**Imperial College
London**

COURSEWORK 1

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

MATH71035 Analytic Methods In PDE

Author: Pantelis Tassopoulos

Date: 6 November 2022

Problems

1. Let *V* be a Banach space and $(G_n)_{n\in\mathbb{N}}$ be a sequence of globally Lipschitz functions, such that

$$
\sup_{n\in\mathbb{N}}\|G_n\|_{\text{Lip}}<\infty.
$$

Let $(X_n)_{n\in\mathbb{N}}$ be the sequence of unique solutions to the initial value problems

$$
\dot{X}_n(t) = G_n(X_n)(t), \quad \text{for all } t \in [0, \infty).
$$

$$
X_n(0) = x \in V.
$$

for some fixed *x* ∈ *V*. Suppose that $G_n \to G$ locally uniformly as $n \to \infty$. Show then that X_n converges locally uniformly to a C^1 function $X : [0, \infty) \to V$ that solves the initial value problem

$$
\dot{X}(t) = G(X)(t), \quad \text{for all } t \in [0, \infty).
$$

$$
X_n(0) = x \in V.
$$

2. Let $u: I \to \mathbb{R}$ be a continuous function where *I* is an interval.

Set $\Omega = \{t \in I : u(t) \leq 2A\} \subseteq I$. Suppose that $\Omega \neq \emptyset$. Prove using the continuity property that $Q = I$.

Recall that the continuity property states that for non-empty $A \subseteq I \subseteq \mathbb{R}$, where *I* is an interval, if *A* is both relatively open and closed in *I*, then *A* = *I*.

3. Suppose there is a classical (i.e. C^1) solution $u : [0, T) \times \mathbb{R} \to \mathbb{R}$, where $T \in$ $[0,\infty]$ to

$$
\partial_t u + a(u)\partial_x u = 0. \quad u(0, x) = h(x) \in C^1(\mathbb{R})
$$
 (1)

where $a \in C^1(\mathbb{R})$. Show that it has the form

$$
u(\bar{t}, \bar{x}) = u(0, (\bar{x} - a(u(\bar{t}, \bar{x}))\bar{t})) = h((x - a(u(\bar{t}, \bar{x}))\bar{t}), (\bar{t}, \bar{x}) \in [0, T) \times \mathbb{R}.
$$
 (2)

Moreover, show that if *a* ∘ *h* is not non-decreasing, there cannot exist global classical solutions to [\(5\)](#page-6-0).

Recall the blow-up lemma where one considers the initial value problem

$$
\frac{d}{dt}\phi = f(\phi), \quad \phi(t_0) = \phi_0
$$

with *f* locally Lipschitz (so in particular Lipschitz on compact domains). The blow-up lemma states that if the maximal time of existence is t_{fin} , then $\lim_{t \to t_{fin}} ||\dot{\phi}(t)|| = \infty$ has to hold. This means that if the solution to the above ODE only exists for $t_0 < t_{fin} < \infty$ then necessarily $\lim_{t \to t_{fin}} ||\phi(t)|| = \infty$. A similar statement holds for the past direction.

4. Let *P* be the partial differential operator.

$$
P(x, \partial) = \sum_{|\alpha| \le m} a_{\alpha}(x) \partial^{\alpha}
$$
 (3)

where $m \in \mathbb{N}$. Show that $\Omega = \{x \in \mathbb{R}^d : P(x, \partial)$ is elliptic at $x\}$ is open in \mathbb{R}^d .

Recall the definition of ellipticity for the partial differential equation

$$
P(u)(x) = \sum_{|\alpha| \le m} a_{\alpha}(x) \partial^{\alpha} u(x) = 0
$$
 (4)

at the point $\bar{x} = (\bar{t}, \bar{x}_2, \dots, \bar{x}_d) \in \mathbb{R}^d$ is that no hypersurface containing the aforementioned point is characteristic.

5. Fix $\zeta \in \mathbb{R}^d$, $\zeta \neq 0$ and let $H = \{x \in \mathbb{R}^d : \langle x, \zeta \rangle \geq 0\}$. Assume that Σ is characteristic (at any point $\bar{x} \in \Sigma$).

Construct a smooth, non-vanishing solution to the PDE

$$
P(u)(x) = \sum_{|\alpha| = m} a_{\alpha} \partial^{\alpha} u(x) = 0
$$

supported on *H*.

Solutions

1. Claim: $G: V \to V$ is globally Lipscitz continuous with constant *K*.

To see this, we invoke the uniform convergence of the *Gⁿ* to *G* on bounded sets, in particular for singletons and obtain that for all $x \in V$, $G_n \to G$, as $n \to \infty$. Thus, by the algebra of limits

$$
\lim_{n \to \infty} |G_n(x) - G_n(y)| \le K|x - y| \implies \left| \lim_{n \to \infty} (G_n(x) - G_n(y)) \right| \le K|x - y|
$$

$$
\implies |G(x) - G(y)| \le K|x - y|
$$

This now allows us to use the Global Picard-Lindeloff Theorem for Banach spaces to construct the unique global solution $X : [0, \infty) \to V$ to the ODE

$$
\dot{X} = G(X), \quad X(0) = x
$$

Now, fix $T \in [0, \infty)$. Clearly, $[0, T]$ is bounded in $(\mathbb{R}, |\cdot|_1)$.

Also, for all $t \in [0, T]$ and $n \in \mathbb{N}$, we have the following integral representation for *X* and *Xⁿ* (the construction of the Riemann integral in general Banach spaces mirrors that in $(\mathbb{R}, |\cdot|_1))$:

$$
X(t) = x + \int_0^t G(X(s))ds
$$

$$
X_n(t) = x + \int_0^t G_n(X_n(s))ds
$$

We define the sequence of continuously differentiable functions $(g_n)_{n\in\mathbb{N}} : [0, T] \rightarrow$ *V* by

$$
g_n(t) = x + \int_0^t G_n(X(s))ds
$$

and observe that they converge uniformly to *X* on [0*, T*]. This is due to the uniform convergence of the G_n to G on the bounded set $X([0, T])$, whose boundedness follows from the continuity of *X* on the compact interval [0*, T*] (whose compactness follows from the Heine-Borel Theorem). More explicitly for all $t \in [0, T]$:

$$
|g_n(t) - X(t)| \le \int_0^t |G_n(X(s)) - G(X(s))| ds \le \sup_{y \in X([0,T])} |G_n(y) - G(y)| \cdot t
$$

$$
\le \sup_{y \in X([0,T])} |G_n(y) - G(y)| \cdot T \to 0 \quad \text{as} \quad n \to \infty
$$

$$
\implies \sup_{t \in [0,T]} |g_n(t) - X(t)| \to 0 \quad \text{as} \quad n \to \infty
$$

It suffices to show that X_n converges to X uniformly on $[0, T]$. For then, given arbitrary \tilde{K} compact in [0, ∞), by the boundedness \tilde{K} of one finds $T \in \mathbb{R}$ large enough so that $\tilde{K} \subseteq [0, T]$. To this end we now show that

$$
\sup_{t\in[0,T]}|X_n(t)-X(s)|\to 0 \quad \text{as} \quad n\to\infty
$$

Fix $t \in [0, T]$ arbitrary. Now, by the triangle inequality,

$$
|X_n(t) - X(t)| \le |X_n(t) - g_n(t)| + |g_n(t) - X(t)|
$$

Thus,

$$
\sup_{t \in [0,T]} |X_n(t) - X(t)| \le \sup_{t \in [0,T]} |X_n(t) - g_n(t)| + \sup_{t \in [0,T]} |g_n(t) - X(t)|
$$

Now, since g_n converges uniformly to *X* on [0, *T*], it remains to show that

$$
\sup_{t \in [0,T]} |X_n(t) - g_n(t)| \to 0 \quad \text{as} \quad n \to \infty
$$

Fix again $t \in [0, T]$ and $\epsilon > 0$ arbitrary. Further, using the integral representations and definition of *gⁿ*

$$
|X_n(t) - g_n(t)| = \left| \int_0^t G_n(X_n(s))ds - \int_0^t G_n(X(s))ds \right|
$$

\n
$$
\leq \int_0^t |G_n(X_n(s)) - G_n(X(s))| ds \leq K \int_0^t |X_n(s) - X(s)| ds
$$

\n
$$
\leq K \int_0^t |X_n(s) - g_n(s)| ds + K \int_0^t |g_n(s) - X(s)| ds
$$

\n
$$
\leq \int_0^t K |X_n(s) - g_n(s)| ds + KT \cdot \sup_{t \in [0, T]} |g_n(t) - X(t)|
$$

Now we are in a position to apply Gronwall's inequality since $KT\cdot\sup_{t\in[0,T]}|g_n(t)-$ *X*(*t*)|, *K* ≥ 0 and $|X_n(t) - g_n(t)|$ ≥ 0 is continuous yielding

$$
|X_n(t) - g_n(t)| \le KT \cdot \sup_{t \in [0,T]} |g_n(t) - X(t)| \cdot \exp\left(\int_0^t K ds\right)
$$

$$
\le KT \cdot \sup_{t \in [0,T]} |g_n(t) - X(t)| \cdot \exp(KT)
$$

Since this bound is uniform in $t \in [0, T]$, we have that

$$
\sup_{t \in [0,T]} |X_n(t) - g_n(t)| \le KT \cdot \sup_{t \in [0,T]} |g_n(t) - X(t)| \cdot \exp(KT) \to 0 \quad \text{as} \quad n \to \infty
$$

and we are done.

2. Set $\Omega = \{t \in I : u(t) \leq 2A\} \subseteq I$. To invoke the continuity property and deduce that $\Omega = I$, we need to show that Ω is non-empty, and both opened and closed in *I*. It is clear by construction that $\Omega \neq \emptyset$ since we assume that there is a $t_0 \in I$ such that $u(t_0) \leq 2A$.

For closedness of Ω , we take a sequence $(t_n)_{n\in\mathbb{N}} \subseteq \Omega \to t \in I$. Using the continuity of *u* on *I* we easily obtain

$$
u(t_n) \le 2A \implies u(t) = \lim_{n \to \infty} u(t_n) \le 2A \implies t \in \Omega
$$

Note we have not made mention of a choice of $\epsilon > 0$; this will be needed to be done below.

For openness in *I*, set

$$
M = \sup_{x \in [0, 2A+1]} |F(x)|
$$

Since *F* is by construction bounded on bounded intervals, it follows that *M <* ∞. Now suppose *t* ∈ Ω. By the continuity of *u* on *I*, there exists a *δ >* 0 such that *u*((*t*−*δ, t*+*δ*)∩*I*) ⊆ (*u*(*t*)−1*,u*(*t*)+1)∩[0*,*∞) ⊆ [0*,*2*A*+1] as *u* is non-negative and *u*(*t*) ≤ 2*A*. Thus, we obtain that for $\epsilon = \frac{A}{M+1} > 0$ and $\bar{t} \in (t - \delta, t + \delta) \cap I$:

$$
u(\bar{t}) \le A + \epsilon F(u(\bar{t})) \implies u(\bar{t}) \le A + M \cdot \frac{A}{M+1} \le 2A
$$

Thus, $(t - \delta, t + \delta) \cap I \subseteq \Omega$ and we are done.

3. Suppose there is a classical (i.e. C^1) solution $u : [0, T) \times \mathbb{R} \to \mathbb{R}$, where $T \in$ $[0, \infty]$ to

$$
\partial_t u + a(u)\partial_x u = 0. \quad u(0, x) = h(x) \in C^1(\mathbb{R})
$$
 (5)

Fix $(\bar{t}, \bar{x}) \in [0, T) \times \mathbb{R}$ arbitrary. We seek characteristic curves on which the solution $u(t, x)$ is constant. This can be achieved by considering the following ODE:

$$
\dot{x} = a \circ u(t, x(t)), \quad x(\bar{t}) = \bar{x}
$$

Observe that since $a \circ u \in C^1([0,T) \times \mathbb{R})$, it is locally Lipschitz hence by the Picard-Lindeloff Theorem we can guarantee the existence of a unique C^1 solution $x(t)$ in a neighbourhood around (\bar{t}, \bar{x}) . Along such a solution,

$$
\frac{d}{dt}u(t,x(t)) = \partial_t u + a \circ u(t,x(t))\partial_x u = 0
$$

We can do even more, and show that the characteristic curves extend up to time $t = 0$. This is not hard to show since the solution

$$
x(t) = \bar{x} + \int_{\bar{t}}^{t} a \circ u(s, x(s)) ds
$$

remains bounded in the maximal existence interval around \bar{t} , since the integrand is constant. This enables us to extend the maximal existence time to $t = 0$, for suppose it was less, then by the blow-up lemma, we could obtain that

$$
\sup_{t\in[0,\bar{t}]}|x(t)|=\infty
$$

a contradiction to the above discussion. Consequently, the line $\Gamma = \{(\bar{t}, \bar{x}) + \bar{x}\}$ $(t - \bar{t})(1, a(u(\bar{t}, \bar{x})) : t \in [0, \bar{t}])$ is characteristic and *u* is constant on Γ. Hence, $u|_{\Gamma} = u(\bar{t}, \bar{x})$. Letting $t = 0$, we obtain

$$
u(\bar{t}, \bar{x}) = u(0, (\bar{x} - a(u(\bar{t}, \bar{x}))\bar{t})) = h((x - a(u(\bar{t}, \bar{x}))\bar{t})
$$
(6)

as required.

Now we show that if *a* ∘ *h* is not non-decreasing, there cannot exist global classical solutions to [\(5\)](#page-6-0). Suppose for contradiction there exists a solution $u : [0, \infty) \times \mathbb{R} \to \mathbb{R}$. Pick $\xi_1 < \xi_2$ arbitrary, then by construction $a \circ h(\xi_1) > a \circ h(\xi_2)$ *h*(*ξ*₂). This means the corresponding characteristics $a(h(\xi_1))t + \xi_1$, $a(h(\xi_2))t + \xi_2$ intersect for time $t = \frac{a(h(\xi_1)) - a(h(\xi_2))}{\xi_2 - \xi_1}$ $\frac{f_1 f_2 - f_3}{f_2 - f_1}$ > 0 at $x = a(h(\xi_1))t + \xi_1 = a(h(\xi_2))t + \xi_2$. By [\(6\)](#page-6-1), we have $u(t, x) = h(\xi_1) = h(\xi_2)$ yielding that *h* is globally constant. This yields that *a* ◦ *h* is constant too, but this cannot hold since *a* ◦ *h* was assumed decreasing, a contradiction. Thus there does not exist a global classical solution to [\(5\)](#page-6-0) and we are done.

4. We need to show that $\Omega = \{x \in \mathbb{R}^d : P(x, \partial) \text{ is elliptic at } x\}$ is open in \mathbb{R}^d .

The definition of ellipticity for the partial differential equation

$$
P(u)(x) = \sum_{|\alpha| \le m} a_{\alpha}(x) \partial^{\alpha} u(x) = 0
$$
 (7)

at the point $\bar{x} = (\bar{t}, \bar{x}_2, \dots, \bar{x}_d) \in \mathbb{R}^d$ is that no hypersurface containing the aforementioned point is characteristic. Consider an arbitrary hypersurface Σ and any smooth function $\psi(x)$ such that $\psi|_{\Sigma} = 0$, $d\psi|_{\Sigma} \neq 0$ in a neighbourhood of \bar{x} and (since the PDE is linear, it is equal to its own linearisation \bar{P})

$$
\overline{P}(\psi^m)(\bar{x}) = P(\psi^m)(\bar{x}) = \sum_{|\alpha| \le m} a_{\alpha}(\bar{x}) \partial^{\alpha} \psi^m(\bar{x}) = m! \sum_{|\alpha| = m} a_{\alpha}(\bar{x}) (D\psi)^{\alpha}(\bar{x}) \neq 0
$$

since Σ is assumed non-characteristic at \bar{x} . All terms containing derivatives of order lower than the maximal order *m* vanish as $\partial^{\beta} \psi^{m}(\bar{x})$, $|\beta| < m$ contain $\psi(\bar{x})$ coefficients which vanish by assumption (can be shown by induction).

We aim to establish an equivalent characterisation of ellipticity at a point \bar{x} for the partial differential operator *P*. This is done by restricting attention to the unit ball $D = \{ \zeta \in \mathbb{R}^d : |\zeta| = 1 \}$ and considering for all $\zeta \in D$ the hypersurface $\Sigma = \{x \in \mathbb{R}^d : \langle x - \bar{x}, \zeta \rangle = 0\}$ with $\psi(x) = \langle x - \bar{x}, \zeta \rangle$. Clearly, $\psi|_{\Sigma} = 0$, $\frac{d\psi}{\psi} \geq \zeta \neq 0$ in a neighbourhood of \bar{x} . Thus, we obtain that

$$
\overline{P}(\psi^m)(\bar{x}) = m! \sum_{|\alpha|=m} a_{\alpha}(\bar{x})(D\psi)^{\alpha}(\bar{x}) = m! \sum_{|\alpha|=m} a_{\alpha}(\bar{x})(\zeta)^{\alpha} \neq 0
$$
 (8)

Let $f: D \to \mathbb{R}$ be given by

$$
f(\zeta) = \left| \sum_{|\alpha| = m} a_{\alpha}(\bar{x})(\zeta)^{\alpha} \right|
$$

Since by the above *f* is continuous (it is the absolute value of a polynomial in the entries of ζ), nowhere vanishing on the compact set *D*, it attains its infimum

$$
\inf_{\zeta \in D} f(z) = \left| \sum_{|\alpha| = m} a_{\alpha}(\bar{x})(\bar{\zeta})^{\alpha} \right| > 0
$$
\n(9)

Now, suppose for a contradiction that $Ω$ is not open at \bar{x} . By the above, one obtains a sequence of points $(\zeta_n)_{n\in\mathbb{N}}\subseteq D$ and $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}^d\setminus\Omega$ such that $x_n\to$ *x* as *n* → ∞. By assumption, [\(8\)](#page-7-0) yields

$$
\left|\sum_{|\alpha|=m} a_{\alpha}(x_n)(\zeta_n)^{\alpha}\right|=0
$$

Due to the compactness of *D*, we pass to a subsequence $\zeta_{n_k} \to \zeta' \in D$ as $k \to \zeta'$ ∞. This gives that

$$
0 = \left| \sum_{|\alpha| = m} a_{\alpha}(x_{n_k})(\zeta_{n_k})^{\alpha} \right| \to \left| \sum_{|\alpha| = m} a_{\alpha}(\bar{x})(\zeta')^{\alpha} \right| \ge \inf_{\zeta \in D} f(z) > 0 \quad \text{as} \quad k \to \infty
$$

a contradiction to [\(9\)](#page-7-1). Thus, we have established that there exists a neighbourhood U of \bar{x} contained in Ω , thereby showing that Ω is open as required.

5. Fix $\zeta \in \mathbb{R}^d$, $\zeta \neq 0$ and let $H = \{x \in \mathbb{R}^d : \langle x, \zeta \rangle \geq 0\}$. It is clear that *H* has boundary $\Sigma = \{x \in \mathbb{R}^d : \langle x, \zeta \rangle = 0\}$. Since Σ is assumed characteristic (at any point $\bar{x} \in \Sigma$) we choose $\psi(x) = \langle x, \zeta \rangle$ and easily verify $\psi|_{\Sigma} = 0$, $d\psi|_{\Sigma} \neq 0$ since $D\psi = \zeta \neq 0$ (similarly to question 4 - since the PDE is linear, it is equal to its own linearisation \bar{P}):

$$
\overline{P}(\psi^m)(\bar{x}) = P(\psi^m)(\bar{x}) = \sum_{|\alpha|=m} a_{\alpha} \partial^{\alpha} \psi^m(\bar{x}) = m! \sum_{|\alpha|=m} a_{\alpha} (D\psi)^{\alpha}(\bar{x})
$$

$$
= m! \sum_{|\alpha|=m} a_{\alpha} (\zeta)^{\alpha} = 0
$$
(10)

In the spirit of constructing a non-vanishing smooth solution to the PDE

$$
P(u)(x) = \sum_{|\alpha|=m} a_{\alpha} \partial^{\alpha} u(x) = 0
$$

we define the smooth function $h : \mathbb{R} \to \mathbb{R}$ by

$$
h(x) = \begin{cases} e^{-\frac{1}{x}}, & x \in (0, \infty) \\ 0, & x \in (-\infty, 0] \end{cases}
$$

It is a standard (for instance, it has been mentioned in first year real analysis) example of a smooth function supported on $[0, \infty)$ whose derivatives of all orders vanish at $x = 0$, yet does not vanish in a neighbourhood of 0. Define $u : \mathbb{R}^d \to \mathbb{R}$ as

$$
u(x) = h(\langle x, \zeta \rangle)
$$

Since *h* is supported on $[0, \infty)$, the support of *u* is contained in $\{x \in \mathbb{R}^d : \langle x, \zeta \rangle \geq 0\}$ 0 = *H*. Now, we claim that

$$
\partial^{\alpha} u(x) = h^{(|\alpha|)}(\langle x, \zeta \rangle) \cdot (\zeta)^{\alpha} \tag{11}
$$

for all $\alpha \in \mathbb{N}^d$. We proceed to prove the claim [\(11\)](#page-9-0) by induction. The claim follow directly by the chain rule for $\alpha \in \mathbb{N}^d$ with $|\alpha|=1$. Now for the inductive step, suppose [\(11\)](#page-9-0) holds for $\alpha \in \mathbb{N}^d$ with $|\alpha| = k$. Now, pick $\beta \in \mathbb{N}^d$ with $|\beta| = k + 1$. Now chose $\beta_i > 0$ and let $\beta' = \beta - e_i$. Note that $|\beta'| = k$. Consider

$$
\partial^{\beta} u(x) = \partial^{i} (\partial^{\beta'} u))|_{x} = \partial^{i} (h^{(|\beta'|)}(\langle x, \zeta \rangle) \cdot (\zeta)^{\beta'}) = h^{(|\beta'|+1)}(\langle x, \zeta \rangle) \cdot (\zeta)^{\beta'} \cdot \zeta^{i}
$$

:= $h^{(|\beta'|+1)}(\langle x, \zeta \rangle) \cdot \zeta^{\beta} = \partial h^{(|\beta|)}(\langle x, \zeta \rangle) \cdot (\zeta)^{\beta}$

by an application of the chain rule thus completing the induction meaning [\(11\)](#page-9-0) holds for all multi-indices $\alpha \in \mathbb{N}^d.$ Hence,

$$
P(u)(x) = \sum_{|\alpha|=m} a_{\alpha} \partial^{\alpha} u(x) = \sum_{|\alpha|=m} a_{\alpha} h^{(m)}(\langle x, \zeta \rangle) \cdot (\zeta)^{\alpha} = h^{(m)}(\langle x, \zeta \rangle) \cdot \sum_{|\alpha|=m} a_{\alpha} \cdot (\zeta)^{\alpha} = 0
$$

This shows that *u* is indeed a non-zero smooth solution to the above PDE supported on *H* and we are done.