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Problems

1. Let V be a Banach space and (Gn)n∈N be a sequence of globally Lipschitz func-
tions, such that

sup
n∈N
∥Gn∥Lip <∞.

Let (Xn)n∈Nbe the sequence of unique solutions to the initial value problems

Ẋn(t) = Gn(Xn)(t), for all t ∈ [0,∞).
Xn(0) = x ∈ V .

for some fixed x ∈ V . Suppose that Gn→ G locally uniformly as n→∞. Show
then that Xn converges locally uniformly to a C1 function X : [0,∞)→ V that
solves the initial value problem

Ẋ(t) = G(X)(t), for all t ∈ [0,∞).
Xn(0) = x ∈ V .

2. Let u : I →R be a continuous function where I is an interval.

Set Ω = {t ∈ I : u(t) ≤ 2A} ⊆ I . Suppose that Ω , ∅. Prove using the continuity property
that Ω = I .

Recall that the continuity property states that for non-empty A ⊆ I ⊆ R, where
I is an interval, if A is both relatively open and closed in I , then A = I .

3. Suppose there is a classical (i.e. C1) solution u : [0,T ) ×R → R, where T ∈
[0,∞] to

∂tu + a(u)∂xu = 0. u(0,x) = h(x) ∈ C1(R) (1)

where a ∈ C1(R). Show that it has the form

u(t̄, x̄) = u(0, (x̄ − a(u(t̄, x̄))t̄)) = h((x − a(u(t̄, x̄))t̄), (t̄, x̄) ∈ [0,T )×R. (2)

Moreover, show that if a ◦ h is not non-decreasing, there cannot exist global
classical solutions to (5).

Recall the blow-up lemma where one considers the initial value problem

d
dt
φ = f (φ), φ (t0) = φ0

with f locally Lipschitz (so in particular Lipschitz on compact domains). The
blow-up lemma states that if the maximal time of existence is tf in, then
lim
t→tf in

∥φ(t)∥ =∞ has to hold. This means that if the solution to the above ODE

only exists for t0 < tf in <∞ then necessarily lim
t→tf in

∥φ(t)∥ =∞. A similar state-

ment holds for the past direction.
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4. Let P be the partial differential operator.

P (x,∂) =
∑
|α|≤m

aα(x)∂α (3)

where m ∈N. Show that Ω = {x ∈Rd : P (x,∂) is elliptic at x} is open in R
d .

Recall the definition of ellipticity for the partial differential equation

P (u)(x) =
∑
|α|≤m

aα(x)∂αu(x) = 0 (4)

at the point x̄ = (t̄, x̄2, . . . , x̄d) ∈ Rd is that no hypersurface containing the afore-
mentioned point is characteristic.

5. Fix ζ ∈Rd ,ζ , 0 and letH = {x ∈Rd : ⟨x,ζ⟩ ≥ 0}. Assume that Σ is characteristic
(at any point x̄ ∈ Σ).

Construct a smooth, non-vanishing solution to the PDE

P (u)(x) =
∑
|α|=m

aα∂
αu(x) = 0

supported on H .

Solutions

1. Claim: G : V → V is globally Lipscitz continuous with constant K .

To see this, we invoke the uniform convergence of the Gn to G on bounded sets,
in particular for singletons and obtain that for all x ∈ V , Gn → G, as n→∞.
Thus, by the algebra of limits

lim
n→∞
|Gn(x)−Gn(y)| ≤ K |x − y| =⇒

∣∣∣∣ lim
n→∞

(Gn(x)−Gn(y))
∣∣∣∣ ≤ K |x − y|

=⇒ |G(x)−G(y)| ≤ K |x − y|

This now allows us to use the Global Picard-Lindeloff Theorem for Banach
spaces to construct the unique global solution X : [0,∞)→ V to the ODE

Ẋ = G(X), X(0) = x

Now, fix T ∈ [0,∞). Clearly, [0,T ] is bounded in (R, | · |1).
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Also, for all t ∈ [0,T ] and n ∈N, we have the following integral representation
for X and Xn (the construction of the Riemann integral in general Banach
spaces mirrors that in (R, | · |1)):

X(t) = x+
∫ t

0
G(X(s))ds

Xn(t) = x+
∫ t

0
Gn(Xn(s))ds

We define the sequence of continuously differentiable functions (gn)n∈N : [0,T ]→
V by

gn(t) = x+
∫ t

0
Gn(X(s))ds

and observe that they converge uniformly to X on [0,T ]. This is due to the uni-
form convergence of the Gn to G on the bounded set X([0,T ]), whose bound-
edness follows from the continuity of X on the compact interval [0,T ] (whose
compactness follows from the Heine-Borel Theorem). More explicitly for all
t ∈ [0,T ] :

|gn(t)−X(t)| ≤
∫ t

0
|Gn(X(s))−G(X(s))|ds ≤ sup

y∈X([0,T ])
|Gn(y)−G(y)| · t

≤ sup
y∈X([0,T ])

|Gn(y)−G(y)| · T → 0 as n→∞

=⇒ sup
t∈[0,T ]

|gn(t)−X(t)| → 0 as n→∞

It suffices to show that Xn converges to X uniformly on [0,T ]. For then, given
arbitrary K̃ compact in [0,∞), by the boundedness K̃ of one finds T ∈ R large
enough so that K̃ ⊆ [0,T ]. To this end we now show that

sup
t∈[0,T ]

|Xn(t)−X(s)| → 0 as n→∞

Fix t ∈ [0,T ] arbitrary. Now, by the triangle inequality,

|Xn(t)−X(t)| ≤ |Xn(t)− gn(t)|+ |gn(t)−X(t)|

Thus,

sup
t∈[0,T ]

|Xn(t)−X(t)| ≤ sup
t∈[0,T ]

|Xn(t)− gn(t)|+ sup
t∈[0,T ]

|gn(t)−X(t)|

Now, since gn converges uniformly to X on [0,T ], it remains to show that

sup
t∈[0,T ]

|Xn(t)− gn(t)| → 0 as n→∞
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Fix again t ∈ [0,T ] and ϵ > 0 arbitrary. Further, using the integral representa-
tions and definition of gn

|Xn(t)− gn(t)| =
∣∣∣∣∣∣
∫ t

0
Gn(Xn(s))ds −

∫ t

0
Gn(X(s))ds

∣∣∣∣∣∣
≤

∫ t

0
|Gn(Xn(s))−Gn(X(s))|ds ≤ K

∫ t

0
|Xn(s)−X(s)|ds

≤ K
∫ t

0
|Xn(s)− gn(s)|ds+K

∫ t

0
|gn(s)−X(s)|ds

≤
∫ t

0
K |Xn(s))− gn(s)|ds+KT · sup

t∈[0,T ]
|gn(t)−X(t)|

Now we are in a position to apply Gronwall’s inequality since KT ·supt∈[0,T ] |gn(t)−
X(t)|, K ≥ 0 and |Xn(t)− gn(t)| ≥ 0 is continuous yielding

|Xn(t)− gn(t)| ≤ KT · sup
t∈[0,T ]

|gn(t)−X(t)| · exp
(∫ t

0
Kds

)
≤ KT · sup

t∈[0,T ]
|gn(t)−X(t)| · exp(KT )

Since this bound is uniform in t ∈ [0,T ], we have that

sup
t∈[0,T ]

|Xn(t)− gn(t)| ≤ KT · sup
t∈[0,T ]

|gn(t)−X(t)| · exp(KT )→ 0 as n→∞

and we are done.
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2. Set Ω = {t ∈ I : u(t) ≤ 2A} ⊆ I . To invoke the continuity property and deduce
that Ω = I , we need to show that Ω is non-empty, and both opened and closed
in I . It is clear by construction that Ω , ∅ since we assume that there is a t0 ∈ I
such that u(t0) ≤ 2A.

For closedness of Ω, we take a sequence (tn)n∈N ⊆Ω→ t ∈ I . Using the conti-
nuity of u on I we easily obtain

u(tn) ≤ 2A =⇒ u(t) = lim
n→∞

u(tn) ≤ 2A =⇒ t ∈Ω

Note we have not made mention of a choice of ϵ > 0; this will be needed to be
done below.

For openness in I , set
M = sup

x∈[0,2A+1]
|F(x)|

Since F is by construction bounded on bounded intervals, it follows that M <
∞. Now suppose t ∈Ω. By the continuity of u on I , there exists a δ > 0 such
that u((t−δ, t+δ)∩I) ⊆ (u(t)−1,u(t)+1)∩[0,∞) ⊆ [0,2A+1] as u is non-negative
and u(t) ≤ 2A. Thus, we obtain that for ϵ = A

M+1 > 0 and t̄ ∈ (t − δ, t + δ)∩ I:

u(t̄) ≤ A+ ϵF(u(t̄)) =⇒ u(t̄) ≤ A+M · A
M + 1

≤ 2A

Thus, (t − δ, t + δ)∩ I ⊆Ω and we are done.
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3. Suppose there is a classical (i.e. C1) solution u : [0,T ) ×R → R, where T ∈
[0,∞] to

∂tu + a(u)∂xu = 0. u(0,x) = h(x) ∈ C1(R) (5)

Fix (t̄, x̄) ∈ [0,T ) ×R arbitrary. We seek characteristic curves on which the so-
lution u(t,x) is constant. This can be achieved by considering the following
ODE:

ẋ = a ◦u(t,x(t)), x(t̄) = x̄

Observe that since a ◦ u ∈ C1([0,T ) × R), it is locally Lipschitz hence by the
Picard-Lindeloff Theorem we can guarantee the existence of a unique C1 solu-
tion x(t) in a neighbourhood around (t̄, x̄). Along such a solution,

d
dt
u(t,x(t)) = ∂tu + a ◦u(t,x(t))∂xu = 0

We can do even more, and show that the characteristic curves extend up to
time t = 0. This is not hard to show since the solution

x(t) = x̄+
∫ t

t̄
a ◦u(s,x(s))ds

remains bounded in the maximal existence interval around t̄, since the inte-
grand is constant. This enables us to extend the maximal existence time to
t = 0, for suppose it was less, then by the blow-up lemma, we could obtain that

sup
t∈[0,t̄]

|x(t)| =∞

a contradiction to the above discussion. Consequently, the line Γ = {(t̄, x̄) +
(t − t̄)(1, a(u(t̄, x̄)) : t ∈ [0, t̄]} is characteristic and u is constant on Γ . Hence,
u|Γ = u(t̄, x̄). Letting t = 0, we obtain

u(t̄, x̄) = u(0, (x̄ − a(u(t̄, x̄))t̄)) = h((x − a(u(t̄, x̄))t̄) (6)

as required.

Now we show that if a ◦ h is not non-decreasing, there cannot exist global
classical solutions to (5). Suppose for contradiction there exists a solution
u : [0,∞) ×R→ R. Pick ξ1 < ξ2 arbitrary, then by construction a ◦ h(ξ1) > a ◦
h(ξ2). This means the corresponding characteristics a(h(ξ1))t+ξ1, a(h(ξ2))t+ξ2

intersect for time t = a(h(ξ1))−a(h(ξ2))
ξ2−ξ1

> 0 at x = a(h(ξ1))t + ξ1 = a(h(ξ2))t + ξ2. By
(6), we have u(t,x) = h(ξ1) = h(ξ2) yielding that h is globally constant. This
yields that a ◦ h is constant too, but this cannot hold since a ◦ h was assumed
decreasing, a contradiction. Thus there does not exist a global classical solution
to (5) and we are done.
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4. We need to show that Ω = {x ∈Rd : P (x,∂) is elliptic at x} is open in R
d .

The definition of ellipticity for the partial differential equation

P (u)(x) =
∑
|α|≤m

aα(x)∂αu(x) = 0 (7)

at the point x̄ = (t̄, x̄2, . . . , x̄d) ∈ Rd is that no hypersurface containing the afore-
mentioned point is characteristic. Consider an arbitrary hypersurface Σ and
any smooth function ψ(x) such that ψ|Σ = 0, dψ|Σ , 0 in a neighbourhood of x̄
and (since the PDE is linear, it is equal to its own linearisation P̄ )

P (ψm)(x̄) = P (ψm)(x̄) =
∑
|α|≤m

aα(x̄)∂αψm(x̄) =m!
∑
|α|=m

aα(x̄)(Dψ)α(x̄) , 0

since Σ is assumed non-characteristic at x̄. All terms containing derivatives of
order lower than the maximal order m vanish as ∂βψm(x̄), |β| < m contain
ψ(x̄) coefficients which vanish by assumption (can be shown by induction).

We aim to establish an equivalent characterisation of ellipticity at a point x̄ for
the partial differential operator P . This is done by restricting attention to the
unit ball D = {ζ ∈ Rd : |ζ| = 1} and considering for all ζ ∈ D the hypersurface
Σ = {x ∈ Rd : ⟨x − x̄,ζ⟩ = 0} with ψ(x) = ⟨x − x̄,ζ⟩. Clearly, ψ|Σ = 0, dψ|Σ = ζ , 0
in a neighbourhood of x̄. Thus, we obtain that

P (ψm)(x̄) =m!
∑
|α|=m

aα(x̄)(Dψ)α(x̄) =m!
∑
|α|=m

aα(x̄)(ζ)α , 0 (8)

Let f :D→R be given by

f (ζ) =

∣∣∣∣∣∣∣∣
∑
|α|=m

aα(x̄)(ζ)α

∣∣∣∣∣∣∣∣
Since by the above f is continuous (it is the absolute value of a polynomial
in the entries of ζ), nowhere vanishing on the compact set D, it attains its
infimum

inf
ζ∈D

f (z) =

∣∣∣∣∣∣∣∣
∑
|α|=m

aα(x̄)(ζ̄)α

∣∣∣∣∣∣∣∣ > 0 (9)

Now, suppose for a contradiction that Ω is not open at x̄. By the above, one
obtains a sequence of points (ζn)n∈N ⊆ D and (xn)n∈N ⊆R

d \Ω such that xn→
x̄ as n→∞. By assumption, (8) yields∣∣∣∣∣∣∣∣

∑
|α|=m

aα(xn)(ζn)α

∣∣∣∣∣∣∣∣ = 0
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Due to the compactness ofD, we pass to a subsequence ζnk → ζ′ ∈D as k→
∞. This gives that

0 =

∣∣∣∣∣∣∣∣
∑
|α|=m

aα(xnk )(ζnk )
α

∣∣∣∣∣∣∣∣→
∣∣∣∣∣∣∣∣
∑
|α|=m

aα(x̄)(ζ′)α

∣∣∣∣∣∣∣∣ ≥ inf
ζ∈D

f (z) > 0 as k→∞

a contradiction to (9). Thus, we have established that there exists a neighbour-
hood U of x̄ contained in Ω, thereby showing that Ω is open as required.
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5. Fix ζ ∈ R
d ,ζ , 0 and let H = {x ∈ R

d : ⟨x,ζ⟩ ≥ 0}. It is clear that H has
boundary Σ = {x ∈ Rd : ⟨x,ζ⟩ = 0}. Since Σ is assumed characteristic (at any
point x̄∈Σ) we choose ψ(x) = ⟨x,ζ⟩ and easily verify ψ|Σ = 0, dψ|Σ , 0 since
Dψ = ζ , 0 (similarly to question 4 - since the PDE is linear, it is equal to its
own linearisation P̄ ):

P (ψm)(x̄) = P (ψm)(x̄) =
∑
|α|=m

aα∂
αψm(x̄) =m!

∑
|α|=m

aα(Dψ)α(x̄)

=m!
∑
|α|=m

aα(ζ)α = 0 (10)

In the spirit of constructing a non-vanishing smooth solution to the PDE

P (u)(x) =
∑
|α|=m

aα∂
αu(x) = 0

we define the smooth function h : R→R by

h(x) =

e−
1
x , x ∈ (0,∞)

0, x ∈ (−∞,0]

It is a standard (for instance, it has been mentioned in first year real analysis)
example of a smooth function supported on [0,∞) whose derivatives of all
orders vanish at x = 0, yet does not vanish in a neighbourhood of 0. Define
u : Rd →R as

u(x) = h(⟨x,ζ⟩)
Since h is supported on [0,∞), the support of u is contained in {x ∈Rd : ⟨x,ζ⟩ ≥
0} =H . Now, we claim that

∂αu(x) = h(|α|)(⟨x,ζ⟩) · (ζ)α (11)

for all α ∈ Nd . We proceed to prove the claim (11) by induction. The claim
follow directly by the chain rule for α ∈Nd with |α| = 1. Now for the inductive
step, suppose (11) holds for α ∈ N

d with |α| = k. Now, pick β ∈ N
d with

|β| = k + 1. Now chose βi > 0 and let β′ = β − ei . Note that |β′ | = k. Consider

∂βu(x) = ∂i(∂β
′
u))|x = ∂i(h(|β′ |)(⟨x,ζ⟩) · (ζ)β ′) = h(|β′ |+1)(⟨x,ζ⟩) · (ζ)β

′
· ζi

:= h(|β′ |+1)(⟨x,ζ⟩) · ζβ = ∂h(|β|)(⟨x,ζ⟩) · (ζ)β

by an application of the chain rule thus completing the induction meaning (11)
holds for all multi-indices α ∈Nd . Hence,

P (u)(x) =
∑
|α|=m

aα∂
αu(x) =

∑
|α|=m

aαh
(m)(⟨x,ζ⟩)·(ζ)α = h(m)(⟨x,ζ⟩)·

∑
|α|=m

aα ·(ζ)α = 0

This shows that u is indeed a non-zero smooth solution to the above PDE
supported on H and we are done.
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