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Problems

1. Let V be a Banach space and (G,,),.en be a sequence of globally Lipschitz func-
tions, such that

sup||G, |l < oo.
nelN

Let (X,,),enbe the sequence of unique solutions to the initial value problems

X,(t) = G,(X,)(t), forallte][0,o0).
X,(0)=x€eV.

for some fixed x € V. Suppose that G,, — G locally uniformly as n — co. Show
then that X,, converges locally uniformly to a C! function X : [0,00) — V that
solves the initial value problem

= G(X)
)=x¢€

X(t) (t), forallte[0,00).
X,(0 V.

2. Let u : I — R be a continuous function where I is an interval.

Set Q) ={tel:u(t)<2A}CI. Suppose that QO = (). Prove using the continuity property
that Q =1.

Recall that the continuity property states that for non-empty A C I C IR, where
I is an interval, if A is both relatively open and closed in I, then A =1.

3. Suppose there is a classical (i.e. C!) solution u : [0,T) xR — R, where T €
[0, 0] to
i +a(u)d,u=0. u(0,x)=h(x)eCHR) (D

where a € C!(IR). Show that it has the form

u(t, x)

(0, (% — a(u(F, £)7) = h((x —a(u(F, )P, (£7)e[0,T)xR.  (2)

Moreover, show that if a o h is not non-decreasing, there cannot exist global
classical solutions to (5).

Recall the blow-up lemma where one considers the initial value problem

d
E(P =f(P), P (t) = o

with f locally Lipschitz (so in particular Lipschitz on compact domains). The
blow-up lemma states that if the maximal time of existence is t;,,, then

tlign lp()|] = oo has to hold. This means that if the solution to the above ODE
—lfin
only exists for t; < t;, < co then necessarily tliltn ()| = co. A similar state-

fin

ment holds for the past direction.




4. Let P be the partial differential operator.

P(x,d) = Z a,(x)9° (3)

|a|<m

where m € IN. Show that Q = {x € R? : P(x, d) is elliptic at x} is open in IR?.

Recall the definition of ellipticity for the partial differential equation

P(u)(x)= ) aq(x)9"u(x)=0 @)

la|<m

at the point % = (f,%,,...,%;) € R? is that no hypersurface containing the afore-
mentioned point is characteristic.

5. Fix( e R4, =0andlet H = {x € R : (x,() > 0}. Assume that . is characteristic
(at any point x € ¥).

Construct a smooth, non-vanishing solution to the PDE

P(u)(x) = Z a,0%u(x)=0

la|=m

supported on H.

Solutions

1. Claim: G: V — V is globally Lipscitz continuous with constant K.

To see this, we invoke the uniform convergence of the G,, to G on bounded sets,
in particular for singletons and obtain that for all x e V, G,, — G, as n — oo.
Thus, by the algebra of limits

1im |G, (%) - G,(9)] < Klx— 3] = | 1im (G,(x) = G,(»)| < Klx~ 3]
= [G(x) -~ G) < Klx~y|

This now allows us to use the Global Picard-Lindeloff Theorem for Banach
spaces to construct the unique global solution X : [0,00) — V to the ODE

X =G(X), X(0)=x

Now, fix T € [0, 00). Clearly, [0, T] is bounded in (R, |- |;).




Also, for all t € [0, T] and n € IN, we have the following integral representation
for X and X, (the construction of the Riemann integral in general Banach
spaces mirrors that in (IR, |- |;)):

X(t)=x+ ft G(X(s))ds
0

X, (t)=x+ jt GL(X,,(s))ds
0

We define the sequence of continuously differentiable functions (g,,),en : [0, T] —
V by

gult) = x + fo Go(X(5))ds

and observe that they converge uniformly to X on [0, T]. This is due to the uni-
form convergence of the G,, to G on the bounded set X([0, T]), whose bound-
edness follows from the continuity of X on the compact interval [0, T] (whose
compactness follows from the Heine-Borel Theorem). More explicitly for all
tel0,T]:

t
18 (£) = X (t)] < J; 1G(X(s)) - G(X(s))lds < )S(:%)TDIGn(?) -Gyt
vex([o,

< sup |G,(y)-G)|-T—>0 as n—oo
yeX([0,T])

= sup |g,(t)-X(t)] >0 as n—-oo
t€[0,T]

It suffices to show that X,, converges to X uniformly on [0, T]. For then, given
arbitrary K compact in [0, ), by the boundedness K of one finds T € R large
enough so that K C [0, T]. To this end we now show that

sup |X,(t)-X(s)) >0 as n—oo
t€[0,T]

Fix t € [0, T] arbitrary. Now, by the triangle inequality,

X (8) = X(8)] < 1X50(£) = g (8)] + [ (2) = X (2)]

Thus,

sup |X,(t) - X(£)] < sup X, (t) - gu(t)l+ sup [g,(t)—X(¢)]
t€[0,T] t€[0,T] t€[0,T]

Now, since g, converges uniformly to X on [0, T], it remains to show that

sup |X,(t)—g.(t)) >0 as n— oo
t€[0,T]




Fix again t € [0, T] and e > 0 arbitrary. Further, using the integral representa-

tions and definition of g,
t t
fo J(X,(5))ds —f Gu(X(s))ds

< f|Gn<Xn<s>> $))lds < KJ 1X,(5) — X(s)]ds

<1<f|x gl |ds+1<j|gn X(s)\ds

[ Xou(£) = 8n(t)] =

_f K [X,(5) - gu(s)lds+ KT - sup Ig(t) — X()
0 t€[0,T]

Now we are in a position to apply Gronwall’s inequality since KT -sup g 71181 (t)-
X(t)], K> 0 and |X,,(t) - g,(t)| > 0 is continuous yielding

t
|Xiu(t) — gu(t)| KT - sup Ign(t)—X(t)I-eXP(J de)
t€[0,T] 0

<KT- sup |g,(t)~ X()]-exp(KT)
t€[0,T]

Since this bound is uniform in t € [0, T ], we have that

sup |X,(t)—g,(t)| < KT - sup |g,(t)—X(t)|-exp(KT) >0 as n— oo
t€[0,T] t€[0,T]

and we are done.




2. Set Q ={tel:u(t)<2A}CI. To invoke the continuity property and deduce
that () = I, we need to show that Q) is non-empty, and both opened and closed
in I. It is clear by construction that () = () since we assume that thereisa ty €1
such that u(ty) < 2A.

For closedness of (), we take a sequence (t,),en € Q — t € I. Using the conti-
nuity of u on I we easily obtain

u(t,) <2A = u(t) = lim u(t,) <2A = teQ
n—o00
Note we have not made mention of a choice of € > 0; this will be needed to be
done below.

For openness in I, set
M= sup |F(x)
x€[0,2A4+1]
Since F is by construction bounded on bounded intervals, it follows that M <
co. Now suppose t € Q). By the continuity of u on I, there exists a 6 > 0 such
that u((t—0,t+0)NI) C (u(t)—1,u(t)+1)N[0,00) C[0,2A+1] as u is non-negative

and u(t) < 2A. Thus, we obtain that for € = ﬁ >0andte(t—0o,t+0)NI:

<2A
M+1"™—

u(f)<A+eF(u(t)) = u(f)<A+M-

Thus, (t—06,t+6)NI C Q) and we are done.




3. Suppose there is a classical (i.e. C!) solution u : [0,T) xR — IR, where T €
[0,00] to
et +a(u)du =0. u(0,x)=h(x) e CYR) (5)

Fix (f,%) € [0, T) x R arbitrary. We seek characteristic curves on which the so-
lution u(t,x) is constant. This can be achieved by considering the following
ODE:

x=aou(tx(t), x(f)=x

Observe that since a o u € C!([0,T) x R), it is locally Lipschitz hence by the
Picard-Lindeloff Theorem we can guarantee the existence of a unique C' solu-
tion x(t) in a neighbourhood around (¢, ). Along such a solution,

d

Eu(t,x(t)) =diu+aou(t,x(t)du=0

We can do even more, and show that the characteristic curves extend up to
time ¢ = 0. This is not hard to show since the solution

x(t)=x+ Jt aou(s,x(s))ds
£

remains bounded in the maximal existence interval around f, since the inte-
grand is constant. This enables us to extend the maximal existence time to
t = 0, for suppose it was less, then by the blow-up lemma, we could obtain that

sup |x(t)] = o0
te[0,]

a contradiction to the above discussion. Consequently, the line I' = {(#,X) +
(t—1)(1,a(u(t,x)) : t € [0,t]} is characteristic and u is constant on I'. Hence,
ulp = u(t,x). Letting t = 0, we obtain

u(t, x) = u(0, (X —a(u(f, X))f)) = h((x - a(u(t, ))f) (6)

as required.

Now we show that if a o h is not non-decreasing, there cannot exist global
classical solutions to (5). Suppose for contradiction there exists a solution
u :[0,00) xR — R. Pick &; < &, arbitrary, then by construction ao h(&;) > ao
h(&,). This means the corresponding characteristics a(h(&1))t+ &1, a(h(&))t+ &,

intersect for time t = W >0atx=a(h(&))t+ & =a(h(&)t+&,. By
(6), we have u(t,x) = h(&;) = h(&,) yielding that h is globally constant. This
yields that a o h is constant too, but this cannot hold since a o h was assumed
decreasing, a contradiction. Thus there does not exist a global classical solution

to (5) and we are done.




4. We need to show that Q = {x € R? : P(x, d) is elliptic at x} is open in R¥.

The definition of ellipticity for the partial differential equation

P(u)(x)= ) aq(x)9*u(x)=0 7)

la|l<m

at the point % = (f,%,,...,%;) € R? is that no hypersurface containing the afore-
mentioned point is characteristic. Consider an arbitrary hypersurface ¥ and
any smooth function ¢(x) such that ¢|y = 0, d¢|y # 0 in a neighbourhood of x
and (since the PDE is linear, it is equal to its own linearisation P)

PY™)(%) = P™)(R) = ) ag(£)0"p"™(2) =m! Y an(1)(D) (%) # 0

la|<m |a|=m

since ¥ is assumed non-characteristic at x. All terms containing derivatives of
order lower than the maximal order m vanish as 9™ (x), |B| < m contain
Y(x) coefficients which vanish by assumption (can be shown by induction).

We aim to establish an equivalent characterisation of ellipticity at a point x for
the partial differential operator P. This is done by restricting attention to the
unit ball D = {C € R? : (| = 1} and considering for all { € D the hypersurface
Y ={xeR?: (x-%C) = 0} with ¢(x) = (x - %,(). Clearly, |y =0, dip|y =C =0
in a neighbourhood of x. Thus, we obtain that

P(y™)(x) = m! Z a4 (%)(Dp)* (%) = m! Z a,(%)(0)¥ =0 (8)

|ar|=m |ar|=m

Let f : D — R be given by

|a|=m

Since by the above f is continuous (it is the absolute value of a polynomial
in the entries of ), nowhere vanishing on the compact set D, it attains its
infimum

: _ S\ ( 7\

inff(z)=|) au(D)C)|>0 ©)

|at|=m

Now, suppose for a contradiction that () is not open at x. By the above, one
obtains a sequence of points (,,),en € D and (x,,),en € RY \ Q such that x,, —
X as n— oo. By assumption, (8) yields

) aa(x)(C)*| =0

|lat|=m




Due to the compactness of D, we pass to a subsequence ¢, — '€ D as k—
oo. This gives that

0=] ) aaln)(Cy)| = | ) aa@(C)7| 2 inff(2)>0 as koo
lac|=m la|=m
a contradiction to (9). Thus, we have established that there exists a neighbour-
hood U of % contained in (), thereby showing that () is open as required.




5. Fix e R,C #0and let H={x e RY: (x,{)>0}. Itis clear that H has
boundary ¥ = {x € R? : (x,{) = 0}. Since ¥ is assumed characteristic (at any
point x€X¥) we choose (x) = (x,C) and easily verify ¢|y = 0, di|y # 0 since
Dy = C # 0 (similarly to question 4 - since the PDE is linear, it is equal to its
own linearisation P):

P(p")(%) = P@")(®) = ) agd*p"(R)=m! ) aa(DP)*(%)

|ar|=m |ar|l=m
=m! ) a,(C)* =0 (10)
|a|=m
In the spirit of constructing a non-vanishing smooth solution to the PDE
P(u)(x) = Z a,9%u(x)=0
|or|=m

we define the smooth function 4 : R — IR by

h(x) = e_%, x € (0,00)
0, x€(—o0,0]

It is a standard (for instance, it has been mentioned in first year real analysis)
example of a smooth function supported on [0,c0) whose derivatives of all
orders vanish at x = 0, yet does not vanish in a neighbourhood of 0. Define
u:R* > R as

u(x) = h((x,C))
Since h is supported on [0, o), the support of u is contained in {x € R : (x,() >
0} = H. Now, we claim that

9*u(x) = W1V ((x,)) - (0)° (11)

for all @ € IN?. We proceed to prove the claim (11) by induction. The claim
follow directly by the chain rule for @ € N“ with |a| = 1. Now for the inductive
step, suppose (11) holds for & € IN? with |a| = k. Now, pick g € N with
|Bl = k+ 1. Now chose B; > 0 and let 8’ =  —¢;. Note that |8’| = k. Consider

I u(x) = 9" (9% u))l, = &' (WY ((x,0)) - (©)F) = WFPD((x, 0)) - (0)F -
= WIFHD ((x, 0)) - CF = anVBD ((x, 0)) - ()P

by an application of the chain rule thus completing the induction meaning (11)
holds for all multi-indices a € N“. Hence,

Pu)(x)= ) aad"u(x)= ) agh™((xC)-()" = h"((x,0)- ) aq-(C)* =0
lal=m |a|=m |a|=m

This shows that u is indeed a non-zero smooth solution to the above PDE
supported on H and we are done.




