup
R
d

|ψ| = sup
R
d

|ψ| = 1,p =∞
(14)

Its Fourier transform is computed

F (ψ)(ξ) =
1

(2π)
d
2

∫
R
d
e−ix·ξψ(x)dx =

1

(2π)
d
2

∫
R
d
e−ix·ξ exp[−(a+ ib)|x|2]dx

=
1

(2π)
d
2

exp
[
− |ξ |2

4(a+ ib)

]∫
R
d
exp

[
−(a+ ib)

∣∣∣∣∣x+ i ξ
2(a+ ib)

∣∣∣∣∣2]dx
=

1

(2π)
d
2

(
π

(a+ ib)

) d
2

exp
[
− |ξ |2

4(a+ ib)

]
, ξ ∈Rd (15)

since a > 0 and using the standard formula for the value of the integral of a
Gaussian again in the final line. Now, from lectures, the solution map to the
PDE

∂tu = i∆u, u(0, ·) = ψ ∈ S(Rd) (16)

is given by:

S(t)ψ(x) = F −1
[
e−it|ξ |

2
F (ψ)(ξ)

]
(x), t ∈R,x ∈Rd
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More explicitly, using (15):

S(t)f (x) =
1

(2π)
d
2

∫
R
d
e−it|ξ |

2+ix·ξF (ψ)(ξ)dξ

=
1

(2π)d

∫
R
d
e−it|ξ |

2+ix·ξ
(

π
(a+ ib)

) d
2

exp
[
− |ξ |2

4(a+ ib)

]
dξ

=
(

π
(a+ ib)

) d
2 1
(2π)d

∫
R
d
eix·ξ exp

[
−
(

1
4(a+ ib)

+ it
)
|ξ |2

]
dξ

=
(

π
(a+ ib)

) d
2 1

(2π)
d
2

F
(
exp

[
−
(

1
4(a+ ib)

+ it
)
|ξ |2

])
(−x)

=
(

π
(a+ ib)

) d
2

· 1
(2π)d

 π(
1

4(a+ib) + it
)

d
2

exp

− |x|2(
1

(a+ib) + i4t
) (17)

where (15) was used in the last line in conjunction with the fact that Re
{

1
4(a+ib)

}
=

a
4(a2+b2) > 0. Computing the Lp norm for p <∞:

||S(t)ψ(x)||p =
(∫

R
d
|S(t)ψ(x)|p

) 1
p

=

 π

(a2 + b2)
1
2


d
2

· 1
(2π)d

 π∣∣∣∣ 1
4(a+ib) + it

∣∣∣∣

d
2 (∫

R
d
exp

[
−

ap(a2 + b2)
a2 + (b − 4t(a2 + b2))2

|x|2
]) 1

p

=

 π

(a2 + b2)
1
2


d
2

· 1
(2π)d

 π∣∣∣∣ 1
4(a+ib) + it

∣∣∣∣

d
2

·
(
π(a2 + (b − 4t(a2 + b2))2)

ap(a2 + b2)

) d
2p

(18)

Now, combining (14) and (18), one computes:

||S(t)ψ||p
||ψ||p

=

 π

(a2 + b2)
1
2


d
2

· 1
(2π)d

 π∣∣∣∣ 1
4(a+ib) + it

∣∣∣∣

d
2

·
(
π(a2 + (b − 4t(a2 + b2))2)

ap(a2 + b2)

) d
2p

/

(
π
ap

) d
2p

=
1

(2π)d

 π

(a2 + b2)
1
2


d
2

·
 4π(a2 + b2)∣∣∣a− ib+ i4t(a2 + b2)∣∣∣


d
2

·
(
(a2 + (b − 4t(a2 + b2))2)

(a2 + b2)

) d
2p

=

 (a2 + b2)
1
2∣∣∣a− ib+ i4t(a2 + b2)∣∣∣


d
2

·

∣∣∣a− ib+ i4t(a2 + b2)∣∣∣

(a2 + b2)
1
2


d
p

=


∣∣∣a− ib+ i4t(a2 + b2)∣∣∣

(a2 + b2)
1
2


(
1
p−

1
2

)
d

(19)
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Now, for 1 ≤ p < 2, notice that

α =
1
p
− 1
2
> 0

Consider the sequence (ψn)n≥0 given by:

ψn(x) = exp
[
−n|x|2

]
, 0 ∈ S(Rd)

Then, using (19), one computes for p <∞ and b = 0, t , 0:

||S(t)ψ||p
||ψ||p

=


∣∣∣a+ i4ta2∣∣∣

a

αd = |1+ i4ta|αd (20)

One computes using (20) for t , 0:

||S(t)ψn||p
||ψn||p

= (|1+ i4tn|α)d ∼ nαd →∞, as n→∞.

Now for the case where p ∈ (2,∞), t , 0, notice

α =
1
p
− 1
2
< 0

Choose (ψn)n≥0 given by:

ψn(x) = exp
[
−
(1
n
+

1
4t

)
|x|2

]
, 0 ∈ S(Rd)

and compute using (19) with a = 1
n ,b =

1
4t :

||S(t)ψn||p
||ψn||p

=


∣∣∣a− ib+ i4t(a2 + b2)∣∣∣

(a2 + b2)
1
2


(
1
p−

1
2

)
d

=
(∣∣∣∣∣ 1
a+ ib

+ i4t
∣∣∣∣∣ (a2 + b2) 12 )

(
1
p−

1
2

)
d

=

∣∣∣∣∣∣ 1
1
n + ib

+ ib

∣∣∣∣∣∣ ( 1
n2

+ b2
) 1
2

(
1
p−

1
2

)
d

But, as n→∞, ∣∣∣∣∣∣ 1
1
n + ib

+ i4t

∣∣∣∣∣∣→ 0, and
( 1
n2

+ b2
) 1
2
→

∣∣∣∣∣ 14t
∣∣∣∣∣ (21)

Thus,
||S(t)ψn||p
||ψn||p

→∞, n→∞
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since αd < 0 For the final case of p =∞, using (14) and (17):

||S(t)ψ||∞
||ψ||∞

= ||S(t)ψ||∞ = esssup
x∈Rd

|S(t)ψ|

= esssup
x∈Rd

∣∣∣∣∣∣∣∣∣
(

π
(a+ ib)

) d
2

· 1
(2π)d

 π(
1

4(a+ib) + it
)

d
2

exp

− |x|2(
1

(a+ib) + i4t
)

∣∣∣∣∣∣∣∣∣
=

( π
|a+ ib|

) d
2
· 1
(2π)d

 π∣∣∣∣ 1
4(a+ib) + it

∣∣∣∣

d
2

esssup
x∈Rd

∣∣∣∣∣∣∣∣exp
− |x|2(

1
(a+ib) + i4t

)
∣∣∣∣∣∣∣∣

=

 (a2 + b2)
1
2∣∣∣a− ib+ i4t(a2 + b2)∣∣∣


d
2

sup
x∈Rd

∣∣∣∣∣∣exp
[
− a(a2 + b2)
a2 + (b − 4t(a2 + b2))2

|x|2
]∣∣∣∣∣∣

=

 (a2 + b2)
1
2∣∣∣a− ib+ i4t(a2 + b2)∣∣∣


d
2

(22)

Now, consider the sequence (ψn)n≥0 given by:

ψn(x) = exp
[
−
(1
n
+

1
4t

)
|x|2

]
, 0 ∈ S(Rd)

One computes using (22):

||S(t)ψn||∞
||ψn||∞

=

∣∣∣∣∣∣ 1
1
n + ib

+ i4t

∣∣∣∣∣∣ ( 1
n2

+ b2
) 1
2
−

d
2

→∞, as n→∞.

for the same reason as in (21) and since −d2 < 0. Thus, we have showed that
for all 1 ≤ p ≤∞,p , 2, t , 0:

sup
{
||S(t)ψ||Lp
||ψ||Lp

: ψ ∈ S(R)d ,ψ , 0
}
=∞

meaning that S(t) cannot be extended to all of Lp(Rd), as required.
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Question 5

It suffices to show that d
dtE(t) = 0 for all t ∈R. Rewriting the energy as

E(t) =
1
2

∫
R
d
∇uT∇u + 1

4

∫
R
d
u2u2

and differentiating, one obtains

d
dt
E(t) =

1
2
d
dt

∫
R
d
∇uT∇u + 1

4
d
dt

∫
R
d
u2u2

=
1
2

∫
R
d

d
dt

(∇uT∇u) + 1
4

∫
R
d

d
dt

(u2u2)

exchanging time and space derivatives, and using the product rule one arrives
at (keeping in mind that u(t, ·),ut(t, ·) ∈ S(Rd) for all t ∈R):

d
dt
E(t) =

1
2

∫
R
d
(∇uTt ∇u +∇uT∇ut) +

1
4

∫
R
d
(2uutu

2 +2u2u ·ut) (23)

Now, since u satisfies
i∂tu +∆u = u|u|2 (24)

taking complex conjugates and using distributivity, yields

−i∂tu +∆u = u · |u|2 (25)

Using integration by parts on the first integral in 23 , one obtains

d
dt
E(t) = −1

2

∫
R
d
(ut∆u +ut∆u) +

1
4

∫
R
d
(2uutu

2 +2u2u ·ut)

Substituting the functional forms of ∆u,∆u from 24, 25 results in

d
dt
E(t) = −1

2

∫
R
d
[ut(u · |u|2 + i∂tu) +ut(u|u|2 − i∂tu)) +

1
4

∫
R
d
(2uutu

2 +2u2u ·ut)

= −1
2

∫
R
d
(ut ·u · |u|2 + iut ·ut +utu ·u|u|2 − iut ·ut) +

1
2

∫
R
d
(uutu

2 +u2u ·ut)

= −1
2

∫
R
d
(ut ·u · |u|2 +utu ·u|u|2) +

1
2

∫
R
d
(|u|2 ·utu +u · |u|2 ·ut) = 0

upon noticing that |u| = |u| = u ·u, concluding the proof that E(t) is constant in
time.
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