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Abstract. We show that the spatial increments of the KPZ fixed point starting from initial data
that is locally bounded and whose support admits ǫ-coverings with moderate growth, exhibit
strong quantitative comparison against rate two Brownian motion on compacts. The above
estimates are uniform on the Lp norms, the compact set containing the support of the initial data
and the length of the interval considered.
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2 PANTELIS TASSOPOULOS AND SOURAV SARKAR

1. Introduction

1.1. Motivation. In 1986, Kardar, Parisi and Zhang [KPZ86] predicted that many planar
random growth processes possess universal scaling behaviour. In particular, models in the KPZ
universality class have an analogue of the height function which is conjectured to converge at
large time and small length scales under the KPZ 1 : 2 : 3 scaling (i.e. h(t, x) 7→ ǫh(ǫ−3t, ǫ−2x), as
ǫ ց 0) to a universal object ht(·) called the KPZ fixed point. Matetski-Quastel-Remenik
[MQR16] constructed the KPZ fixed point as a Markov process in t, and they showed that it is a
limit of the height function evolution of the totally asymmetric simple exclusion process (TASEP)
with arbitrary initial condition. Later in [NQR20], Nica-Quastel-Remenik constructed the KPZ
fixed point as a scaling limit of Brownian last passage percolation (LPP).

The directed landscape L was constructed from Brownian last passage percolation (BLPP) in
[DOV18] as a four-parameter scaling limit of the Brownian last passage value from different
spatial locations and curves in the Brownian environment. It is conjectured to be the full scaling
limit of all KPZ models. It is a random continuous function from

R4
↑ = {(p; q) = (x, s; y, t) ∈ R4 : s < t}

to R. They showed that the KPZ fixed point also admits a variational formula in terms of the
directed landscape, where for initial data h0 : R → R ∪ {−∞} the KPZ fixed point can be
expressed as

ht(y) = sup
x∈R

(h0(x) + L(x, 0; y, t)) ,

for all y ∈ R almost surely. This, and the metric composition law inherited from Brownian LPP,
means the directed landscape can be interpreted as a stochastic semi-group. For the narrow
wedge initial condition, h0(0) = 0 and h0(x) = −∞ elsewhere, h1(·) = A1(·) is the parabolic Airy2

process, that is the top line of the Airy line ensemble. For h0 ≡ 0, the flat initial condition, h1(·)
is called the Airy1 process.

The directed landscape at unit time L(·, 0; ·, 1), is also called the Airy sheet, and denoted by
S(· ; ·). In [DOV18], the authors obtain a coupling between the Airy sheet and differences in last
passage values with respect to the Airy line ensemble.

In [SV21] the authors show that the spatial increments of the KPZ fixed point at any fixed
time for general initial data are absolutely continuous with respect to Brownian motion on
compacts. One would like to know for which p ∈ (1, ∞), the Radon-Nikodym derivative of spatial
increments of the KPZ fixed point is in Lp. This would be a desirably property to have since it
would quantitatively strengthen the relationship between low-probability events of Brownian
motion and that of the KPZ fixed point [CHH19]. More generally, in the setting of two finite
measures µ ≪ ν (µ absolutely continuous with respect to ν), one wants if possible to quantify the
relationship between the δ > 0 and ǫ > 0 so that the implication ν(A) < δ guarantees µ(A) < ǫ
for all measurable A1. This can be achieved if, for instance, one imposes that the Radon-Nikodym
derivative dµ/ dν ∈ Lp, for some p > 1. Then, for A measurable,

µ(A) =

∫

A

dµ

dν
dν ≤

(

∫

A

(dµ

dν

)p
dν
)

1
p
(ν(A))

p−1
p =

∥

∥

∥

∥

dµ

dν

∥

∥

∥

∥

Lp(ν)
(ν(A))

p−1
p , (1.1)

by applying Hölder’s inequality. One can also easily verify that the above inequality is also
sufficient to deduce the Radon-Nikodym derivative exists and dµ/ dν ∈ Lp. One can relax this
type of inequality and impose the following comparison of two measures for all A measurable (in
an appropriate measure space) for some Borel function f : R≥0 → R≥0 satisfying limtց0 f(t) = 0,

µ(A) = O(f(ν(A))) . (1.2)

1Recall the definition of absolute continuity of measures µ with respect to ν, namely, that for all ǫ > 0, there
exists δ > 0 such that for all A measurable, if ν(A) < δ, then µ(A) < ǫ.
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When ν is replaced with various restrictions of the Wiener measure on compacts, we will call this
type of estimate a form of quantitative Brownian regularity with rate function f .

The variational characterisation of the KPZ fixed point and the coupling of the Airy sheet with
the Airy line ensemble and the so-called Gibbs property enjoyed by the Airy line ensemble,
together imply that a question on Brownian absolute continuity of the KPZ fixed point can
ultimately be transferred to that of an ‘inhomogeneous’ Brownian LPP, see Definition 3.6. This
was done in [SV21, Theorem 4.3], where it was shown that away from zero, inhomogeneous
Brownian LPP is absolutely continuous with respect to Brownian motion on compacts. A
quantitative Brownian regularity of the KPZ fixed point would thus require, as a first step, a
strong control on the Radon-Nikodym derivative of the inhomogeneous BLPP with respect to
Brownian motion. This is established in our companion paper [TS, Theorem 7.1] (stated here as
Theorem 3.7), where it is shown that the Radon-Nikodym derivative of the law of the spatial
increments (with endpoints away from zero) of the inhomogeneous BLPP against the Wiener
measure µ on compacts is in L∞−(µ), and in particular, that for any fixed p > 1, one has that the

Lp norm is at most of the order Op(edpm2 log m) for some p-dependent constant dp > 0.

Before proceeding further, we need to discuss a bit about the initial condition of the KPZ fixed
point. First, we need an appropriate definition of ‘support’ compatible with the ‘max-plus’ nature
of the directed landscape.

Definition 1.1. (max-plus support) Let f : R → R ∪ {−∞} be a Borel function. We define the
max-plus support of f to be the set

supp−∞(f) := {x ∈ R : f(x) 6= −∞} .

Using the definition of the Airy sheet, the KPZ fixed point at unit time h1(·) starting from
initial data h0 : R → R ∪ {−∞} with max-plus support supp−∞(h0) and 1-finitary (see [SV21,
Definition 1.1]), has the following variational representation

h1(y) = sup
x∈supp−∞(h0)

(h0(x) + L(x, 0; y, 1)) .

Now, the ‘meagreness’ condition on the ‘max-plus’ support of the initial data essentially is a
constraint on the growth of covers of the support by sets of diameter at most ǫ as ǫ ց 0. One
should note that these so-called ‘meagre’ sets, which can be defined at various degrees, are
sufficiently rich at all scales; more will be elaborated on this later on in the paper.

The meagreness condition in Definition 4.6 will feature in obtaining uniform control on
semi-infinite geodesic coalescence depths in the Airy line ensemble, see Definition 4.3. This will
allow us to strengthen the coupling of environments (see [DOV18, p.43]) used in the construction
of the directed landscape in [DOV18] in conjunction with some technical estimates from [Dau24]
regarding inverse acceptance probabilities and obtain the following theorem, which is the main
result of this paper. The statement is a little technical, so before we give the result in full detail,
we state it informally as follows. See Theorem 6.5 for the proper statement of the result.

Theorem 1.2 (Quantitative Brownian regularity). Let F be any class of continuous (with respect
to the subspace topology) and uniformly bounded initial data with sufficiently meagre ‘max-plus’
support contained in a fixed, reference compact set. This includes finite narrow wedge initial data
of all sizes and locations, since finite sets always meet the meagreness criterion in Definition 4.6.

Then the spatial increments of the KPZ fixed point started from an initial function in F on a
fixed interval, exhibit a form of quantitative Brownian regularity with rate function (as in (1.2)) of
the form

f(ν(A)) = exp
(

−d logr log
(

1/ν(A)
))

,

for all A Borel measurable sets on paths and some universal positive constants d > 0, r ∈ (0, 1),
where ν denotes an appropriate restriction of the rate two Wiener measure.
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We believe that the bounds in Theorem 1.2 can be improved to the point where the exponents
r > 1 and d > 0 can be tuned appropriately to reduce to the type of bound as in (1.1), which
would give the L∞−(µ) estimates for such continuous meagre data with compact ‘max-plus’
support, which we also believe can be extended to all finitary initial conditions.

1.2. Organisation of paper. First, in Section 2 we establish notation that will be used
throughout. In Section 3 we provide necessary background material including estimates of
Radon-Nikodym derivatives of the laws of Brownian bridges against that of Brownian motion and
some path-wise properties of the Airy line ensemble and its last passage values. Section 4 is
devoted to studying geodesic geometry in the Airy line ensemble. In particular, we obtain
exponentially stretched tail bounds on intercepts of semi-infinite geodesics, Theorem 4.5 and also
uniform coalescence time tail bounds for semi-infinite geodesics with ‘speeds’ that are in some
‘meagre’ set, see Theorem 4.14. Then, in Section 5, we use the variational formula for the KPZ
fixed point and the coupling in Definition 4.2 and rely on a series of favourable events and
technical inputs from [Wu25], thereby reducing the problem to estimating the Radon-Nikodym
derivatives of inhomogeneous Brownian LPP with non-decreasing initial data. For this we use
[TS, Theorem 7.1] as a crucial input to obtain an analytically tractable quantitative comparison
of finite depth truncations of the KPZ fixed point against the rate two Wiener measure in
Theorem 5.4. In Section 6 we combine the above estimates to prove the main theorem giving the
quantitative Brownian regularity of the KPZ fixed point started from meagre initial data, namely
Theorem 6.5. Finally, in Section 7 we briefly outline possible avenues of strengthening the
comparison of the KPZ fixed point with respect to Brownian motion, specifically in refining our
understanding of the geodesic geometry in the Airy line ensemble and its last passage values.
Below is a flowchart depicting the main ingredients in the proof of Theorem 6.5.

Brownian regularity of the KPZ fixed point
started from data with ‘meagre’ support

Brownian regularity of finite depth truncations of the KPZ
fixed point started from initial data with ‘meagre support’

Brownian regularity of Airy line ensemble last passage values

Geodesic geometry
of the parabolic Airy line ensemble:

transversal fluctuation

Brownian Gibbs resampling
and inhomogeneous

Brownian LPP Lp norm estimates

Geodesic geometry
of the parabolic Airy line ensemble:

uniform coalescence estimates

[TS, Theorem 7.1]

Theorem 6.3

Theorem 4.14

Theorem 4.5

Theorem 6.5

Figure 1. Flowchart of main steps in the proof of Theorem 6.5.

1.3. Related works. The Brownian nature of models in the KPZ universality class, including
the Airy Line ensemble and the KPZ fixed point in general, has been a subject of intense research
in recent times. Aside from integrable inputs, see for instance [BDJ99, MQR16, Liu19] and
[JR19, Joh17, Joh18], probabilistic and geometric methods have featured prominently ever since
Corwin and Hammond proved in [CH14] that the parabolic Airy line ensemble admits a Brownian
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Gibbs resampling property. For a more detailed account of recent developments, one can consult
the work of Calvert, Hammond and Hegde [CHH19] and the references therein.

Very recently, the locally Brownian nature of the Airy line ensemble (and so for the narrow
wedge solution to the KPZ fixed point) has been considerably strengthened in [Dau24], where
Dauvergne gave an explicit form for the density of the finite depth truncations of increments of
the Airy line ensemble against Brownian motion on compacts and established ways of estimating
inverse acceptance probabilities following ideas from the ‘tangent method’, wherein one can find a
more exhaustive account. Not to mention, in [Wu25], Wu introduced ideas from the theory of
optimal transportation to the study of spatial regularity of the Airy line ensemble and has
provided sub-Gaussian tail bounds (with universal coefficients) on the modulus of continuity of
any given level of the Airy line ensemble on a compact interval.

However, for general initial conditions, the picture is less clear with more questions open. A
result providing a more quantitative notion of Brownian regularity, called patchwork quilt of
Brownian fabrics, was established in Hammond [Ham19] and [CHH19]. Roughly the result states
that the KPZ fixed point h(·) on a unit interval is the result of ‘stitching’ a random number of
profiles, where each profile is absolutely continuous with respect to a Brownian motion with
Radon-Nikodym derivative in Lp for all p < 3. The authors conjectured (Conjectured 1.3 in
[Ham19]) that one can dispense with these random patches and establish Lp estimates for all
p > 0 for the Radon-Nikodym derivative, a problem which remains open. A first step in this
direction was the proof of absolute continuity on a single non-random patch for general initial
conditions, which has been established in [SV21, Theorem 1.2], using methods different from
those in [Ham19].

Our main result in Theorem 6.5 of this paper strengthens quantitatively the absolute
continuity result of [SV21] for ‘meagerly’ supported initial data (see Definition 1.1) within a single
patch. Our proof of this result crucially depends upon refining certain aspects of the construction
of the directed landscape in [DOV18], the variational characterisation of the KPZ fixed point
from [SV21], the Brownian Gibbs property of the parabolic Airy line ensemble established in
[CH14], the strong comparison against Brownian motion on compacts of inhomogeneous
Brownian LPP (the Radon-Nikodym derivative of the law of the spatial increments against the
Wiener measure µ on compacts being in L∞−(µ)) established in [TS] (stated here as Theorem
3.7), as well as technical inputs from [DV21] and [Wu25] used in estimating Brownian inverse
acceptance probabilities with random boundary points and global modulus of continuity estimates
for the stationary version of the Airy line ensemble respectively.

1.4. Acknowledgement. SS would like to thank Bálint Virág for some initial helpful discussions.

2. Notation

We introduce some notation and conventions we will be using throughout.

When in some estimates a constant appears that will depend on some parameters a, b, c, · · · , it
will be denoted by Ca,b,c,···, unless otherwise specified. Constants without subscripts are deemed
to be universal. Additionally, for ease of notation, such constants are allowed to change from line
to line. Moreover, for ease of notation such constants may be dropped and instead replaced with
the symbols .a,b,c,··· (≡ Oa,b,c,···(·)) and &a,b,c,··· for some parameters a, b, c, · · · which stand for
≤ Ca,b,c,··· and ≥ C ′

a,b,c,··· for some positive constants Ca,b,c,···, C ′
a,b,c,··· respectively.

We take the set of natural numbers N to be {1, 2, . . .}. For k ∈ N, we use an underbar to
denote a k-vector, that is, x ∈ Rk. We denote the integer interval {i, i + 1, . . . , j} by Ji, jK. A
k-vector x = (x1, . . . , xk) ∈ Rk is called a k-decreasing list if x1 > x2 > . . . > xk. For a set I ⊆ R,
let Ik

> ⊆ Ik be the set of k-decreasing lists of elements of I, and Ik
≥ be the analogous set of

k-non-increasing lists.
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The symbols · ∧ ·, · ∨ · denote min{·, ·} and max{·, ·} respectively. For any a ∈ R, a+ denotes
a ∨ 0.

We define the affinely shifted bridge version, that is zero at both endpoints, of a real-valued
function f on an interval [a, b], f [a,b] : [a, b] → R by

f [a,b](x) := f(x) − x − a

b − a
· f(b) − b − x

b − a
· f(a) (2.1)

for x ∈ [a, b].

We now turn to some notational conventions for the path spaces that will be used throughout.
For general domains of paths J , we denote the space of continuous paths, in the usual topologies,
by C∗,∗(J,R). More specifically, if the domain is an interval [a, b] ⊆ R, we denote the space of
continuous functions with domain [a, b] which vanish at a by C0,∗([a, b],R). For random functions
taking values in these spaces, we will always endow them with their respective Borel σ-algebras
generated by the topologies of uniform convergence (which makes them into Polish spaces).

Similarly, for k ≥ 1, a < b, define Ck
∗,∗([a, b],R) :=×k

i=1 C∗,∗([a, b],R) and equip it with the

product of the uniform topologies. Furthermore, for a < b, k ∈ N and x, y ∈ Rk
>, let Ck

x,y([a, b],R)

denote the space
{

g ∈ Ck
∗,∗([a, b],R) : ∀i ∈ J1, kK, gi(a) = xi and gi(b) = yi

}

.

We say that a Brownian motion or a Brownian bridge has rate v if its quadratic variation in an
interval [s, t] is equal to v(t − s). We say that a Dyson’s Brownian motion or a Brownian k-melon
has rate v if the component Brownian motions have rate v. From now on, all Brownian motions
are rate two unless stated otherwise.

For 0 ≤ a < b, in analogy to the above, let B
[a,b]
∗,∗ (·) denote the law of a rate two Brownian

motion on [0, ∞) starting from the origin restricted to the interval [a, b] (the two star symbols
indicate that the Brownian motion starts from the origin at time zero, which might be outside of
the interval [a, b]). When k ≥ 1 independent copies are considered, we will be using the usual

product measure notation (B
[a,b]
∗,∗ )⊗k. Moreover, for x, y ∈ Rk let B

[a,b]
x,y (·) denote the law of k

independent rate two Brownian bridges on [a, b] with endpoints (a, x) and (b, y), hence it is a

measure on Ck
x,y([a, b] ,R) equipped with the usual Borel σ-algebra on the product topology of

local uniform convergence.

For k ∈ N, a < b, x, y ∈ Rk
> and f : [a, b] → R a measurable function such that xk > f(a) and

yk > f(b), the non-crossing event on J for any union of finite sub-intervals J ⊆ [a, b] is denoted by

NoInt(J , f) :=
{

g ∈ Ck
∗,∗(J,R) : ∀r ∈ J, gi(r) > gj(r) for all 1 ≤ i < j ≤ k and gk(r) > f(r)

}

.

(2.2)

In what is to follow, the probability B
[a,b]
x,y (NoInt(J , f)) is called an acceptance probability.

Roughly speaking, it is the probability of the event that a collection of k independent Brownian
bridges on [a, b] with endpoints x, y do not intersect, and also stay above the ‘lower barrier’ f on
J . We note this event has a positive probability owing to standard facts of Brownian bridges, see
Section 2.2.2 in [CH14].

3. Preliminaries

In this section, we will recall some basic definitions that appear in the KPZ universality class,
namely, last passage percolation, the Pitman transform and melons; and collect some basic results
that will be useful later on including some elementary estimates involving Brownian bridge,
Radon-Nikodym derivatives (against Brownian motion) estimates and pathwise properties of the
Airy line ensemble. We start with the central probabilistic object of study, namely random line
ensembles.
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3.1. Line ensembles. The following definition makes precise the notion of a random line
ensemble, a probabilistic object of central importance in the KPZ universality class. It is a
random variable taking values in an indexed (at most countably infinite) family of continuous
paths defined on a common subset of R.

Definition 3.1 (Random ensemble). Let Σ be a (possibly infinite) interval of Z, and let Λ be an
interval of R. Consider the set X := CΣ of continuous functions f : Σ × Λ → R. We endow it
with the topology of uniform convergence on compact subsets of Σ × Λ. Let C denote the
sigma-field generated by Borel sets in X.

A Σ-indexed line ensemble L is a random variable defined on a probability space (Ω,B,P),
taking values in X such that L is a (B, C )-measurable function. Furthermore, we write
Li := (L(ω))(i, ·) for the line indexed by i ∈ Σ.

3.2. Last passage percolation. We begin with the collection of some preliminary facts
regarding last passage percolation (sometimes abbreviated as LPP in the paper) over ensembles of
functions following [DOV18].

Formally, let I ⊂ Z be a possibly finite index set and define the space CI of sequences of
continuous functions with real domains, that is, the space

f : R × I → R (x, i) 7→ fi(x) .

Definition 3.2 (Path). Let x ≤ y ∈ R, and m ≤ ℓ ∈ Z respectively. A path, from (x, ℓ) to (y, m)
is a non-increasing function π : [x, y] → N which is cadlag on (x, y) and takes the values π(x) = ℓ
and π(y) = m.

Remark. The convention that the paths be non-increasing is so that they match the natural
indexing of the Airy line ensemble, see Section 3.6.

In what is to follow, since we will primarily be considering the Airy line ensemble (see Section
3.6 for a definition), we will take the indexing set to be I = N. We now define an important
quantity associated to each such path, namely, its length as the sum of increments of f along π.
This also leads one to naturally define a derived quantity, namely the last passage value.

Definition 3.3 (Length). Let x ≤ y ∈ R and m < ℓ ∈ Z. For each m ≤ i < ℓ, let tℓ−i denote the
jump of the path π, on an ensemble (fi)i∈I , from fi+1 to fi. Then the length of π is defined as

ℓ(π) = fm(y) − fm(tℓ−m) +
ℓ−m−1
∑

i=1

(fℓ−i(ti+1) − fℓ−i(ti)) + fℓ(t1) − fℓ(x) .

Definition 3.4 (Last passage value). With x ≤ y, m < ℓ as before and f ∈ CI , define the last
passage value of f from (x, ℓ) to (y, m) as

f [(x, ℓ) → (y, m)] := sup
π

ℓ(π) ,

where the supremum is over precisely the paths π from (x, ℓ) to (y, m).

Remark. Any path π from (x, ℓ) to (y, m) such that its length is equal to its last passage value is
called a geodesic. To establish the existence of geodesics one can proceed by first noticing that the
length of a path ℓ(π), can be viewed as a function on the subset Z of non-increasing cadlag
functions with fixed endpoints in D, the space of cadlag functions D := D([x, y],N). When
endowed with respect to the Skorokhod topology, which is metrisable, the above function is
continuous. Since Z is closed with respect to the above topology of “jump times”, a compactness
argument using Arzela-Ascoli, see [Bil13, ch. 3], implies that the supremum over admissible paths
is indeed attained.
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∆1

∆2

∆3

∆4

(x, 4)

(y, 1)

x t1 t2 t3 y

Figure 2. Visualisation of a possible path (red) “embedded” on the Airy line en-
semble, here (A1, A2, A3, A4) from top to bottom, and m = 1, ℓ = 4 (see Section
3.6). Here ∆1 = A4(t1) − A4(x), ∆2 = A3(t2) − A3(t1), ∆3 = A2(t3) − A2(t2),
∆4 = A1(y) − A1(t3) and ℓ =

∑4
i=1 ∆i.

Last passage percolation enjoys the following metric composition law, Lemma 3.2 in DOV
[DOV18].

Lemma 3.5 (Metric composition law). Let x ≤ y ∈ R, m < ℓ ∈ Z and f ∈ CI . If k ∈ {m, . . . , ℓ},
then we have

f [(x, ℓ) → (y, m)] = sup
z∈[x,y]

(f [(x, ℓ) → (z, k)] + f [(z, k) → (y, m)]) ,

and if k ∈ {m + 1, . . . , ℓ}, then

f [(x, ℓ) → (y, m)] = sup
z∈[x,y]

(f [(x, ℓ) → (z, k)] + f [(z, k − 1) → (y, m)]) .

Furthermore for any z ∈ [x, y],

f [(x, ℓ) → (y, m)] = sup
k∈{m,...,ℓ}

(f [(x, ℓ) → (z, k)] + f [(z, k) → (y, m)]) (3.1)

We are now in a position to state the main result of [TS] which gives pathwise estimates for the
Radon-Nikodym derivatives of Brownian LPP started from inhomogeneous ‘initial data’, that will
be crucial in obtaining quantitative Brownian regularity of the KPZ fixed point.

First we define inhomogeneous Brownian LPP started from non-increasing initial data.

Definition 3.6. (Inhomogeneous Brownian LPP) Fix m ≥ 1, B1, · · · , Bm be independent
Brownian motions starting from the origin, g = (gℓ)

m
ℓ=1 ∈ Rm

≥ and B = (B1, . . . , Bm). Then, the
process

max
1≤ℓ≤m

(gℓ + B[(0, ℓ) → (y, 1)]) , y ∈ [0, ∞)

is called the inhomogeneous Brownian LPP started from initial data g.

Now we can proceed to the statement of the main result of [TS].
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Theorem 3.7. ([TS, Theorem 7.1]) Fix m ≥ 1, (gℓ)
m
ℓ=1 ∈ Rm

≥ and let H(·) be the inhomogeneous
Brownian LPP started from initial data g. Then, for all 0 < ℓ < r < ∞, we have that the
Radon-Nikodym derivative of the law of H(·) against a rate two Brownian motion starting from
the origin µ on [ℓ, r] is in L∞−(µ|[ℓ,r]). In particular, with ξℓ,r,m,b denoting the law of H as
defined above on [ℓ, r]

∥

∥

∥

∥

∥

dξℓ,r,m,b

dµ|[ℓ,r]

∥

∥

∥

∥

∥

Lp(µ|[ℓ,r])

= Op(edpm2 log m), forall p > 1.

for some universal in m ∈ N (though possibly p-dependent) constant dp > 0 for all p > 1.

In particular, we obtain the estimates

∥

∥

∥

dξℓ,r,m,b

dµ

∥

∥

∥

Lp(µ)
=

m
∏

i=1

exp
(

− (bi − bm)2/(4ℓ)
)

·
(

(b1 − bm)

2ℓ
∨ 1

)m2

·Op,ℓ,r

(

edm2 log m+cℓ

(

∑m

i=1
(bi−bm)

)2
)

,

for some constants cℓ,r, d > 0 independent of m ∈ N and all p > 1.

3.3. Pitman transform. Recall that with f = (f1, f2) where fi : [0, ∞) 7→ R for i = 1, 2, for
f ∈ C2

∗,∗([0, ∞)), we define W f = (Wf1, Wf2) ∈ C2
∗,∗([0, ∞)), the Pitman transform of f as

follows. For x < y ∈ [0, ∞), define the maximal gap size

G(f1, f2)(x, y) := max

(

max
s∈[x,y]

(

f2(s) − f1(s)
)

, 0

)

.

Then define
Wf1(t) = f1(t) + G(f1, f2)(0, t) , (3.2)

Wf2(t) = f2(t) − G(f1, f2)(0, t) ,

for all t ∈ [0, ∞).

One can express the top line of the Pitman transform in terms of last passage values.

Lemma 3.8. Let f ∈ C2
+ and let W f = (W f1, W f2) be as above. Then for all t ∈ [0, ∞),

W f1(t) = max
i=1,2

{fi(0) + f [(0, i) → (t, 1)]} .

Proof. By definition,
W f1(t) = f1(t) + G(f1, f2)(0, t)

= f1(t) + max{ max
s∈[x,y]

(f2(s) − f1(s)), 0}

= max{ max
s∈[x,y]

(f2(s) + f1(t) − f1(s)), f1(t)} .

From 3.1, we get f1(t) = f1(0) + f [(0, 1) → (t, 1)] and

max
s∈[0,t]

(f2(s) + f1(t) − f1(s))} = f2(0) + f [(0, 2) → (t, 1)] .

Combining the above gives the result. �

Particularly in the case where f1(0) = f2(0) = 0, we obtain that

W f1(t) = f [(0, 2) → (t, 1)] .

W f is commonly referred to as the 2-melon (which will be generalised in the following section to
the so-called n-melons) of f , since paths in W f avoid each other and thus resemble the stripes of
a watermelon.
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3.4. Dyson Brownian motion. Fix any ǫ, t > 0 and let Bn be the collection of n independent
Brownian motions with initial conditions Bn

i (0) = 0 conditioned not to intersect on [ǫ, t] (note the
non-intersection event has positive probability). Then, as ǫ ց 0, t ր ∞, Kolmogorov’s extension
theorem gives that the Bn converges in law to a limiting process, namely, n-level Dyson Brownian
motion.

An alternative construction is to first take x ∈ Rn
> and with Px denoting the law of n

independent Brownian motions B started at x and P̂x the law of the Doob’s h-transform of B
started at x, where h(x1, x2, · · · , xn) =

∏

1≤i<j≤n(xi − xj)+. Then the weak limit of P̂x as

Rn
> ∋ x → 0 can be realised as a random ensemble with law on paths P̂0+ which agrees with the

n-level Dyson Brownian motion starting from the origin. The advantage of this construction is
that it is more amenable to Radon-Nikodym derivative estimates.

It is worth mentioning that the Dyson Brownian motion was initially described as the
eigenvalues of n × n time-dependent Hermitian matrices with entries independent complex-valued
Brownian motion, [Dys62].

3.5. Melons. An application of the above that is of interest is that of two independent standard
Brownian motions (starting from zero) B = (B1, B2). Let B̂ = (B̂1, B̂2) be two independent
Brownian motions conditioned not to collide, in the sense of Doob (a 2-Dyson Brownian motion).

Then, the law of the melon W B as defined above in (3.2) is the same as that of B̂. In [OY02], a
generalisation was proved for n Brownian motions, using a continuous analogue of the
Robinson–Schensted–Knuth (RSK) correspondence, where each level in the n-melon
W Bn = (W Bn

1 , W Bn
2 , · · · , W Bn

n) is obtained from a family of n Brownian motions by a sequence
of deterministic operations that are analogous to the sorting algorithm ‘bubble sort’ where the top
curve W Bn

1 coincides with the top level of an n-Dyson Brownian motion. The term melon comes
from the ordering of paths: for some continuous n−tuple f , (W f)n

1 ≥ (W f)n
2 ≥ · · · ≥ (W f)n

n and
their initial value which is 0, which means they look like stripes on a watermelon. When clear
from context, we will abuse notation and drop the superscript, writing instead W f .

In particular, [DOV18, Proposition 4.1] gives an important property of melon paths in that
they preserve last passage values (with no restriction on their starting point). In particular,

W B[(0, n) → (t, 1)] = B[(0, n) → (t, 1)] , ∀t ≥ 0 .

Using the fact that W Bn(0) = 0 and the ordering of melon paths, one gets that the left-hand-side
of the above equation is just W B1(t). Thus the top line of melon paths is completely
characterised in terms of Brownian last passage percolation. For a more complete definition of
melons involving the remaining lines, see [DOV18, sec. 2] and [OY02].

After appropriate rescaling, see Figure 3, W Bn converges in law to a non-intersecting ensemble
on CN (with respect to the product of the uniform-on-compact topologies on CN), Theorem 2.1 in
[DOV18], which we will now discuss.

3.6. Airy line ensemble and the Brownian Gibbs property.

Theorem 3.9. Let W Bn be a Brownian n-melon. Define the rescaled melon An = (An
1 , . . . , An

n)
by

An
i (y) = n1/6

(

(W Bn)i(1 + 2yn−1/3) − 2
√

n − 2yn1/6
)

.

Then An converges to a random sequence of functions A = (A1, A2, . . . ) ∈ CN in law with respect
to product of uniform-on-compact topology on CN. For every y ∈ R and i < j, we have
Ai(y) > Aj(y). The function A is called the (parabolic) Airy line ensemble.
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Remark. The random sequence A = (A1, A2, . . . ) is called the ‘parabolic’ Airy line ensemble
since the ensemble (Ai(·) + (·)2)i∈N is stationary and ergodic, see [CS14]. The ensemble
(Astat

i )i∈N := (Ai(·) + (·)2)i∈N will be called the stationary Airy line ensemble.

O(n−1/6)

O(n−1/3)

W B1

W B2

W B3

W B4

Figure 3. Brownian melon scaling limit. Above is a realisation of the W B4 melon.
‘Zooming in’ on the parallelogram at small scales and taking the limit as n → ∞
yields the convergence in law to the (parabolic) Airy line ensemble.

We now recall the Brownian Gibbs resampling property enjoyed by the Airy line ensemble (see
Figure 4), first established in [CH14]. Informally, it states that for a < b, k ∈ N, the law of the
Airy line ensemble restricted to {1, 2, · · · , k} × (a, b), A|{1,2,··· ,k}×(a,b), conditionally on all the
data generated by the Airy line ensemble outside of this region,
Fk := σ({Ai(x) : (i, x) /∈ J1, kK × (a, b)}), is given by non-intersecting Brownian bridges with entry
data x = (Ai(a))1≤i≤k, y = (Ai(b))1≤i≤k and also conditioned to stay above f = Ak+1 on (a, b).

More precisely, the Brownian Gibbs property allows us to specify the regular conditional
distribution

Law
(

A|{1,2,··· ,k}×(a,b) conditioned on Fk

)

= B
f,[a,b]
x,y ,

where

B
f,[a,b]
x,y :=

B
[a,b]
x,y (· ∩ NoInt([a, b], f)

B
[a,b]
x,y (NoInt([a, b], f))

.

Notice that for fixed data x, y, f , the measure B
f,[a,b]
x,y is absolutely continuous with respect to

B
[a,b]
x,y , that is the law of k independent Brownian bridges on [a, b] starting at (a, xi) and ending at

(b, yi) respectively, for 1 ≤ i ≤ k.

We now include the following global modulus of continuity result from [Wu25] obtained using
techniques from optimal transport, using the fact that the Dyson Brownian motion can be viewed
as a log-concave perturbation of Brownian motion, and is inherited by a large class of random
ensembles, including the stationary Airy line ensemble (see Theorem 3.9 and the remark
thereafter). It essentially shows that lines in the stationary Airy line ensemble have the same
modulus of continuity as that of Brownian motion.
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Figure 4. Figure illustrating the Brownian Gibbs property on the first four lines
of the parabolic Airy Line ensemble A = {A1 > A2 > . . . } (in black) between two
points (indicated by the red vertical dashed lines). The blue curves represent resam-
pled versions of first four lines in the ensemble between the endpoints, conditioning
on everything else and avoiding the fifth line.

Proposition 3.10. ([Wu25, Corollary 1.4]) There exist universal constants C1, C2 > 0 such that
for any a < b, j ∈ N, and K ≥ 0, it holds that

P

(

sup
t,s∈[a,b],t6=s

|Aj(t) − Aj(s) + t2 − s2|
√

|t − s| log(2(b − a)/|t − s|) > K

)

≤ C1e−C2K2
. (3.3)

These improved bounds on the modulus of continuity of the stationary line ensemble allow us
to state the following refinement of [Dau24, Lemma 2.3] that will be needed in the later sections.
It gives sub-Gaussian tails for the fluctuations of the Airy lines across indices, while also
improving the dependence on the depth of the Airy line ensemble.

Corollary 3.11. Fix t > 0, then for every m ∈ N, let

M = max
r,r′∈[−t,t]

|Am+1(r) − Am+1(r′)| + max
i∈J1,mK

|Ai(t) − Ai(−t)| .

We have that there exist some positive constants C1, C2, d > 0 independent of t, m such that for all
a > 0,

P(M > a) ≤ C1medt3
e−C2a2/t .

Proof. To prove the bound on M , we apply Proposition 3.10 to the process Am+1(r), r ∈ [0, t]
using the estimates for r, r + ǫ ∈ [0, t] from Proposition 3.10 (with a = 0, b = t in that
proposition), to obtain for all s > 0

P

(

max
r,r+ǫ∈[0,t]

|Am+1(r) − Am+1(r + ǫ)| > s
√

t

)

≤ P

(

max
r,r+ǫ∈[0,t]

|Am+1(r) + r2 − Am+1(r + ǫ) − (r + ǫ)2| + ǫ2 + 2ǫr > s
√

t

)
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≤ P

(

max
r,r+ǫ∈[0,t]

|Am+1(r) + r2 − Am+1(r + ǫ) − (r + ǫ)2| + 2ǫt > s
√

t

)

(since ǫ2 + 2ǫr ≤ 2ǫt) .

Moreover, as ǫ ∈ [0, t],
√

ǫ log 2t/ǫ ≤ sup
x∈(0,1]

√

x log 2/xt1/2 ≤ Ct1/2

for some constant C > 0, multiplying and dividing both sides of the term containing the Airy
process by

√

ǫ log 2t/ǫ shows that the above probability is

≤ P

(

max
r,r+ǫ∈[0,t]

|Am+1(r) + r2 − Am+1(r + ǫ) − (r + ǫ)2|
√

ǫ log(2t/ǫ)
> c(s − 2t3/2)+

)

Prop.3.10
≤ C1 exp

(

−C2(s − 2t3/2)2
+

)

≤ C1edt3
exp(−C2s2) ,

for some C1, C2, c, d > 0 universal constants. We thus obtain by a union bound that there exist
some C1, C2, d > 0 independent of t, m such that for all a > 0,

P

(

max
r,r′∈[−t,t]

|Am+1(r) − Am+1(r′)| > a

)

≤ C1edt3
e−C2a2/t .

Applying (a simpler version of ) the same argument for each of the Airy lines Ai, i ∈ J1, mK, and
using union bounds, we get the result. �

We also obtain the following proposition which is a slight variation of Corollary 3.11, giving
sub-Gaussian concentration for the modulus of continuity of the parabolic Airy line ensemble over
a fixed interval at any given depth.

Proposition 3.12. Fix t > 0, then for every m ∈ N, δ > 0, the following tail bounds hold for all
a > 0.

P

(

sup
r,r+ǫ∈[0,t]

|Am(r) − Am(r + ǫ)|
mδ

√
ǫ log1/2(2t/ǫ)

> a

)

.t exp
(

−da2m2δ
)

,

for some constant d > 0, independent of t, m.

Proof. To prove the tail bound for the process Am(r), r ∈ [0, t], first recall the definition of the
stationary Airy line ensemble Astat from the Remark after Theorem 3.9. Now, use Proposition
3.10 (applied for r, r + ǫ ∈ [0, t] ) to obtain for all a > 0

P

(

sup
r,r+ǫ∈[0,t]

|Am(r) − Am(r + ǫ)|
mδ

√
ǫ log1/2(2t/ǫ)

> a

)

≤ P

(

sup
r,r+ǫ∈[0,t]

|Astat
m (r) − Astat

m (r + ǫ)|
mδ

√
ǫ log1/2(2t/ǫ)

> a − sup
ǫ∈[0,t]

2
√

ǫt

mδ log1/2(2t/ǫ)

)

.t exp
(

−da2m2δ
)

,

where C1, C2, d > 0 are universal constants, giving the result. �
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3.7. Brownian bridge properties and lemmas. Here we put together a few standard facts
and basic lemmas on Brownian bridges, that will be needed in the later sections.

We first record a key monotonicity lemma for Brownian bridges.

Lemma 3.13. (Monotonic coupling) Let [s, t], J be closed intervals in R with J ⊆ [s, t], let
x1 ≤ x2, y1 ≤ y2 ∈ Rk

> where ≤ is the coordinate-wise partial order, and let g1, g2 be two bounded
Borel measurable functions from [s, t] → R ∪ {−∞} such that g1(x) ≤ g2(x) for all x ∈ [s, t]. For
i = 1, 2, let Bi be a k-tuple of Brownian bridges from (s, xi) to (t, yi), conditioned on the event
NoInt(J, gi) (recall the definition from (2.2)). Then there exists a coupling such that
B1

j (r) ≤ B2
j (r) for all r ∈ [s, t], j ∈ J1, kK.

For a sketch of a proof, see the proof of Lemmas 2.6 and 2.7 in [CH14]. For a more complete
argument, see the proof of Lemma 2.15 in [DM21]. The key idea behind their proof is to first
establish a similar result in the discrete setting of random walk bridges which is easier, and then
pass to a suitable limit where the random walks converge to Brownian bridges.

The following basic lemma computes the Radon-Nikodym derivative of a Brownian bridge with
respect to a Brownian motion.

Lemma 3.14. Fix 0 < x < y, m ∈ N and let W (·) be a rate two Brownian bridge on [0, y] with

endpoints 0, a ∈ Rm, with law B
[0,y]
0,a (·) on C0,a([0, y]). Then the law B

[0,y]
0,a (·) restricted to [0, x] is

absolutely continuous with respect to that of a rate two Brownian motion with law B
[0,x]
0,∗ (·) with

Radon-Nikodym derivative for B
[0,x]
0,∗ -almost all ω in C0,∗([0, x]),

dB
[0,y]
0,a |[0,x]

dB
[0,x]
0,∗

(ω) = (y/(y − x))
m
2 · exp

(

−y ‖ω(x) − x/ya‖2

4x(y − x)

)

· exp

(

‖ω(x)‖2

4x

)

.

Moreover, we have that dB
[0,y]
0,a |[0,x]/ dB

[0,x]
0,∗ is in L∞(B

[0,x]
0,∗ ) with norm estimates

∥

∥

∥

∥

∥

dB
[0,y]
0,a |[0,x]

dB
[0,x]
0,∗

∥

∥

∥

∥

∥

Lp

(

B
[0,x]
0,∗

)

= (y/(y−x))
m
2

(px/(y−x)+1)
m
2

· exp
(

x‖a‖2

4(y−x)

( p
(p−1)x+y − 1

y

)

)

for all p > 1 and letting p → ∞,
∥

∥

∥

∥

∥

∥

dB
[0,y]
0,a |[0,x]

dB
[0,x]
0,∗

∥

∥

∥

∥

∥

∥

L∞

(

B
[0,x]
0,∗

)

≤ (y/(y − x))
m
2 · exp

(

‖a‖2

4y

)

.

Proof. Recalling the notation f [a,b] for an affine shift of a function f on an interval [a, b] vanishing
at its endpoints, see (2.1) in Section 2, we can couple a Brownian motion B and a Brownian
bridge W with endpoints 0, a ∈ Rm on [0, y] by performing an affine shift and setting

W (·) = B[0,y](·) +
(·)
y

a

which we can re-express as

W (·) = B[0,x](·) +
(·)
x

N

on [0, x] for some m−dimensional Gaussian vector N with independent entries having mean xa/y
and variance 2(y − x)x/y, that is independent of the affine shift B[0,x](·) on [0, x] (this can be seen
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by simply checking that the covariances vanish). Observe that if one were to replace N with Bx,
one would recover the original Brownian motion; now, a straight-forward computation shows that

dB
[0,y]
0,a |[0,x]

dB
[0,x]
0,∗

=
dN

dBx

whence we derive the desired almost sure equality for the Radon-Nikodym derivative and
conclude the proof of the first part. Now we fix any p > 1 and compute

∥

∥

∥

∥

∥

dB
[0,y]
0,a |[0,x]

dB
[0,x]
0,∗

∥

∥

∥

∥

∥

p

Lp

(

B
[0,x]
0,∗

)

= (y/(y−x))
pm

2

(4πx)
m
2

∫

Rm
exp

(

−py ‖z − x/ya‖2

4x(y − x)

)

· exp

(

(p − 1) ‖z‖2

4x

)

dz

= (y/(y−x))
pm

2

(4πx)
m
2

∫

Rm
exp

(

−
(

py

4x(y − x)
− (p − 1)

4x

)

‖z‖2
)

· exp
(

p
2(y−x)z · a − px

4y(y−x) ‖a‖2
)

dz

= (y/(y−x))
pm

2

(4πx)
m
2

∫

Rm
exp

(

−
(

p

4(y − x)
+

1

4x

)

‖z‖2
)

· exp
(

p
2(y−x)z · a − px

4y(y−x) ‖a‖2
)

dz

= (y/(y−x))
pm

2

(px/(y−x)+1)
m
2

· exp
(

px‖a‖2

4(y−x)

( p
(p−1)x+y − 1

y

)

)

.

We now have a uniform bound which allows us to pass to p → ∞ and conclude. �

We now slightly generalise the above, comparing the Brownian bridge in an interval in the
interior of its domain to Brownian motion.

Lemma 3.15. Fix x < y < z < w, m ∈ N and let W (·) be a rate two Brownian bridge on [x, w]

with endpoints a, b ∈ Rm with law B
[x,w]
a,b (·) on Ca,b([x, w]). Then the law of W (·) − W (y)

restricted to [y, z] is absolutely continuous with respect to that of a rate two Brownian motion with

law B
[y,z]
0,∗ (·) with Radon-Nikodym derivative for B

[y,z]
0,∗ -almost all ω in C0,∗([y, z]),

dB
[x,w]
a,b

|[y,z]

dB
[0,z−y]
0,∗

(ω) = ((w − x)/(w − x − z + y))
m
2 · exp

(

− (w−x)‖ω(z−y)−(z−y)/(w−x)a‖2

4(z−y)(w−x−z+y)

)

· exp
(

‖ω(z−y)‖2

4(z−y)

)

.

Moreover, we have that dB
[x,w]
a,b |[y,z]/ dB

[y,z]
0,∗ is in L∞(B

[y,z]
0,∗ ) with norm estimates

∥

∥

∥

∥

∥

dB
[x,w]
a,b

|[y,z]

dB
[y,z]
0,∗

∥

∥

∥

∥

∥

Lp

(

B
[y,z]
0,∗

)

= ((w−x)/(w−x−z+y))
m
2

(px/(w−x−z+y)+1)
m
2

· exp
(

(z−y)‖a‖2

4(w−x−z+y)

( p
(p−1)(z−y)+w−x − 1

w−x

)

)

for all p > 1 and letting p → ∞,
∥

∥

∥

∥

∥

∥

dB
[x,w]
a,b |[y,z]

dB
[y,z]
0,∗

∥

∥

∥

∥

∥

∥

L∞

(

B
[y,z]
0,∗

)

≤ ((w − x)/(w − x − z + y))
m
2 · exp

(

‖a − b‖2

4(w − x)

)

.

Proof. By translation, it suffices to prove the lemma for x = 0. Observe we can realise a Brownian
bridge W with endpoints a, b ∈ Rm on [0, w] using a Brownian motion B by performing an affine
shift and setting

W (·) = B[0,w](·) +
(·)
w

b +
w − ·

w
a.
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Thus, we observe that on [0, z − y], W (· + y) − W (y) has the law of m independent Brownian
bridges starting from 0 and

W (z) − W (y) = B(z) − B(y) − z − y

w
By +

z − y

w
a − z − y

w
b,

which has the distribution of a Gaussian vector having independent entries with mean
z−y

w a − z−y
w b and variance 2(z − y)(1 − z/w + y/w). Hence, we obtain the decomposition

W (· + z) − W (y) = (W (· + z) − W (y))[0,z−y] +
(·)

z − y
(W (z) − W (y))

on [0, z − y], where the terms on the right hand side are independent (zero mean and one can
check the covariance vanishes). Observe that if one were to replace (W (z) − W (y)) with an
independent m-dimensional Gaussian vector with coordinatewise independent entries with mean
zero and variance 2(z − y), one would recover the original Brownian motion; now, a
straight-forward computation shows that

dB
[0,w]
a,b |[y,z]

dB
[0,z−y]
0,∗

=
d(W (z) − W (y))

dN
, (3.4)

whence we derive the desired almost sure equality for the Radon-Nikodym derivative and conclude
the proof of the first part. For the remaining parts, one proceeds as in the previous lemma. �

We finally end with a standard result regarding the maximum of a rate two Brownian bridge
vanishing at its endpoints.

Lemma 3.16. Let T > 0 and consider a rate two Brownian bridge (Wt)t∈[0,T ] vanishing at both
endpoints, then there is a universal constant c > 0 such that for all a > 0,

P

(

max
0≤t≤T

|Wt| ≤ a

)

≥ c exp

(

−π2T

2a2

)

.

Proof. Observe that for a rate two Brownian motion (Bt)t≥0, one has that (Bt)t≥0
d
= (B′√

2t
)t≥0

where (B′
t)t≥0 is a standard Brownian motion. By Brownian scaling and the above, we thus

obtain the distributional identities

(Wt)t∈[0,T ]
d
= (Bt − tB1)t∈[0,T ]

d
= (B′√

2t
− tB′√

2
)t∈[0,T ]

d
= (2B′

t − 2tB′
1)t∈[0,T ]

d
= (2W ′

t)t∈[0,T ] ,

where (W ′
t)t∈[0,T ] is a standard Brownian bridge vanishing at both endpoint. Hence, by another

application of Brownian scaling, we have the distributional equality

max
0≤t≤T

|Wt| d
= 2

√
T max

0≤t≤1
|W̃t|

where W̃ is a standard (rate one) Brownian bridge vanishing at 0 and 1 and so it suffices to prove
the lower bound for a rate one Brownian bridge and T = 1. Recall that we can realise the
Brownian bridge as

W̃t = B′
t − tB′

1, t ∈ [0, 1]

where (B′
t)t∈[0,1] is a standard Brownian motion. Hence, we can estimate from below

P( max
0≤t≤1

|W̃t| ≤ a) ≥ P( max
0≤t≤1

|B′
t| ≤ a/2) (†)

Now, from [Fel91, p.342, eq. 1.1.8] one can express

P

(

sup
0<t<1

|B′
t| ≤ a

)

=
4

π

∑

n≥0

1

2n + 1
exp

(

−(2n + 1)2π2

8a2

)

sin
(2n + 1)π

2
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=
4

π

∑

n≥0

(−1)n 1

2n + 1
exp

(

−(2n + 1)2π2

8a2

)

, for all a > 0.

Observe that for sufficiently small a > 0, the dominant contribution comes from the first term,
whence we can estimate from below

P

(

sup
0<s<1

|B′
s| ≤ a

)

≥ c exp

(

− π2

8a2

)

for some c > 0, which we can trivially extend to all a > 0 (after possibly making c > 0 smaller).
Finally, observe that

P

(

max
0≤t≤T

|Wt| ≤ a

)

= P

(

max
0≤t≤1

|W̃t| ≤ a

2
√

T

)

≥ c exp

(

−π2T

2a2

)

,

concluding the proof. �

3.8. Airy line ensemble. Using the refined modulus of continuity estimates for the Airy line
ensemble in Proposition 3.10, one can obtain control over the fluctuations of the Airy last passage
values about the typical Brownian counterpart after some normalisation. This follows from
sub-additivity properties of last passage percolation and the Brownian bridge representation for
the Airy line ensemble as delineated in [DV21]. In the following theorem, to ease notation, we will
write for a < b and k ∈ N, the last passage percolation values of the Airy line ensemble to the first
line by

〈(a, k) → b〉 := A[(a, k) → (b, 1)] . (3.5)

Now, there are two regimes regarding the fluctuations of the value of the Airy line ensemble
LPP around its Brownian counterpart’s mean on compact intervals,

|〈(0, k) → x〉 − 2
√

2kx|
k1/2

> ǫ for ǫ > 0, k ≥ 1, x > 0 ,

in which we will be interested: namely when ǫ < k1/126 and when ǫ > Ox(1) ∨ k1/126. We will be
exploiting the bridge representation to study the former and concentration of measure plus
sub-Gaussian tails of the moduli of continuity of lines in the Airy line ensemble for the latter.
Also note that the parameters in the tail exponents were not optimised and so it may most likely
be possible to improve them. This is the content of the following theorem.

Theorem 3.17. Fix x > 0, and recall that 〈(0, k) → x〉 is the last passage value across the Airy

line ensemble A from line k at time 0 to line 1 at time x. Then for all ǫ < k1/126,

P

(

|〈(0, k) → x〉 − 2
√

2kx|
k1/2

> ǫ

)

≤ ck2
(

exp(−dǫ1/2k1/28) + exp
(

−dǫk1/126
))

,

for some positive possibly x-dependent c, d > 0. Alternatively, in the regime where ǫ > 4
√

2x, then

P

(

|〈(0, k) → x〉 − 2
√

2kx|
k1/2

> ǫ

)

≤ k exp

(

−d
ǫ2

k

)

k ≥ 1 ,

for some possibly x-dependent d > 0.

Proof of Theorem 3.17. We will essentially adapt the arguments from the proof of [DOV18,
Theorem 6.7] making use of the improved modulus of continuity estimates for the Airy line
ensemble from [Wu25], which simplify parts of the proof, paying close attention to tail
probabilities.
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First, consider the regime where ǫ > 4
√

2x, one estimates using Propositions 3.12, 3.3 and a
union bound,

P

(

|〈(0, k) → x〉 − 2
√

2kx|
k1/2

> ǫ

)

≤ P

(

|〈(0, k) → x〉| >
ǫ

2
k1/2

)

≤
k
∑

i=1

P

(

sup
r,r+θ∈[0,x]

|Ai(r) − Ai(r + θ)|√
θ log1/2(2x/θ)

>
ǫ

2xk1/2

)

.x k exp

(

−d
ǫ2

k

)

k ≥ 1 ,

for some positive constant d > 0.

In the remainder, set x = 1 for notational simplicity as the value of x plays no important role.
Further note that in all estimates the dependence of coefficients of tail bounds on x is continuous
so one can harmlessly take suprema of such bounds for x in compacts at the expense of some
weaker constants, keeping the functional form of the tails the same.

Also any δ-dependence on constants will be suppressed for ease of notation and constants may
change from line to line. Let B

k = B
k(1, ⌈k2/3+γ⌉, k−1/3−γ/4) be the bridge representation

induced the division of time {sr : r ∈ {1, . . . , ⌈k2/3+γ⌉}} and the graph

G2k = G2k(1, ⌈k2/3+γ⌉, k−1/3−γ/4).

Here γ ∈ (0, 1/3) is a parameter that we will optimize over later in the proof. By [DV21]Theorem
7.2, we can couple all the representations B

k with the Airy line ensemble A so that for some
universal constant d and all k ≥ 1

P
(

B
k|{1,...,k}×[0,1] 6= A|{1,...,k}×[0,1]

)

≤ ⌈k2/3+γ⌉e−dγkγ/12
. (3.6)

Hence it suffices to analyse the last passage time L(Bk) from (0, k) to (x, 1).

Step 1: Splitting up the paths. By representing each of the Brownian bridges used to
create B

k = (Bk,1, . . . ,Bk,k) as a Brownian motion minus a random linear term, we can write

Bk,i = Hk,i + Rk,i + Xk,i

Here the k-tuple Hk = (Hk,1, . . . , Hk,k) consists of k independent Brownian motions of variance 2
on [0, 1]. The functions Rk,i are piecewise linear with pieces defined on the time intervals [sr−1, sr]

for r ∈ {0, . . . , ⌈k2/3+γ⌉}, and the error term Xk,i is equal to zero except for on intervals [sr−1, sr]
where the vertex (i, r) is in a component of size greater than one in the graph G2k. On such
intervals, Xk,i is the difference between a Brownian bridge from 0 to 0 and a Brownian bridge
conditioned to avoid Ui,r − 1 other Brownian bridges with certain start and endpoints. Here Ui,r

is the size of the component of (i, r) in G2k and the two Brownian bridges used in the definition of
Xk,i are independent.

By [DOV18]Lemma 6.9 applied twice, we have that

L(Hk) + F (Rk) + F (Xk) ≤ L(Bk) ≤ L(Hk) + L(Rk) + L(Xk). (3.7)

By Theorem 2.5 in [DV21], the main term

L(Hk) = 2
√

2k + Ykk−1/6, (3.8)

where {Yk}k∈N is a sequence of random variables satisfying a tail bound

P(|Yk| > m) ≤ ce−dm3/2

for c, d not depending on m and k. To translate Theorem 2.5 in [DOV18] to a bound on last
passage values, we have used the preservation of last passage values under the melon operation.

Step 2: Bounding the piecewise linear term. First, we have the bound

|L(Rk)|, |F (Rk)| ≤ Mk,
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where Mk is the maximum absolute slope of any of the piecewise linear segments in Rk. The
slopes in Rk come from increments in the Airy line ensemble minus the increments of the
Brownian motions Hk on the grid points. Recalling that Sk(ℓ) = {1, . . . , k} × {1, . . . , ℓ},

ℓk = ⌈k2/3+γ⌉ and si = i/ℓk , i ∈ {0, · · · , ℓk}, we have the following upper bound for Mk:

⌈k2/3+γ⌉
[

max
(i,r)∈Sk(⌈k2/3+γ ⌉)

|Hk,i(sr) − Hk,i(sr−1)| + max
(i,r)∈Sk(⌈k2/3+γ⌉)

|Ai(sr) − Ai(sr−1)|
]

.

By a standard Gaussian bound on the first term and Proposition 3.12 for the second term, for
some d ∈ N we have that for all δ ∈ (0, 1/2 − 1/3 − γ/2)

P
(

Mk ≥ ǫk1/3+γ/2+δ
)

≤ ck⌈k2/3+γ⌉ exp
(

−dǫ2k2/3+γ+2δ
)

, k ≥ 1 , (3.9)

for some possibly δ-dependent c, d > 0.

Step 3: Bounding the large component error. To bound L(Xk) and F (Xk), we divide

{1, . . . , k} into n = ⌈k2/3+γ⌉ intervals

Ik,i =

{

⌊(i − 1)k

n
⌋ + 1, . . . , ⌊ ik

n
⌋
}

, i ∈ {1, . . . , n}.

This, and the division of time into the intervals [sr−1, sr] for r ∈ {1, . . . , n} breaks the line
ensemble Xk into n2 boxes. Each last passage path can meet at most 2n − 1 of these boxes. So we
have that

L(Xk) ≤ (2n − 1)Zk, (3.10)

where Zk is the maximal last passage value among all values that start and end in the same box
(including the boundary). Specifically,

Zk = max
(i,r)∈[1,n]2

max {Xk[(ℓ1, t1) → (ℓ2, t2)] : ℓ1, ℓ2 ∈ Ik,i, t1, t2 ∈ [sr−1, sr]} .

We have that Zk ≤ NkDk, where

Nk = max
(i,r)∈[1,n]2

card
{

ℓ ∈ Ik,i : Xk,ℓ|[sr−1,sr] 6= 0
}

and

Dk = max

{

|Xk,ℓ(t) − Xk,ℓ(m)| : ℓ ∈ [1, k], t, m ∈ [sr−1, sr] for some r ∈ {1, . . . , n}
}

and card denotes the cardinality of a (finite) set, i.e. the number of elements it contains.

That is, Nk is the maximum number of non-zero line segments in any box, and Dk is the
maximum increment over any line segment in a box. Since Xk,ℓ = Bk,ℓ − Hk,ℓ − Rk,ℓ, we can
bound Dk in terms of the deviations of the other paths. To bound the deviation of Rk,ℓ, we use
the bound on Mk above. The deviation of Hk,ℓ can be bounded with standard bounds on

Gaussian random variables. On the event where B
k|{1,...,k}×[0,1] = A|{1,...,k}×[0,1], we can bound

the deviation of Bk,ℓ using Proposition 3.12. Thus, we have for all δ > 0

P
(

Dk > ǫk−1/3−γ/2+δ , B
k = A|{1,...,k}×[0,1]

)

≤ ck⌈k2/3+γ⌉ exp
(

−dǫ2k2/3+γ+2δ
)

, k ≥ 1

(3.11)
for some d > 0. Combining equations (3.11) and (3.6) gives for all δ > 0

P
(

Dk > ǫk−1/3−γ/2+δ
)

≤ ck⌈k2/3+γ⌉ exp
(

−dǫ2k2/3+γ+2δ + e−dγkγ/12
)

, k ≥ 1 . (3.12)

The quantity Nk is equal to the maximum number of edges in the graph Gk in a region of the
form Ik,i × {r} for some r ∈ {1, . . . , n}. This can be bounded by using [DOV18, Proposition 6.7]

and a union bound, which yields for all δ > 0, ǫ < k1/6−γ/2−δ

P
(

Nk > ǫk1/3−γk−3γ/4kδ
)

≤ c⌈k2/3+γ⌉ exp(−dǫkδ) ,
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for some constant d > 0. Combining this with the bound in (3.10) and (3.12) implies that for all

δ > 0, ǫ < k1/6−γ/2−δ

P
(

L(Xk) > ǫk2/3−5γ/4kδ
)

≤ ck⌈k2/3+γ⌉

×
(

exp
(

−dǫk2/3+γ+δ/2
)

+ exp(−dǫ1/2kδ/2) + e−dγkγ/12
)

, k ≥ 1 .

(3.13)

We can symmetrically bound F (Xk).

Step 4: Putting it all together. By combining the inequalities (3.7), (3.8), (3.9) and (3.13),

we get that for all δ > 0 and ǫ < k1/6−γ/2−δ

P
(

|L(Bk) − 2
√

2k| > ǫk2/3−5γ/4+δ + ǫk1/3+γ/2+δ
)

≤ ck⌈k2/3+γ⌉
(

exp
(

−dǫk2/3+γ+δ/2
)

+ exp(−dǫ1/2kδ/2) + e−dγkγ/12
)

for positive constants c, d. Taking γ = 4/21, δ = 1/14 − 1/126 completes the proof of the first
regime of ‘small’ ǫ. �

4. Geometry of semi-infinite geodesics in the Airy line ensemble: deviation and

coalescence

In this section, we study geodesic geometry in the Airy line ensemble. In Theorem 4.5, we
obtain exponentially stretched tail bounds on intercepts of semi-infinite geodesics. Moreover, in
Theorem 4.14, we also obtain uniform coalescence time tail bounds for semi-infinite geodesics
with ‘speeds’ in some ‘meagre’ set, see Definition 4.6. We start with providing the concentration
result for semi-infinite geodesic intercepts in the Airy line ensemble.

4.1. Tail bounds on geodesic intercepts. Recall Theorem 3.9 which gives the Airy line
ensemble as a scaling limit of rescaled Brownian melons. With this in mind, we will start in the
prelimiting environment and obtain some more refined structural properties of the prelimiting
jump times of geodesics on such melons. By the weak convergence already established, they easily
translate to the limiting objects.

Now, using the notation established in [DOV18], for n ∈ N, let

x = 2xn−1/3 , and ŷ = 1 + 2yn−1/3 .

Furthermore, let γn := π{x → ŷ}n be the rightmost last passage path between x and ŷ in the
melon W Bn. For n ∈ N and k ∈ {1, 2, . . . , n}, let Zn

k (x, y) be the supremum of w so that (w, k)
lies along γn. Then, by [DOV18], Lemma 4.1, it follows that for each k ∈ N, the sequence
{Zn

k (x, y)}n is tight. Let Zk(x, y) denote the subsequential limits of {Zn
k (x, y)}n for any x, y.

Lemma 4.1. Let K be a compact countable subset of (0, ∞) × R. Then for any ǫ > 0

P



 sup
(x,y)∈K

∣

∣

∣

∣

∣

∣

Zk(x, y) +

√

k

2x

∣

∣

∣

∣

∣

∣

≥ ǫ
√

k





≤ CK(ǫ2 ∨ 1/ǫ)

(

sup
x∈K

P





∣

∣

∣A[(0, k) → (x, 1)] − 2
√

2kx
∣

∣

∣

k1/2
> ǫ





+ exp



−d
ǫ3/4k3/4

(

sup(x,y)∈K(|x| + |y| + 1)
)2





)

, k ≥ 1 .

for some universal d > 0 and K-dependent CK > 0.
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Proof. First, fix x, y ∈ K. Now, rescale by n1/6 and centre so that the triangle inequality

{x̄ → (ẑ, k)} + {(ẑ, k) → ŷ} ≤ {x̄ → ŷ}
reads

F n
k (x, z) + Gn

k (z, y) ≤ Hn(x, y) (4.1)

with

Hn(x, y) = n1/6{x̄ → ŷ} − 2n2/3 − 2(y − x)n1/3,

F n
k (x, z) = n1/6({x̄ → (ẑ, k)} − W n

k (ẑ)) + 2xn1/3,

Gn
k(z, y) = n1/6(W n

k (ẑ) + {(ẑ, k) → ŷ}) − 2yn1/3 − 2n2/3.

The basic proof strategy for bounding Zn
k (x, y) is as follows. On the one hand,

F n
k (x, Zn

k (x, y)) + Gn
k (Zn

k (x, y), y) = Hn(x, y)

We will show that for every ǫ ∈ (0, 1) we have

sup
z: |z+

√
k/(2x)|>ǫ

√
k

F n
k (x, z) + Gn

k (z, y) ≤ −ǫ2
√

kx/2 + o(
√

k). (4.2)

By [DOV18, Lemma 3.3], F n
k (x, ·) is monotonically increasing and Gn

k(·, y) is monotonically
decreasing. We can use this monotonicity to bound the left hand side of (4.2) by a supremum

over a finite set. Let A = (12ǫ2)−1Z ∩ [1/4, 2], and for z ∈ [−n1/3 + x, y], define

⌊z⌋n,k = max{w ∈ −
√

k/xA ∪ {x − n1/3} : w < z} and

⌈z⌉n,k = min{w ∈ −
√

k/xA ∪ {y} : w > z}.

We also set ⌊x − n1/3⌋n,k = x − n1/3 and ⌈y⌉n,k = y. The monotonicity of F n
k (x, ·) and Gn

k(·, y)
implies that the left hand side of (4.2) is bounded above by

sup
z: |z+

√
k/(2x)|>ǫ

√
k

F n
k (x, ⌈z⌉n,k) + Gn

k (⌊z⌋n,k, y) . (4.3)

Notice that the number of terms is uniformly bounded in n and k (∗), so it is enough to control
the terms individually. There are three cases to consider, namely,















F n
k (x, zk,a) + Gn

k (x − n1/3, y) ≤ −ǫ2
√

kx/2 + o(
√

k)

F n
k (x, zk,a) + Gn

k (zk,a, y) ≤ −ǫ2
√

kx/2 + o(
√

k)

F n
k (x, y) + Gn

k (zk,a, y) ≤ −ǫ2
√

kx/2 + o(
√

k) ,

(4.4)

for every fixed a ∈ A, with zk,a = −a
√

k/x.

To prove (4.4), we establish pointwise bounds on F n
k and Gn

k . [DOV18, Proposition 6.1] gives
that for a fixed a > 0 we have

F n
k (x, zk,a) ≤ 2

√
kx(

√
2 − a) + R1,a

n,k .

[DOV18, Proposition 6.1] also yields the bound

F n
k (x, y) = 2

√
2kx + R2

n,k . (4.5)

Observe that Theorem 3.17, [DOV18, Proposition 6.1] and weak convergence give the following
uniform bounds with respect to y for any fixed ǫ > 0

lim sup
n→∞

(

P(R1,a
n,k > ǫ

√
k) + P(R2

n,k) > ǫ
√

k
)

≤ 2P

(

|A[(0, k) → (x, 1)] − 2
√

2kx|
k1/2

> ǫ

)
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The triangle inequality (4.1) with x′ = x/(2a2) gives

Gn
k(zk,a, y) ≤ Hn(x′, y) − F n

k (x′, zk,a). (4.6)

Now, Hn(x′, y) is equal to a rescaled and shifted Brownian last passage value by Proposition
[DOV18, Proposition 4.1]. Therefore Theorem [DOV18, Theorem 2.5] gives bounds on single

Brownian last passage values, it is tight in n and hence Hn(x′, y) = o(
√

k). In particular, making
this more quantitative gives for any ǫ > 0

lim sup
n→∞

P

( |Hn(x, y)|√
k

≥ ǫ

)

. exp

(

−d
ǫ3/8k3/4

(|x − y| ∨ 1)3/2

)

,

for some universal d > 0.

Moreover, [DOV18, Proposition 6.1] gives that

F n
k (x′, zk,a) = 2

√
2kx′ + 2zk,ax′ + o(

√
k) =

√
kx

a
+ o(

√
k)

and so

Gn
k (zk,a, y) ≤ −

√
kx

a
+ R3,a

n,k.

where the following uniform bounds wrt y for any fixed ǫ > 0 are satisfied

lim sup
n→∞

P(R3,a
n,k > ǫ

√
k) ≤ P

(

|A[(0, k) → (x, 1)] − 2
√

2kx|
k1/2

> ǫ

)

,

for any δ ∈ (0, 1/14). We also have the bound

Gn
k(x − n1/3, y) ≤ Hn(0, y) − F n

k (0, x − n1/3) = Hn(0, y) = o(
√

k).

The first equality here follows from the fact that F n
k (0, ·) = 0, and the second equality again

follows from [DOV18, Theorem 2.5].

Having now established the bound in (4.4), one obtains for any δ ∈ (0, 1/14) by a union bound

and the convergence in distribution of Zn
k (x, y)

d→ Zk(x, y) , n → ∞,

P





∣

∣

∣

∣

∣

∣

Zk(x, y) +

√

k

2x

∣

∣

∣

∣

∣

∣

≥ ǫ
√

k



 ≤ lim inf
n→∞

P(|Zn
k (x, y) +

√

k/2x| ≥
√

k/2x)

≤ (12ǫ2 ∨ 1) · lim inf
n→∞

P

(

Hn(x, y) ≤ −ǫ2
√

kx/2 + max
a∈A

3
∑

i=1

|Ri,a
n,k|
)

≤ (12ǫ2 ∨ 1) · lim inf
n→∞

∑

a∈A

P
(

|Hn(x0, y0)| + |R1,a
n,k| + |R2

n,k| + |R3,a
n,k| ≥ ǫ2√

x/2
√

k
)

≤ CK(ǫ2 ∨ 1)

(

P

(

|A[(0, k) → (x, 1)] − 2
√

2kx|
k1/2

> ǫ

)

+ exp

(

−d
(ǫ3/4)k3/4

(sup(x,y)∈K(|x| + |y| + 1)2

))

,

for some CK , x0, y0, depending on K. Now, to obtain the uniform bound, observe that by the
monotonicity of Zk(·, ·) in each of its of its arguments and the continuity of 1/

√
2·, it suffices to

fix any ǫ cover of K with at most ⌈1/ǫ⌉ elements and use the pointwise estimates for fixed
x, y ∈ K at the expense of the ⌈1/ǫ⌉ term that comes from a union bound. �

We now introduce the coupling between the Airy sheet and the Airy line ensemble last passage
values quoted from [DOV18, Definition 1.2], that will be used throughout the paper.
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Definition 4.2. (Airy sheet coupling) The Airy sheet S(·, ·) = L(·, 0; ·, 1) can be coupled with the
(parabolic) Airy line ensemble A so that S(0, ·) = A1(·) and almost surely for all
(x, y, z) ∈ K ⊆ R+ × R2 countable and dense, there exists a random integer Kx,y,z such that for
all k ≥ Kx,y,z

A[xk → (z, 1)] − A[xk → (y, 1)] = S(x, z) − S(x, y) ,

where xk = (−
√

k/2x, k).

We shall use this coupling of the Airy sheet throughout the paper. For x ≤ y ∈ R and ℓ ∈ N,
we shall denote the rightmost geodesic between (x, ℓ) and (y, 1) in the Airy line ensemble A by
π[(x, ℓ) → y]. Next we define the infinite geodesics in the Airy line ensemble.

Definition 4.3. For any x ∈ R+ and y ∈ R with xk = (−
√

k/2x, k), we define the geodesic
π[x → y] as the almost sure pointwise limit of π[xk → y] as k → ∞, whenever the limit exists. We
define the length of the geodesic π[x → y] as S(x, y). We call the variable x the ‘speed’ of the
geodesic π[x → y].

Remark. The fact that these limits exist almost surely for all x, y in a countable dense set of
R+ × R2 is the content of [SV21, Lemma 3.4].

In the absolute continuity paper of [SV21], the authors obtain, using a coupling with the Airy
sheet, the following characterisation of the Airy sheet in terms of the intercept of semi-infinite
geodesics with the vertical axis {x = 0} in the Airy line ensemble. For an illustration, see Figure 5.

Figure 5. Above is displayed the point (0, L0) at which the last passage path
π[x′ → y′] on the Airy line ensemble A = (A1, A2, · · · ) (purple) meets with the axis
{x = 0}, where y′ > 1. Here L0 = 3 and the first four lines of A are shown. The
last passage path π[x′ → y′] is defined in Definition 3.3 in [SV21].

Lemma 4.4. Let x0 > 1 and y0 > 1 and K ⊆ R be a countable dense set. Let

L0 = π[x′
0 → y′

0](0) ,

for some x′
0, y′

0 ∈ K with x′
0 ≥ x0 and y′

0 ≥ y0. Then almost surely for all x ∈ [1, x0] ∩ K and all
y ∈ [1, y0],

S(x, y) = max
1≤ℓ≤L0

(A[x → (0, ℓ)] + A[(0, ℓ) → (y, 1)]) .
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Thus, obtaining good control over L0 should translate to control over Airy sheet and hence the
KPZ fixed point, owing to its variational characterisation as a stochastic semi-group using the
Airy sheet as an evolution (random) kernel. The structure of jump times of (semi-infinite)
geodesics on the Airy line ensemble and Lemma 4.1 give the following Theorem which is the main
result of this subsection.

Theorem 4.5. For any x′
0, y′

0, there exists a d > 0 such that the semi-infinite geodesic intercept
L0 = π[x′

0 → y′
0] as given in the statement of Lemma 4.4 satisfies the tail bounds

sup
k∈N

exp(dk1/126) · P(L0 ≥ k) < ∞ .

for some possibly x′
0, y′

0-dependent constant d > 0.

Proof. First observe that for any k ∈ N, by the Skorokhod coupling in [DOV18, p.43], the almost
sure pointwise limits Zk(x′

0, y′
0) of the jump times Zn

k (x′
0, y′

0) correspond to the jump times of the

semi-infinite geodesic π[x′
0 → y′

0]. Thus, by Lemma 4.1 for k ≥ 1 and ǫ = 1/
√

2x′
0,

P(L0 ≥ k) = P(Zm(x′
0, y′

0) ≥ 0) ≤ lim inf
n→∞

P(Zn
k (x′

0, y′
0) ≥ 0)

≤ P

(∣

∣

∣

∣

∣

Zk(x′
0, y′

0) +

√

k

2x′
0

∣

∣

∣

∣

∣

≥ ǫ
√

k

)

≤ Cx′
0,y′

0

(

P

(

|A[(0, k) → (x, 1)] − 2
√

2kx|
k1/2

> ǫ

)

+ exp

(

−d
ǫ3/4k3/4

(|x0| + |y0| + 1)2

))

Thrm3.17
≤ ck2

(

exp(−dǫ1/2k1/28) + exp
(

−dǫk1/126
)

+ exp

(

−d
ǫ3/4k3/4

(|x0| + |y0| + 1)2

))

,

for some Cx′
0,y′

0
all 1/

√

2x′
0 < k1/126, whence the result follows. �

4.2. Uniform tail bounds on coalescence depths with respect to ‘meagre’ data. The
following propositions aim to obtain uniform control over the likelihood of geodesic
non-coalescence on bounded intervals, which will translate into a uniform control of coalescence
depths for semi-infinite geodesics, provided the semi-infinite geodesic ‘speeds’ are concentrated, or
‘meagre’ in a sense to be made precise below.

We start by making the following definition of a ‘meagre’ subset of Rn, n ≥ 1 that is sufficiently
rich at ‘all scales’.

Definition 4.6. (meagreness criterion) Fix n ∈ N, M > 0, r > 0 and let A be a bounded subset of
Rn, then A is called (M, r)-meagre if

lim sup
ǫ→0

N(ǫ)

exp
(

logr 1/ǫ
) < M ,

where N(ǫ) denotes the infimum of all cardinalities of ǫ-covers of A. For r > 0, a set is called
(∞−, r)-meagre if it is (M, r)-meagre for all M > 0.

Examples of (∞−, 1/σ)-meagre sets for σ > 1 include finite sets and finite unions of rapidly
convergent sequences, for instance {1/enσ

: n ∈ N}. A class of less trivial examples of compact,

perfect and nowhere dense (hence uncountable) (∞−, 1/σ)-meagre sets for σ > 1 include
generalised Cantor sets where at each stage from each interval, a ‘middle third’ interval is
removed, see Figure 6 for an illustration of this process. Thus, at stage n ≥ 1, the set is contained



QUANTITATIVE BROWNIAN REGULARITY OF THE KPZ FIXED POINT WITH MEAGRE INITIAL DATA 25

ǫ1

ǫ2 ǫ2

ǫ3 ǫ3 ǫ3 ǫ3

Figure 6. Cartoon representation of construction of ‘thin’ Cantor set.

in 2n many intervals of some finite length ǫn (monotone in n ≥ 1) small enough that

lim supn→∞ 2n/ exp(log1/σ(1/ǫn)) < ∞. One can then control

lim sup
ǫ→0

N(ǫ)

exp
(

log1/σ(1/ǫ)
)

≤ 2 lim sup
n→∞

2n

exp
(

log1/σ(1/ǫn)
)

< ∞ .

Moreover, the set of (∞−, 1/σ)-meagre sets for σ > 1 is stable under finite unions and
arbitrary intersections and under composition by Lipschitz maps.

Definition 4.7. (Set Projection) Let X, Y be sets and consider K ⊆ X × Y . Define the
projection ‘onto the first coordinate’ Pr(K)1 by

Pr(K)1 := {x ∈ X : ∃y ∈ Y , (x, y) ∈ K} .

In the following lemma, we refine Lemma 7.2 in [DOV18] to provide uniform control on
no-coalescence of geodesics with arbitrarily close left endpoints in the prelimiting melon
environments in 3.9. Note the uniformity concerns the midpoints of the geodesic endpoints which
are in a meagre set.

Lemma 4.8. [DOV18](Lemma 7.2) Let K ⊆ R+ × R2
> be compact and countable such that the

projection of K onto its first coordinate Pr(K)1, has is (M, r)-meagre for some M > 1 and
r < 1/882. Then

lim
ǫ→0+

lim sup
n→∞

P

(

⋃

(x,y1,y2)∈K

π{x − ǭ, ŷ1} and π{x + ǭ, ŷ2} are disjoint

)

= 0. (4.7)

Proof. Note we can take some compact K ′ ⊆ Q that contains all the y1, y2 that appear in K with
diam(K ′) ≤ diam(K). By the monotonicity of last passage paths, the inclusion

⋃

(x,y1,y2)∈K

{π{x − ǭ, ŷ1} and π{x + ǭ, ŷ2} are disjoint}

⊆
⋃

x

{π{x − ǭ, înf
x∈K

|x|′} and π{x + ǭ, ̂sup
x∈K

|x|′} are disjoint} .

Thus, it suffices to show that

lim
ǫ→0+

lim sup
n→∞

P

(

⋃

x

{π{x − ǭ, înf
x∈K

|x|′} and π{x + ǭ, ̂sup
x∈K

|x|′} are disjoint}
)

= 0 .
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In fact, we will prove a stronger statement, for x ∈ Pr(K)1, with the leftmost last passage path

π−{x − ǭ, înf
x∈K

|x|′} replacing one of the rightmost paths π{x − ǭ, înf
x∈K

|x|′}. Disjointness of

π{x − ǭ, înf
x∈K

|x|′} and π{x + ǭ, ̂sup
x∈K

|x|′} implies disjointness of π−{x − ǭ, înf
x∈K

|x|′} and

π{x + ǭ, ̂sup
x∈K

|x|′} by monotonicity.

By Lemma 4.5 in [DOV18], disjointness of the paths π−{x − ǭ, înf
x∈K

|x|′} and π{x + ǭ, ̂sup
x∈K

|x|′} is

equivalent to disjointness of the original Brownian last passage paths π−[x − ǭ, înf
x∈K

|x|′] and

π[x + ǭ, ̂sup
x∈K

|x|′]. Here π−[x − ǭ, înf
x∈K

|x|′] is the leftmost last passage path in Bn from x − ǭ to

înf
x∈K

|x|′. Hence the probability in (4.7) is bounded above by

P





⋃

x∈Pr(K)1

π−[x − ǭ, înf
x∈K

|x|′] and π[x + ǭ, ̂sup
x∈K

|x|′] are disjoint



 . (4.8)

By time-reversal symmetry of the increments of Brownian motion under the map t 7→ 1 − t the
probability in (4.8) equals

P

(

⋃

x

{π−[−sup
x∈K

|x|′, 1 − x − ǭ] and π[− inf
x∈K

|x|′, 1 − x + ǭ] are disjoint}
)

. (4.9)

Now, let N(ǫ) be a family N(ǫ) of neighbourhoods in R that cover Pr(K)1 where each
neighbourhood has diameter bounded above by ǫ. Then, we can estimate by a union bound

P

(

⋃

x∈Pr(K)1

{π−[−sup
x∈K

|x|′, 1 − x − ǭ] and π[− inf
x∈K

|x|′, 1 − x + ǭ] are disjoint}
)

(4.10)

≤
∑

U∈N(ǫ)

P

(

⋃

x∈U

{π−[−sup
x∈K

|x|′, 1 − x − ǭ] and π[− inf
x∈K

|x|′, 1 − x + ǭ] are disjoint}
)

. (4.11)

Now, fixing such U ∈ N(ǫ), observe that by translation invariance and Brownian scaling, the

probability (4.9) remains unchanged if the points −sup
x∈K

|x|′, 1 − x − ǭ, − inf
x∈K

|x|′, 1 − supx∈U x + ǭ

are replaced by their images under any linear function L(t) = at + b for some a > 0, b ∈ R. In
particular, for each n we may choose the linear function L = Ln,ǫ sending

−sup
x∈K

|x|′ 7→ 2(sup
x∈K

|x|′ − inf
x∈K

|x|′) and 1 − supx∈U x̄ + ǭ 7→ 1. For t ∈ [−1, 2], we have

Ln,ǫ(t) = (1 − 2sup
x∈K

|x|′ + inf
x∈K

|x|′ + sup
x∈U

x̄ − ǭ)t + 2sup
x∈K

|x|′ − inf
x∈K

|x|′ + O(n−2/3).

Therefore for all large enough n, we have for all x ∈ Pr(K)1, the projection of K onto its first
co-odrinate,

Ln,ǫ(− inf
x∈K

|x|′) ≥ 2(sup
x∈K

|x|′ − inf
x∈K

|x|′) + O(n−2/3) ≥ 0, (4.12)

Ln,ǫ(1 − x̄ − ǭ) ≥ 1 − 2ǭ + O(n−2/3) ≥ 1 − 3ǭ, x ∈ U . (4.13)

and
Ln,ǫ(1 − x̄ + ǭ) ≤ 1 + ǭ + O(n−2/3) ≤ 1 + 2ǭ , x ∈ U .
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After translating back to melon paths we get that the probability in (4.9) is equal to

P

(

⋃

x∈U

π−{Ln,ǫ(−sup
x∈K

|x|′), Ln,ǫ(1 − x̄ − ǭ)} and π{Ln,ǫ(− inf
x∈K

|x|′), Ln,ǫ(1 − x̄ + ǭ)} are disjoint

)

.

By monotonicity of last passage paths, [DOV18, Lemma 3.6], and (4.12), this is bounded above by

P
(

π−{0, 1 − 3ǭ} and π{2diam(K), ǫ̂} are disjoint
)

(4.14)

for n large enough. Now, the path π−{0, 1 − 3ǭ} starts at zero and therefore simply follows the

top line in the melon, so the paths π−{0, 1 − 3ǭ} and π{2diam(K), ǫ̂} are disjoint if and only if

π{2diam(K), ǫ̂} jumps up to line 1 after time 1 − 3ǭ. This jump time is Ẑn
1 (2diam(K), ǫ), so

(4.14) is equal to
P
(

Zn
1 (2diam(K), ǫ) ≥ −3ǫ

)

.

Thus, a union bound and the above gives

lim inf
n→∞

(4.10) ≤ lim sup
n→∞

|N(ǫ)|P
(

Zn
1 (2diam(K), ǫ) ≥ −3ǫ

)

.

≤ Cdiam(K)M exp
(

−ddiam(K) log1/882−r(1/ǫ)
)

ǫ→0−→ 0 ,

for some Cdiam(K), ddiam(K) > 0, concluding the proof. �

As a corollary, we obtain the following tail bounds on a random threshold ǫ > 0 which ensures
that any two geodesics with endpoints closer than ǫ meet, uniformly over points in a meagre set.

Corollary 4.9. Let K ⊆ Q+ × Q2 compact. Fix δ ∈ (0, 1/14) be compact such that the projection
of K onto its first coordinate Pr(K)1, has is (M, r)-meagre for some M > 1 and r < 1/882.
Then, there exists a random dyadic valued random variable ǫ such that almost surely, for all
triples (x, y, z) ∈ K,

π{x − ǫ → ŷ}n and π{x + ǫ → ẑ}n

are not disjoint for all large enough n. Furthermore, Note that by the proof of Lemma 4.8, one
obtains the following for ǫ0 ∈ (0, 1)

P(ǫ < ǫ0) ≤ CKM exp
(

−dK log1/882−r(1/ǫ0)
)

for some CK , dK > 0.

Now, Lemma 4.8 allows us to strengthen the coupling in (points 2., 3., 4. of the itemized list in
page 37 of [DOV18]) to the following. Fix K ⊆ R+ × R2 compact and countable. By Skorohod
representation theorem and Lemma 4.8, there exists a coupling of the process W Bn and A and a
subsequence, such that along that subsequence, almost surely

1. The melon W Bn in the scaling in Theorem 3.9 converges to the Airy line ensemble A
uniformly on compact sets in Z × R.

2. We have for all (x, y) ∈ Pr(K)1,2 ⊆ R+ × R,

Zn
k (x, y) → Zk(x, y) for all k ∈ N.

Moreover, as k → ∞,

Zk(x, y)/
√

k → −1/
√

2x .

3. There exist random ǫ ∈ (0, 1) ∩ Pr(K)1 such that for every triple (x, y, z) ∈ K ⊆ with
Pr(K)1 being (M, r)-meagre for some M > 1, r < 1/882 with y ≤ z

π{x − ǫ → ŷ}n and π{x + ǫ → ẑ}n

are not disjoint for all large enough n.
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Combining the above, we obtain the uniform coalescence of semi-infinite geodesics on the Airy
line ensemble starting from any fixed level with the ones starting from the top. Crucially, we take
their speeds to be contained in a meagre set. Note individual coalescence depths (and times) are
always finite due to [SV21]. But first we make an important definition, making precise what we
mean by ‘geodesic coalescence depth’.

Definition 4.10. (Geodesic coalescence depth) Fix x ∈ (0, ∞) and ℓ ∈ N. Then, with the
π-notation as in Definition 4.3, define the geodesic coalescence depth Kx,ℓ ∈ N as

Kx,ℓ := inf

{

k ≥ 1 : π
[

x → (0, 1))
]

(s) = π
[

x → (0, ℓ))
]

(s), ∀s ≤ −
√

k/(2x)

}

.

We now prove that the coalescence depths of semi-infinite geodesics with speeds that are
concentrated in an appropriately meagre set are uniformly bounded.

Proposition 4.11. Let K ⊆ R+ × R2
> be compact and countable with Pr(K)1 ⊂ [1, ∞)

(M, r)-meagre for some M > 1, r < 1/882 and let ℓ ∈ N. Then, with Kx,ℓ as in Definition 4.10,
one has for fixed ℓ ∈ N

sup
x∈Pr(K)1

Kx,ℓ < +∞ , a.s.

Proof. Then we define π[x, y] : (−∞, y] → Z as the non-increasing cadlag function given by

π[x, y](t) = min{k ∈ N : Zk+1(x, y) ≤ t}
for all t ∈ (−∞, y]. Thus, Zk(x, y) is the supremum of w so that (w, k) lies along π[x, y]. The path
π[x, y] is an almost sure pointwise limit of γn over the subsequence. Moreover, Property 1 above
guarantees that π[x, y] is a rightmost last passage path when restricted to any compact interval.

Now fix any (x, y, z) ∈ K, y < z as in the statement of Proposition 4.11. Let ǫ > 0 be as in
Property 3. above, that is, π{x − ǫ → ŷ}n and π{x + ǫ → ŷ}n are not disjoint for all large enough
n. Observe that from Lemma 4.1, one has has the jump times of semi-infinite geodesics for
(x, y) ∈ Pr(K)1,2 satisfy

sup
(x,y)∈K

∣

∣

∣

∣

∣

Zℓ(x, y)√
ℓ

+

√

1

2x

∣

∣

∣

∣

∣

ℓ→∞−→ 0 a.s. .

This means that there exists a random N ∈ N such that

−
√

k/2x ∈ (Zk(x − ǫ, y), Zk(x + ǫ, z)) ,

for all (x, y, z) ∈ K, k ≥ N .

Claim: supx∈Pr(K)1
Kx,ℓ ≤ N .

First recall from [SV21, Lemma 3.4] that for any x ∈ Pr(K)1, y < z, (y, z) ∈ Pr(K)2,3, almost
surely there exists a random T ≤ y ∈ R (depending on x, y, z) such that

π[x → y](T ) = π[x → z](T ) = π[xk → y](T ) = π[xk → z](T ) , (4.15)

for all k ≥ N . That is, the paths π[xk → y], π[xk → z], π[x → y] and π[x → z] intersect for all
large k. Moreover, for all t ≥ T and k ≥ N ,

π[x → y](t) = π[xk → y](t) and π[x → z](t) = π[xk → z](t) .

Finally let the common value in (4.15) be denoted by d(T ).

Indeed, observe that π[x, y] and π[xk → y] restricted to [T, y] are both rightmost geodesics
between (T, d(T )) and (y, 1). Hence for all t ≥ T and k ≥ K,

π[x, y](t) = π[xk → y](t) and π[x, z](t) = π[xk → z](t) . (4.16)
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Next we claim that for (x, y) ∈ Pr(K)1,2, almost surely for all r ∈ Z; r < y, there exists a
random K ∈ N (depending on x, y, r) such that for all t ∈ [r, y] and all k ≥ N ,

π[x, y](t) = π[xk → y](t) .

Indeed, by (4.16) with x ∈ Q+ and r < y, we have that there exists a random T ≤ r and K ∈ N
such that for all t ∈ [T, y] and all k ≥ K,

π[x, y](t) = π[xk → y](t) .

Since T ≤ r and [r, y] ⊆ [T, y], the claim follows.

Fix any x ∈ Pr(K)1, ℓ ≥ 1. Using [SV21, Lemma 3.7], we get a random Yℓ ∈ Pr(K)1 such that
Zℓ(x, Y ) > 0 almost surely. More precisely, we can take

Yℓ = min{n ∈ N : Zℓ(inf Pr(K)1, n) > 0} < +∞ a.s. . (4.17)

Moreover, this can be done uniformly over x ∈ Pr(K)1 by the monotonicity of the jump times
Zℓ(·, ·). by the above argument, we have that there exist (T, d(T )) such that almost surely for all
k ≥ N , the paths π[x → 0], π[x → Y ], π[xk → 0] and π[xk → Y ] intersect at (T, d(T )). Since
T ≤ 0, and Zℓ(x, Y ) > 0,

d(T ) > ℓ .

Since
Zℓ(x, 0) ≤ 0 < Zℓ(x, Y ) ,

by ordering of geodesics, for all k ≥ N , π[xk → (0, ℓ)] also passes through (T, d(T )). Thus for all
k ≥ N ,

A[xk → (0, ℓ)] − A[xk → (0, 1)] = A[(T, d(T )) → (0, ℓ)] − A[(T, d(T )) → (0, 1)] .

Hence we establish the uniform upper bound on the coalescence depths Kx,ℓ for x ∈ Pr(K)1. �

Proposition 4.11 gives a roadmap for obtaining tails of the coalescence depths of semi-infinite
geodesics by localising on a series of favourable events that depend on jump times thereof, leading
to Theorem 4.14. But before we proceed with the proof of Theorem 4.14, we start with some
preliminary results that control these favourable events.

In particular, having refined the fluctuations of infinite-geodesic jump times around their
‘typical’ parabolic values, we are in a position to prove that the last jump time of semi-infinite
geodesics unlikely to be very small. First we need to obtain a last jump time anti-concentration
result for Brownian last passage percolation, which is the content of the following lemma.

Lemma 4.12. Fix m ∈ N, B1, B2, · · · , Bm independent rate two Brownian motions starting from
the origin, ǫ ∈ (0, 1/2) and consider the events

Aǫ,m := {Last jump time of B[(0, m) → (1, 1)] ≥ −ǫ} .

We then have the bound
P(Aǫ,m) ≤ cedm2 log mǫ1/4 ,

for universal c, d > 0.

Proof. Observe that by the metric composition law for LPP, the last jump time Zm
1 is the a.s.

unique maximiser of

A(z) = W (B2:m)m−1
1 (z) + B1(1) − B1(z) , z ∈ [0, 1] ,

where W (B2:m)m−1 (≡ W Bm−1 for short) is a Brownian m − 1-melon and B′ an independent
Brownian motion. Thus, we can estimate

P(Aǫ,m) ≤ P
(

argmaxz∈[1/2,1]

(

W Bm−1(z) + B1(1) − B1(z)
)

≥ 1 − ǫ
)

.
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Now, by [TS, Proposition 4.1] and Theorem 3.7, the law of W Bm−1(·) restricted to [1/2, 1] is
absolutely continuous with respect to that of a standard Brownian motion starting from 0
restricted to [1/2, 1]. Furthermore, one has the norm estimates of the Radon-Nikodym derivative
of W Bm−1 with respect to the Wiener measure restricted to [1/2, 1] is bounded above by

∥

∥

∥

∥

∥

dLaw W Bm−1

dµ|[ℓ,r]

∥

∥

∥

∥

∥

L2(µ|[1/2,1])

= O(edm2 log m) .

Thus, using Cauchy-Schwarz, we have

P(Aǫ,m) ≤ P
(

argmaxz∈[1/2,1]

(

B̃(z) − B(z)
)

≥ 1 − ǫ
)1/2

·
∥

∥

∥

∥

∥

dLaw W Bm−1

dµ|[ℓ,r]

∥

∥

∥

∥

∥

L2(µ|[1/2,1])

≤ O(edm2 log m)P
(

argmaxz∈[1/2,1]

(

B̃(z) − B(z)
)

≥ 1 − ǫ
)1/2

,

where B and B̃ are independent rate two Brownian motions starting from the origin. Now, by

Lévy’s arcsine law and the fact that (B̃(·) − B(·))/
√

2
d
= B

d
= B̃, we estimate

P(Aǫ,m) ≤ cedm2 log mǫ1/4 ,

for universal c, d > 0. �

Remark. Note that the exponent ǫ1/4 is artificial and using Hölder inequality, it could have been
chosen to lie in (0, 1/2), at the expense of the m-dependent constant. Such an estimate does not
impact our estimates qualitatively.

We are now in a position, in a manner analogous to the previous lemma, to control the
probabilities of events where the first jump time of a semi-infinite geodesic starting from the top
line of the Airy line ensemble at the origin is very ‘small’, which is the content of the following
lemma.

Lemma 4.13. Fix i ≥ 1, x ∈ K ⊂ R+ countable and dense. Then there exists a possibly
K-dependent d > 0 such that for all ǫ ∈ (0, 1)

P(Z1(x, 0) ≥ −ǫ) ≤ Cx exp
(

−dx log1/882(1/ǫ)
)

.

Proof. Now we estimate for all i ≥ 1, x, ǫ > 0

P(Z1(x, 0) ≥ −ǫ) ≤ P(Z1(x, 0) ≥ −ǫ, Zi(x, 0) ≤ −1)

+ P

(∣

∣

∣

∣

∣

Zi(x, 0)√
i

+

√

1

2x

∣

∣

∣

∣

∣

>

√

1

2x
− 1√

i

)

.

Now, using the Brownian Gibbs property on the larger interval [0, 2] and arguing as in Theorem
5.4, one obtains

P(Z1(x, 0) ≥ −ǫ) ≤
∑

1≤j≤i

P(Last jump time of Airy LPP[(−1, j) → (0, 1)] ≥ −ǫ) (4.18)

+ P

(∣

∣

∣

∣

∣

Zi(x, 0)√
i

+

√

1

2x

∣

∣

∣

∣

∣

>

√

1

2x
− 1√

i

)

. (4.19)

Thus, by Hölder, with

Aǫ,i :=
⋃

1≤j≤i

{Last jump time of LPP[(−1, j) → (0, 1)] ≥ −ǫ} ,
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the first unconditional probability in (4.18) can be estimated as follows

P(Aǫ,i) ≤ E







1

B
[0,1]

(Aj (0))i
j=1,(Ai(t))i

j=1
(NoInt(i, [0, 2], Ai+1))







1/2

· E
[

µA(0),A(2)(Aǫ,i)
]1/2

,

where µA(0),A(2)(·) denotes the law of an ensemble of i independent Brownian bridges with
starting and ending points (0, A) and (2, A(2)) respectively which from Lemma 3.15, can be
compared to Brownian motions on [0, 1] with Radon-Nikodym bounded by

∥

∥

∥

∥

∥

dB
[0,2]
0,A |[0,1]

dB
[0,1]
0,∗

∥

∥

∥

∥

∥

L∞

(

B
[0,1]
0,∗

)

= 2
i
2 · exp

(‖Ai(2)−Ai(0)‖2

8

)

.

Thus, a localisation argument and Hölder give for all a > 0

E
[

µA(0),A(2)(A)2
]1/2

= E

[

µA(0),A(2)(A)1

(

max
1≤j≤i

|A(2) − A(0)| < a

)]1/2

+P

(

max
1≤j≤i

|A(2) − A(0)| ≥ a

)1/2

.

Now, combining the two estimates above, we obtain using Proposition 3.11

E
[

µA(0),A(2)(A)
]1/2

≤ E

[

(2)
i
2 · exp

(

‖Ai(2)−Ai(0)‖2

8

)

· 1

(

max
1≤j≤i

|A(1) − A(0)| < a

)]1/2

· µ(Aǫ,i)
1/2

+P

(

max
1≤j≤i

|A(2) − A(0)| ≥ a

)1/2

≤ 2
i
2 · exp

(

ia2

8

)

· µ(Aǫ,i)
1/2 + P

(

max
1≤j≤i

|Aj(2) − Aj(0)| ≥ a

)1/2

≤ c exp
(

dia2
)

· ǫ1/8 + ci1/2
(

exp
(

− Ca2
))

.

for some universal C, c, d > 0.

Using Lemma 4.12, we obtain by a union bound

P(Aǫ,i) ≤ c exp
(

di7 + dia2
)

· ǫ1/8 + c exp
(

di7
)(

exp
(

− Ca2)
)

,

for some constants C, c, d > 0. Moreover, Lemma 4.1 and Theorem 3.17 give for i ≥ 1

P

(∣

∣

∣

∣

∣

Zi(x, 0)√
i

+

√

1

2x

∣

∣

∣

∣

∣

>

√

1

2x
− 1√

i

)

≤ Cx

(

P

(

|〈(0, i) → x〉 − 2
√

2kx|
k1/2

> 1/
√

2x

)

+ exp
(

−dxi3/4
)

)

≤ Cxi2 exp
(

−dxi1/126
)

≤ Cx exp
(

−dxi1/126
)

, k ≥ 1

for some x-dependent dx > 0 and Cx > 0.

Combining the above, we thus obtain for all i ≥ 1, ǫ ∈ (0, 1/2), a > 0 using Lemma 4.1

P(Z1(x, 0) ≥ −ǫ) ≤ c exp
(

di7 + dia2
)

· ǫ1/8

+c exp
(

di7
) (

exp
(

− Ca2
))

+ Cx exp
(

−dxi1/126
)

,
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for some universal Cx, dx > 0. Now, for θ ∈ (0, 1) with














i =
⌈

cx log126(Cx/θ)
⌉

a = dx

⌈

log1/2(c/θ) + i7/2
⌉

ǫ = cxe−di7−dia2
,

for some positive c, d, we obtain
P(Z1(x, 0) ≥ −ǫ) ≤ θ .

Thus, we have for all θ ∈ (0, 1)

sup{ǫ > 0 : P(Z1(x, 0) ≥ −ǫ) ≤ θ} ≥ exp
(

−dx log882(Cx/θ)
)

for some Cx, dx > 0. This gives the tails for all ǫ ∈ (0, 1/2)

P(Z1(x, 0) ≥ −ǫ) ≤ Cx exp
(

−dx log1/882(1/ǫ)
)

,

for some Cx, dx > 0, which concludes the proof.

�

Combining the above, we are now in a position to prove the second theorem of this section,
giving uniform coalescence of semi-infinite geodesics with speeds located on some ‘meagre’ set.

Theorem 4.14. Let K ⊆ [1, ∞) ∩ Q be compact and (M, r)-meagre for some M > 1 and
r < 1/882. Then, for any θ ∈ (0, 1),

inf

{

m ≥ 1 : P(sup
x∈K

Kx,ℓ ≥ m) ≤ θ

}

≤ CKℓ256
(

exp
(

dKM log1/(1/882−r)(1/θ)
))

,

for some CK , dK > 0.

Proof. Fix any m ∈ N, going through the Skorokhod coupling and Yℓ, ǫ as in the proof of
Proposition 4.11, one observes for any n ≥ 1, ǫ0 > 0, the inclusion of the event

{Yℓ ≤ n} ∩ {ǫ ≥ ǫ0} ∩
{

sup
(x,y)∈K×[0,n]∩Q

∣

∣

∣

∣

∣

Zm(x, y)√
m

+

√

1

2x

∣

∣

∣

∣

∣

≤ cKǫ0

}

⊆ {sup
x∈K

Kx,ℓ ≤ m} ,

with cK = 1/(2
√

sup
x∈K

|x|). Thus, we can estimate using Corollary 4.9 and (4.17) the tails of the

maximum coalescence depth by a union bound for any n ≥ 1, ǫ0

P(sup
x∈K

Kx,ℓ ≥ m) ≤ P

(

sup
(x,y)∈K×[0,n]∩Q

∣

∣

∣

∣

∣

Zm(x, y)√
m

+

√

1

2x

∣

∣

∣

∣

∣

> cKǫ0

)

+ P(Yℓ > n) + P(ǫ < ǫ0)

≤ P

(

sup
(x,y)∈K×[0,n]∩Q

∣

∣

∣

∣

∣

Zm(x, y)√
m

+

√

1

2x

∣

∣

∣

∣

∣

> cKǫ0

)

+ P(Z1(2diam(K), 0) ≥ −4ǫ0) + P(Yℓ > n)

≤ P

(

sup
(x,y)∈K×[0,n]∩Q

∣

∣

∣

∣

∣

Zm(x, y)√
m

+

√

1

2x

∣

∣

∣

∣

∣

> cKǫ0

)

+ P

(

sup
x∈K

∣

∣

∣

∣

∣

Zℓ(x, 0)√
ℓ

+

√

1

2x

∣

∣

∣

∣

∣

>
n√
ℓ

−
√

1

2x

)

+ 2P(Z1( inf
x∈K

|x|, 0) ≥ −4ǫ0) ,
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for some constant c > 0. Now, using Lemmas 4.1, 4.13 and Theorem 3.17, we estimate for
ǫ ∈ (0, 1/cK ∧ 1) and m ≥ 1

P

(

sup
(x,y)∈K×[0,n]∩Q

∣

∣

∣

∣

∣

Zm(x, y)√
m

+

√

1

2x

∣

∣

∣

∣

∣

> cKǫ0

)

≤ CK/ǫ0

(

sup
x∈K

P

(

|〈(0, m) → x〉 − 2
√

2mx|
m1/2

> CKǫ0

)

+ exp






−dKǫ

3/4
0

m3/4

(sup
x∈K

|x| + |n| + 1)2













≤ CKm2 exp






−dK

ǫ0m1/126

(sup
x∈K

|x| + |n| + 1)2







for some CK , dK > 0. Similarly we estimate for n ≥ 2
√

ℓ/
√

2 inf
x∈K

|x|

P

(

sup
x∈K

∣

∣

∣

∣

∣

Zℓ(x, 0)√
ℓ

+

√

1

2x

∣

∣

∣

∣

∣

>
n√
ℓ

−
√

1

2x

)

≤ CKn2/ℓ

(

sup
x∈K

P

(

|〈(0, ℓ) → x〉 − 2
√

2ℓx|
ℓ1/2

>
n

2
√

ℓ

)

+ exp






−dK

n

ℓ1/2

3/4 m3/4

(sup
x∈K

|x| + 1)2













≤ CKn2






exp






−dK

n3/4ℓ3/8

(sup
x∈K

|x| + 1)2






+ exp

(

−d
n

ℓ2

)







≤ CKn2
(

exp

(

−dK
n

ℓ2

))

for some CK , dK > 0. Additionally, using Lemma 4.1, we estimate for ǫ0 ∈ (0, 1/4)

P(Z1( inf
x∈K

|x|, 0) ≥ −4ǫ0) ≤ CK exp
(

−dK log1/882(1/ǫ0)
)

for some CK , dK > 0.

Combining the above, we estimate for all m ≥ 1, ǫ0 ∈ (0, 1/cK ∧ 1/4), n ≥ 2
√

ℓ/
√

2 inf
x∈K

|x|

P(sup
x∈K

Kx,ℓ ≥ m) ≤ CK






m2 exp






−dK

ǫ0m1/126

(sup
x∈K

|x| + |n| + 1)2







+n2 exp

(

−dK
n

ℓ2

)

+ M exp
(

−dK log1/882−r(1/ǫ0)
)

)

≤ CK







n512

ǫ256
0

exp






−dK

ǫ0m1/126

(sup
x∈K

|x| + |n| + 1)2







+ℓ4 exp

(

−dK
n

ℓ2

)

+ M exp
(

−dK log1/882−r(1/ǫ0)
)

)

.
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for some CK , dK > 0.

Now, fix θ ∈ (0, 1). With


















n =
⌈

CK
(

log(ℓ/θ) +
√

ℓ
)

⌉

ǫ = exp
(

−dK log1/(1/882−r)(M/θ)
)

m =
⌈

CK
n512

ǫ256
0

log126( ǫ0
θn)
⌉

for some positive CK , dK > 0, we deduce

P(sup
x∈K

Kx,ℓ ≥ m) ≤ θ .

We thus deduce that for any θ ∈ (0, 1),

inf

{

m ≥ 1 : P(sup
x∈K

Kx,ℓ ≥ m) ≤ θ

}

≤ m(ǫ0, n, ℓ)

≤ CKℓ256
(

exp
(

dKM log1/(1/882−r)(1/θ)
))

,

for some CK , dK > 0, concluding the proof. �

5. Regularity of finite-depth truncations of the KPZ fixed point

In this section, we obtain a quantitative comparison of the spatial increments of ‘finite depth
truncations’ of the KPZ fixed point in terms of the Wiener measure and last passage values of
semi-infinite geodesics in the Airy line ensemble. We crucially use the variational formula for the
KPZ fixed point and the coupling in Definition 4.2. This is achieved through the Brownian Gibbs
property of the Airy line ensemble, which further reduces the problem to estimating the
Radon-Nikodym derivatives of inhomogeneous Brownian LPP with non-decreasing initial data.
This is done in Theorem 3.7. Technical input from [Dau24] allows us to estimate inverse
acceptance probabilities that appear in the estimates. Combining the above leads to Theorem 5.4.

By 3 : 2 : 1 scaling, we lose no generality in considering the KPZ fixed point at unit time, h1(·)
with initial data h0 : R → R ∪ {−∞}, which can be written more explicitly as

h(y) = sup
x∈supp−∞(h0)

(h0(x) + S(x, y)) ,

where S(·, ·) denotes the Airy sheet, see Definition 4.2. Recall also Definition 1.1 for the max-plus
support. We also do not lose generality if we translate the support of the initial data. Henceforth,
we will make the following assumptions on the initial data:

• supp−∞(h0) is bounded and countable
• supp−∞(h0) ⊆ [1, ∞).

Now, from Lemma 4.4 with K = Q+ ∪ supp−∞(h0), there is a random constant L0 with tails as
in Theorem 4.5, such that almost surely for all y ∈ [1, y0]

h(y) = sup
x∈supp−∞(h0)

(h0(x) + max
ℓ≤L0

A[x → (0, ℓ)] + A[(0, ℓ) → (y, 1)])

where A is an Airy line ensemble that is coupled to the Airy sheet S as in Definition 4.2 and

A[x → (0, ℓ)] :=







S(x, 0) ℓ = 1

lim
k→∞

A[xk → (0, ℓ)] − A[xk → (0, 1)] + S(x, 0) ℓ > 1 ,
(5.1)

for x ∈ Q+ ∪ supp−∞(h0) with xk = (−
√

k/2x, k), k ∈ N.
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In what is to follow, we will take

K = (Q+ ∪ supp−∞(h0)) × Q2 .

The fact that this limit exists and is well defined is the crux of Theorem 3.7 in [SV21] and uses
geometric properties of geodesics in the Airy line ensemble. In some sense, the downward
parabolic curvature of the Airy line ensemble A = (A1, A2, · · · ), which follows from the
observation that for i ∈ N, the process Ai(·) + (·)2 is stationary (see [SV21]), forces rightmost last
passage paths (rightmost geodesics) to almost surely eventually intersect in the far left end of the
plane (Lemma 3.4 in [SV21]).

Now, exchanging the sup and max gives

h(y) = max
ℓ≤L0

(Gℓ + A[(0, ℓ) → (y, 1)]) ,

where
Gℓ := sup

x∈supp−∞(h0)
(h0(x) + A[x → (0, ℓ)]) .

For any ℓ ∈ N, Gℓ enjoys the following two properties, namely, that almost surely Gℓ < ∞ and
that it is measurable with respect to the sigma algebra F− := σ({Ai(x) : x ≤ 0, i = 1, 2, · · · }).
This is the content of Lemmas 3.8 and 3.9 respectively. The latter property essentially follows
from the Definition 5.1.

One can observe by inspecting the proof of Lemma 3.10 in [SV21] that for any m ∈ N, on the
event {L0 ≤ m} one has the almost sure equality
S(x, y) = max1≤ℓ≤m(A[x → (0, ℓ)] + A[(0, ℓ) → (y, 1)]) for all x ∈ supp−∞(h0) ∪ supp−∞(h0) and
all y ∈ [1, y0]. Thus, on the event {L0 ≤ m} the KPZ fixed point has the expression (at unit time)

h(y) = max
x∈supp−∞(h0)

(h0(x) + S(x, y))

= max
ℓ≤m

(Gℓ + A[(0, ℓ) → (y, 1)]) for y ∈ [1, y0]
(5.2)

where Gℓ := max
x∈supp−∞(h0)

(h0(x) + A[x → (0, ℓ)]) < ∞ almost surely.

Thus, being able to control the tails of L0, we can apply a localisation argument by essentially
and derive a priori Lp, p < 1 estimates for the law of the ‘truncated’

Hm(·) = max
ℓ≤m

(Gℓ + A[(0, ℓ) → (·, 1)]) , m ≥ 1 .

against that of rate two Brownian motion on the interval [1, y0]. Below is a sketch of the

estimates to follow. First note that the absolute continuity relation dLawHm ≪ dB
[1,y0]
∗,∗ has

already been established in [SV21, Proposition 5.1].

For a < b ∈ R, k ∈ N set F [a,b]
k := σ({Ai(x) : (i, x) /∈ J1, mK × (a, b)}). Now we turn our

attention towards bounding
∥

∥

∥

∥

∥

dLawHm

dB
[1,y0]
∗,∗

∥

∥

∥

∥

∥

Lp(B
[1,y0]
∗,∗ )

for m ≥ 1. We start with a quick estimate that will motivate the rest of this section. Fix
A ⊆ C∗,∗([1, y0]) Borel measurable and compute

P(Hm(·) ∈ A) = P

(

max
ℓ≤m

(Gℓ + A[(0, ℓ) → (·, 1)]) ∈ A

)

.

Now, conditioning on the sigma algebra F [0,y0+1]
k we get

P(Hm(·) ∈ A) ≤ E

[

P

(

max
ℓ≤m

(Gℓ + (A − A(0))[(0, ℓ) → (y, 1)]) ∈ A
∣

∣F
)

· 1Fav

]

+ P(Favc)



36 PANTELIS TASSOPOULOS AND SOURAV SARKAR

where we used the fact that Brownian LPP ignores constant shifts to the environment, for some
favourable event Fav, whose probability we wish to be able to control (perhaps as a function of
some parameter which we will be free to choose). The next natural thing one could do is to apply
the Brownian Gibbs property which the parabolic Airy line ensemble satisfies, however this
leads to the technical challenge of estimating Brownian inverse acceptance probabilities with Airy
line ensemble endpoints, see Subsection 3.6.

The crucial technical input that allows us to overcome this challenge comes from [Dau24], in
order to estimate the inverse acceptance probability that comes from using the Brownian Gibbs
property. In particular, we will need the following slight modification of [Dau24, Lemmas 3.2, 3.3]

The goal of the next few lemmas is to estimate B
[a,b]
x,y (NoInt([a, b], f)) as given above in terms of a

few simple F [−Tm,Um]
m -measurable random variables for some −a < Tm, Um < b.

Lemma 5.1. [Dau24, Lemma 3.3] Fix t > 1, a < s < t < b and let x, y ∈ Rm
> . Let g ∈ C∗,∗([a, b])

be such that g(a) < xm, g(b) < ym.

Let B be a m-tuple on independent Brownian bridges from (a, x) to (b, y), conditioned on the
event

NoInt([a, s] ∪ [t, b], g) or NoInt([a, b], g)

Fix ǫ ∈ (0, 1) and define ι = (1/m, 1/(m + 1), · · · , 1/(2m)), 1 = (1, 1, . . . , 1) ∈ Rm, and for
α, β ≥ 0 define fα,β ∈ Cm

∗,∗([a, b]) by letting

fα,β(a) = 0, fα,β(s) = fα,β(t) = αι + β1, fα,β(b) = 0,

and so that fα,β is linear on each of the pieces [a, s], [s, t], [t, b].

Then for f ∈ NoInt([a, s] ∪ [t, b], g) (or NoInt([a, b], g)) we have the pointwise lower bound on
the density of the law µ′

B of B − fα,β against the law µB of B, on the set NoInt([a, 1] ∪ [t, b], g)
(or NoInt([a, b], g)) where µ′

B is absolutely continuous with respect to µB

dµ′
B

dµB
(f) ≥ exp

(

−ζ2 m(α/m + β)2

4
− ζ

(α/m + β)
∑m

i=1[(fi(s) − xi)
+ + (fi(t) − yi)

+]

4

)

(5.3)

≥ exp

(

−ζ2 m(α/m + β)2

4
− ζ

(α/m + β)
∑m

i=1[(fi(s) − xi)
2
+ + (fi(t) − yi)

2
+]

4

)

, (5.4)

where ζ = 1
min(s−a,b−t) .

Proof. Let ν be the law of m independent Brownian bridges from (a, x) to (b, y). Observe first

that fα,β being piecewise linear, it is in the Sobolev space W 1,2([a, b]) and so by Girsanov’s
Theorem, for a rate two Brownian motion W starting from x ∈ R on [a, b], the Radon-Nikodym
derivative of the process W − fα,β against W is given by

exp

(

−1

2

∫

[a,b]
ḟα,β(s) dWs − 1

4

∫

[a,b]
(ḟα,β)2(s) ds

)

= exp



−1

2
(Ws − x)

fα,β(s)

s − a
+

1

2
(Wb − Wt) · fα,β(t)

b − t
− 1

4





(

fα,β(s)

s − a

)2

+

(

fα,β(t)

b − (t)

)2






 .

Now conditioning on Wb = y ∈ R and using the uniqueness of regular conditional distributions
and the regularity of the conditional measures for Brownian bridges and the above
Radon-Nikodym transform thereof, we can conclude by independence that µB, µ′

B are absolutely
continuous with respect to ν with densities

dµB

dν
(f) =

1

Z
1(f ∈ NoInt([a, s] ∪ [t, b], g)) ,
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dµ′
B

dν (f) = 1
Z 1(f + fα,β ∈ NoInt([a, s] ∪ [t, b], g))

· exp



−c
2(f(s) − x) · fα,β(s)

s−a + ‖fα,β(s)
s−a ‖2

4
− c

2(f(t) − y) · fα,β(t)
b−t) + ‖fα,β(t)

b−t ‖2

4



 .
(5.5)

where Z = Pa,b(x, y, g, [a, s] ∪ [t, b]) is a normalizing factor. Now, if f is in the set

NoInt([a, s] ∪ [t, b], g), then so is f + fα,β. Hence the right-hand side of (5.3) is bounded below by
the exponential factor (5.5). We can bound (5.5) below by using 0 ≤ fα,β ≤ (α/m + β)1, which
yields the desired bound. �

The following lemma is a refinement of [Dau24, lemma 3.2], where non-intersection
probabilities are estimated from below by more analytically tractable quantities. They are in turn
are controlled by the modulus of continuity estimates for the Airy line ensemble in Corollary 3.11
and Proposition 3.12.

Lemma 5.2. [Dau24, Lemma 3.2] Fix a < s < t < b, ǫ > 0 and define F [a,b]
m -measurable random

variables

D = D(m, t) = 1 + max
r,r′∈[s,t]

|Am+1(r) − Am+1(r′)|,

M = M(m, y0) = 1 + max
r,r′∈[a,b]

|Am+1(r) − Am+1(r′)| + max
i∈J1,mK

|Ai(b) − Ai(a)|.

Then with B as in the previous lemma, we have

EF [a,b]
m

[Ps,t(B
m(s),Bm(t), Am+1)]

≥ C exp
(

−m1+ǫ(ζ2D2 + ζMD) − m2+ǫζD − cm log(b − a)
)

· exp
(

−dm3−ǫ(t−s)
ǫ2

)

for some constant c, d, C > 0 independent of m ∈ N, ǫ > 0, and ζ = 3
min(s−a,t−b) .

Proof. All statements in the proof are conditional on F [a,b]
m . Define the F [a,b]

m -measurable vector

z = (D + mǫ/2, D + (m − 1)ǫ/2, . . . , D + 1)

and the F [a,b]
m -measurable set

O = {(x, y) ∈ Rm
> × Rm

> : xm > Am+1(s), ym > Am+1(t)}. (5.6)

By the definition of D, for (x, y) ∈ O we have noting that mǫ/2 − (m − 1)ǫ/2 ≥ ǫ/(2m1−ǫ/2), m ≥ 2
inclusion and independence

Ps,t(NoInt(x + z, y + z, Am+1)) ≥ P
(

sup
s≤r≤t

|B(r)| ≤ ǫ/(4m1−ǫ/2)
)m

, (5.7)

where B is a rate two Brownian bridge from (s, 0) to (t, 0). By Lemma 3.16, we have

P( max
s≤r≤t

|Bt| ≤ ǫ/(4m1−ǫ/2)) ≥ c exp

(

−dm2−ǫ(t − s)

ǫ2

)

, for all ǫ > 0, m ≥ 1

and so the right hand side in (5.7) is bounded below by

c exp

(

−dm3−ǫ(t − s)

ǫ2

)

for some positive constant c > 0 independent of m ∈ N, which may change from line to line.

Therefore letting µB denote the conditional law of (Bm(s),Bm(t)) given F [a,b]
m , to complete the
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proof it suffices to find a set A ⊆ O such that µB(A + (z, z)) is large. Fix ∆ > 0 and let A∆ be

the F [a,b]
m -measurable subset of (x, y) ∈ O where

xi ≤ Ai(a) + ∆, yi ≤ Ai(b) + ∆

for all i ∈ J1, mK. Then by Lemma 5.1 with α = 1, β = D, we have

µB(A∆ + (z, z))

≥ µB(A∆) inf
(x,y)∈A∆

exp

(

−ζ2m1+ǫ(1 + D)2

4

− ζ
mǫ/2(1 + D)

∑m
i=1((xi − Ai(a))+ + (yi − Ai(b))+)

4

)

(5.8)

≥ µB(A∆) exp
(

−ζ2m1+ǫD2 − ζm1+ǫ/2D∆
)

(5.9)

where ζ = 3
min(s−a,b−t) . In the final line we have used that 1 + D ≤ 2D. It remains to find ∆

where µB(A∆) is large.

Define vectors wa,b for i ∈ J1, mK at a, b respectively, where

wa,b
i = M + i + Ai({a, b}) .

By a monotonic coupling for Brownian bridges, see 3.13, on the interval [a, b], the m-tuple
(B1, . . . ,Bm) is stochastically dominated by m independent Brownian bridges B = (B1, . . . , Bm)
from (a, wa) to (b, wb) conditioned on the event

NoInt([a, s] ∪ [t, b], Am+1).

Now, let L ∈ Cm([a, b]) be the function whose ith coordinate Li is the linear function satisfying

Li(a, b) = wa,b
i . By [Dau24, Lemma 2.5], we have f ∈ NoInt([a, s] ∪ [t, b], Am+1) for any sequence

of bridges f from (a, wa) to (b, wb) when ‖f − L‖∞,[a,b] ≤ 1/100 with probability bounded below

by ce−dm log(b−a) for positive constants c, d > 0. This allows us to estimate

P(Bi(r) ≤ M + i + 2 + Ai(−b) ∨ Ai(b) ∀i ∈ J1, mK, r = s, t)

≥ P(‖B − L‖∞,[a,b] < 1/100)

≥ ce−dm log(b−a) .

Observing that
M + i + 2 + Ai(a) ∨ Ai(b) − Ai({a, b}) ≤ 5M + 3m

for all i, we can conclude that

µB(A5M+3m) ≥ P((B(s), B(t)) ∈ A5M+3m) ≥ ce−dm log(b−a).

Combining this with the bound on (5.7) and (5.9) and simplifying yields the result. �

Before proving the quantitative Brownian regularity of finite depth truncatios of the KPZ fixed
point against Brownian motion, we need one final preliminary result estimating the expected
value of the inverse acceptance probability that appears in the conditioning when applying the
Brownian Gibbs property to the Airy line ensemble, which is the content of the following lemma.

Lemma 5.3. Fix m ∈ N, t > 0 ǫ > 0, then the following estimate holds.

E





1

B
[0,t]
(Ai(0))m

i=1,(Ai(t))m
i=1

(NoInt(m, [0, t], Am+1))



 = Ot(e
dm6+ǫ

).

for some constant dt,ǫ > 0 independent of m.
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Proof. We first begin by ‘stepping outside’ of the interval [0, t] and condition on

F [−Tm,Um] ⊆ F [0,t]
m , for Tm, Um > 0 sufficiently large, to be chosen later. To control the inverse

acceptance probability (5.10) conditional on F [−Tm,Um], we use Lemma 5.2 and the lower bound
provided by Lemma 5.2 to obtain for all ǫ ∈ (0, 1)

E





1

B
[0,t]
(Ai(0))m

i=1,(Ai(t))m
i=1

(NoInt(m, [0, t], Am+1))





≤ E

[

exp
(

(

m1+ǫ(ζ2D2 + ζMD + m2+ǫζD)
)

+ cm log(Um + Tm)
)

· exp

(

dm3−ǫt

ǫ2

)]

= exp (cm log(Um + Tm)) · exp

(

dm3−ǫt

ǫ2

)

· E
[

exp
(

m1+ǫ(ζ2D2) + ζMD + m2+ǫζD
)]

where c > 0 is some ǫ−dependent constant and

• the F [−Tm,Um]
m -measurable random variables

D = D(m, y0) = 1 + max
r,r′∈[0,t]

|Am+1(r) − Am+1(r′)|,

M = M(m, Tm, Um) = 1 + max
r,r′∈[−Tm,Um]

|Am+1(r) − Am+1(r′)| + max
i∈J1,mK

|Ai(Um) − Ai(−Tm)|

• ζ = 3
min(Tm,Um−t) .

We will henceforth take Tm = Um = Ot(m
α) for some α > 0 so that ζ = m−α. In particular,

taking α = 2 + 2ǫ + η, for some η > 0 to be chosen later, we estimate using the elementary
inequality for a, b ≥ 0, 2ab ≤ a2 + b2

E
[

exp
(

m1+ǫ(ζ2D2 + ζMD) + m2+ǫζD
)]

≤ 1
2E
[

exp
(

2m−1D2
)]

+ 1
4E
[

exp
(

4m1+ǫζMD
)]

+ 1
4E
[

exp
(

4m2+ǫζD
)]

≤ E
[

exp
(

2m−1D2
)]

+ 1
2E
[

exp
(

cm2+2ǫζ2M2
)]

≤ Ot(e
dm2 log m) + E

[

exp
(

cm−ηζM2
)]

for some positive constant c > 0.

By Corollary 3.11, we have that there exist some positive C1, C2, d > 0 independent of t, m
such that for all a > 0,

P(M > a) ≤ C1edm3α
e−C2a2/mα

.

Thus,

≤ Ot(e
dm2 log m) + E

[

exp
(

cm−ηζM2
)]

≤ Ot(e
dm2 log m) + 2c

∫ ∞

0
a exp

(

cm−2−2ǫ−2ηa2
)

P(M > a) da

≤ Ot(e
dm2 log m) + O(edm3α

)

∫ ∞

0
a exp

(

cm−2−2ǫ−2ηa2 − C2m−2−2ǫ−ηa2
)

da

= O(edm6+6ǫ+6η
) ,

for positive constants c > 0, concluding the proof. �

We are now in a position to obtain the quantitative control of the spatial increments of finite
depth truncations of the KPZ fixed point started fromBrownian motion in terms of the Wiener
measure and Airy line ensemble.
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Theorem 5.4. Fix m ∈ N, Tm > 0, Um > y0 + 2 ǫ ∈ (0, 1) and define the random continuous
function

Hm(y) = max
ℓ≤m

(Gℓ + A[(0, ℓ) → (y, 1)]), for y ∈ [1, y0].

Then with µ the rate two Wiener measure µ on [0, y0 − 1], Hm(· + 1) − Hm(1), satisfies the norm
estimates

P (Hm(· + 1) − Hm(1) ∈ A)

≤ E
[

exp
((

m1+ǫ(ζ2D2 + ζMD)
)

+ cm1+ǫ(log(Um + Tm) + log m)
)](p−1)/p

·




1
1+ǫ

∥

∥

∥

∥

∥

exp

(

(1+ǫ)y0‖A(y0+1)−A(0)‖2

4

( r/(r−1)
ry0/(r−1)+1 − 1

y0+1

)

)∥

∥

∥

∥

∥

p

+ ǫ
1+ǫE

[

∥

∥

∥Qm,G
∥

∥

∥

p(1+1/ǫ)

L2r/(r−1)(µ)

]1/p
)

· µ(A)
1
r

(1− 1
p

)

for all p, r > 1, ǫ ∈ (0, 1) and some universal constant c > 0, where

• Qm,G is the Radon-Nikodym derivative of

Y m,G := max
1≤ℓ≤m

(Gℓ − G1 + B[(0, ℓ) → (· + 1, 1)]) − max
1≤ℓ≤m

(Gℓ − G1 + B[(0, ℓ) → (1, 1)])

against rate two Brownian motion on [0, y0 − 1]
• G denotes the boundary data G = (Gℓ)

m
ℓ=1, Gℓ = max

x∈supp−∞(h0)
(h0(x) + A[x → (0, ℓ)])

• ζ = 3
min(1+Tm,Um−t) .

Moreover, the following holds for all p, r > 1, A ⊆ C([0, y0 − 1]) Borel and a > 0

P (Hm(· + 1) − Hm(1) ∈ A) ≤ Oy0(exp(m7)) · exp
(

y0m2a2

4

( r/(r−1)
ry0/(r−1)+1 − 1

y0+1

)

)

·Oy0(exp(m7)) · sup
max1≤ℓ≤m |Gℓ−G1|≤a

∥

∥

∥Qm,G
∥

∥

∥

L2r/(r−1)(µ)
· µ(A)

1
r

(1− 1
p

)

+Oy0(exp(m7)) · P
(

max
1≤ℓ≤m

|Gℓ − G1| + max
1≤i≤m

|A(y0 + 1) − A(0)| ≥ a

)1/p

.

Proof. First, fix t > y0 and condition on the sigma algebra F [0,t]
m .

By the Brownian Gibbs property enjoyed by the Airy line ensemble, we get that conditioning

on the sigma algebra F [0,t]
m , the law of A on J1, kK × [0, t] has the law of m independent Brownian

bridges with starting points (Ai(0))m
i=1 and ending at (Ai(t))

m
i=1 conditioned to not intersect each

other and the bottom line Am+1, an event in Cm
∗,∗([0, t]) which we will denote

NoInt(m, [0, t], Am+1). This conditional law has Radon-Nikodym Derivative against m
independent Brownian bridges with starting points (Ai(0))m

i=1 and ending at (Ai(t))
m
i=1

1NoInt(m,[0,t],Am+1)(ω)

B
[0,t]
(Ai(0))m

i=1,(Ai(t))m
i=1

(NoInt(m, [0, t], Am+1))
(5.10)

for paths ω in Cm
∗,∗([0, t]).

Now, by the by metric composition for LPP, and the F [0,t]
m -measurability of Gℓ, 1 ≤ ℓ ≤ m we

obtain

P

(

max
1≤ℓ≤m

(Gℓ + A[(0, ℓ) → (y, 1)]) ∈ A
∣

∣F [0,t]
m

)

= B
[0,t]
(Ai(0))m

i=1,(Ai(t))m
i=1

(

max
1≤ℓ≤m

(Gℓ + A[(0, ℓ) → (·, 1)]) ∈ A

)
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where
Gℓ := max

x∈supp−∞(h0)
(h0(x) + A[x → (0, ℓ)])

Now, by Lemma 3.14, we have that the law of the first m lines of A(·) − A(0) on [0, y0]

conditional on F [0,t]
m is absolutely continuous with respect to the law of m independent rate two

Brownian motions on [0, t] with bounded Radon-Nikodym derivative

dB
[0,t]
0,A |[0,y0]

dB
[0,y0]
0,∗

against rate two Brownian motion on paths in C0,∗([0, t − 1])m with norms
∥

∥

∥

∥

∥

dB
[0,t]
0,A

|[0,y0]

dB
[0,y0]
0,∗

∥

∥

∥

∥

∥

Lp

(

B
[0,y0]
0,∗

)

= (t/(t−y0))
m
2

(px/(t−y0)+1)
m
2

· exp
(

y0‖Am(t)−Am(0)‖2

4(t−y0)

( p
(p−1)y0+t − 1

t

)

)

for all p > 1 and
∥

∥

∥

∥

∥

dB
[0,t]
0,A |[0,y0]

dB
[0,y0]
0,∗

∥

∥

∥

∥

∥

L∞

(

B
[0,y0]
0,∗

)

= (t/(t − y0))
m
2 · exp

(

‖Am(t)−Am(0)‖2

4t

)

.

Combining all of the above, we deduce for any A ⊆ C0,∗([0, y0 − 1]) Borel measurable that

P

(

max
1≤ℓ≤m

(Gℓ + A[(0, ℓ) → (· + 1, 1)]) − max
1≤ℓ≤m

(Gℓ + A[(0, ℓ) → (1, 1)]) ∈ A
∣

∣F [0,t]
m

)

≤ µA(0),A(t),G(A)1−1/p

B
[0,t]
(Ai(0))m

i=1,(Ai(t))m
i=1

(NoInt(m, [0, t], Am+1))(p−1)/p

for all p > 1, where µA(0),A(t),G(·) denotes the law of

µA(0),A(t),G(·) := P

(

max
1≤ℓ≤m

(Gℓ + B[(0, ℓ) → (· + 1, 1)]) − max
1≤ℓ≤m

(Gℓ + B[(0, ℓ) → (1, 1)]) ∈ ·
)

where B is an ensemble of m independent Brownian bridges with starting and ending points
(0, A) and (t, A(t)) respectively.

Thus, by Hölder, the unconditional probability can be estimated as follows

P

(

max
1≤ℓ≤m

(Gℓ + A[(0, ℓ) → (· + 1, 1)]) − max
1≤ℓ≤m

(Gℓ + A[(0, ℓ) → (1, 1)]) ∈ A

)

≤ E





1

B
[0,t]
(Ai(0))m

i=1,(Ai(t))m
i=1

(NoInt(m, [0, t], Am+1))





(p−1)/p

· E
[

µA(0),A(t),G(A)p−1
]1/p

for all p > 1.

Now, to estimate the first term, we ‘step outside’ of the interval [0, t] and condition on

F [−Tm,Um] ⊆ F [0,t]
m , for Tm, Um sufficiently large, to be chosen later. To control the inverse

acceptance probability (5.10) conditional on F [−Tm,Um], we use Lemma 5.2 and the lower bound
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provided by Lemma 5.2 to obtain

P

(

max
1≤ℓ≤m

(Gℓ + A[(0, ℓ) → (· + 1, 1)]) − max
1≤ℓ≤m

(Gℓ + A[(0, ℓ) → (1, 1)]) ∈ A

)

≤ E
[

exp
((

m1+ǫ(ζ2D2 + ζMD)
)

+ cm1+ǫ(log(Um + Tm) + log m)
)](p−1)/p

·E
[

µA(0),A(t),G(A)p−1
]1/p

≤ Oy0(exp(m7)) · E
[

µA(0),A(t),G(A)p−1
]1/p

(5.11)

for all p > 1 and some universal constant c > 0, where

• G denotes the boundary data G = (Gℓ)
m
ℓ=1, Gℓ = max

x∈supp−∞(h0)
(h0(x) + A[x → (0, ℓ)]).

• ζ = 3
min(1+Tm,Um−t) ,

and the last line follows from Lemma 5.3.

To estimate the second term, in (5.11), let Qm,G be the Radon-Nikodym derivative of

Y m,G := max
1≤ℓ≤m

(Gℓ − G1 + B[(0, ℓ) → (· + 1, 1)]) − max
1≤ℓ≤m

(Gℓ − G1 + B[(0, ℓ) → (1, 1)])

against rate two Brownian motion on [0, y0 − 1]. Note that by [DM11, Theorem 58], we can take
Qm,G to be jointly measurable in G̃ and paths ξ in Wiener space on [0, y0 − 1]. Now, by [SV21,
Theorem 4.3] Y m,G can be expressed as the top line of a sequence of upwardly reflected Brownian
motions with boundary data Gℓ − G1 1 ≤ ℓ ≤ m, hence its Radon-Nikodym derivative against
Brownian motion can be estimated from Theorem 3.7, and in particular, Qm,G ∈ L∞−(µ) for all
choices of boundary data G, where µ is the restriction of the (rate two) Wiener measure on
[0, y0 − 1].

Now, by Lemma 3.14, we have that the law of the first m lines of A(·) − A(0) on [0, y0]

conditional on F [0,t]
m is absolutely continuous with respect to the law of m independent rate two

Brownian motions on [0, t] with bounded Radon-Nikodym derivative

dB
[0,t]
0,A |[0,y0]

dB
[0,y0]
0,∗

against rate two Brownian motion on paths in C0,∗([0, t − 1])m with norms
∥

∥

∥

∥

∥

dB
[0,t]
0,A |[0,y0]

dB
[0,y0]
0,∗

∥

∥

∥

∥

∥

Lp

(

B
[0,y0]
0,∗

)

= (t/(t−y0))
m
2

(py0/(t−y0)+1)
m
2

· exp
(

y0‖Am(t)−Am(0)‖2

4(t−y0)

( p
(p−1)y0+t − 1

t

)

)

for all p > 1 and
∥

∥

∥

∥

∥

dB
[0,t]
0,A |[0,y0]

dB
[0,y0]
0,∗

∥

∥

∥

∥

∥

L∞

(

B
[0,y0]
0,∗

)

= (t/(t − y0))
m
2 · exp

(

‖Am(t)−Am(0)‖2

4t

)

.

Combining all of the above, we deduce the following norm estimates for the Radon-Nikodym
derivatives for all data x, y, G ∈ Rm

>

∥

∥

∥Qx,y,G
∥

∥

∥

Lp(µ)
≤ (t/(t − y0))

m
2

(py0/(t − y0) + 1)
m
2

· exp







y0

∥

∥

∥x − y
∥

∥

∥

2

4(t − y0)

( p

(p − 1)y0 + t
− 1

t

)







·
∥

∥

∥Qm,G
∥

∥

∥

L2p(µ)
· µ(A)1− 1

p

for all p > 1.
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Now, by Hölder’s inequality, we have with t = y0 + 1

E
[

µA(0),A(t),G(A)p−1
]1/p

= E
[

Eµ[Qm,A,G1(A)]p−1
]1/p

≤ E

[

(

∥

∥

∥Qm,A,G
∥

∥

∥

r/(r−1)
µ(A)1/r

)p−1
]1/p

= E

[

∥

∥

∥Qm,A,G
∥

∥

∥

p−1

Lr/(r−1)(µ)

]1/p

· µ(A)
1
r

(1−1/p)

≤ E

[

(y0 + 1)
m
2

(p−1)

(r/(r − 1) · y0 + 1)
m
2

(p−1)
· exp

(

y0/4

(y0 + 1)(ry0 + r − 1)

∥

∥

∥A(y0 + 1) − A(0)
∥

∥

∥

2
)p−1

·
∥

∥

∥Qm,G
∥

∥

∥

p−1

L2r/(r−1)(µ)

]1/p

· µ(A)1− 1
p

≤ E

[

exp

(

py0/4
(y0+1)(ry0+r−1)

∥

∥

∥A(y0 + 1) − A(0)
∥

∥

∥

2
)

·
∥

∥

∥Qm,G
∥

∥

∥

p

L2r/(r−1)(µ)

]1/p

· µ(A)
1
r

(1− 1
p

)

for all p, r > 1. Now, using Young’s inequality for a, b ≥ 0 for all ǫ ∈ (0, 1)

ab ≤ 1

1 + ǫ
a1+ǫ +

ǫ

1 + ǫ
b1+1/ǫ

we obtain

E
[

µA(0),A(t),G(A)p−1
]1/p

≤




1
1+ǫ

∥

∥

∥

∥

∥

exp

(

(1+ǫ)y0‖A(y0+1)−A(0)‖2

4

( r/(r−1)
ry0/(r−1)+1 − 1

y0+1

)

)∥

∥

∥

∥

∥

p

+ ǫ
1+ǫE

[

∥

∥

∥Qm,G
∥

∥

∥

p(1+1/ǫ)

L2r/(r−1)(µ)

]1/p
)

·µ(A)
1
r

(1− 1
p

)

for all p, r > 1, ǫ ∈ (0, 1). combining the above and using Lemma 5.3, gives the desired result.

For the second part, we can alternatively estimate with t = y0 + 1 for all a > 0 by Hölder’s
inequality

E
[

µA(0),A(t),G(A)p−1
]1/p

= E

[

µA(0),A(t),G(A)
p−1

p 1

(

max
1≤ℓ≤m

|Gℓ − G1| + max
1≤i≤m

|A(y0 + 1) − A(0)| < a

)]1/p

+P

(

max
1≤ℓ≤m

|Gℓ − G1| + max
1≤i≤m

|A(y0 + 1) − A(0)| ≥ a

)1/p

Now, for r ∈ (1, ∞), combining the two estimates above, we obtain

E
[

µA(0),A(t),G(A)p−1
]1/p

≤ E

[

exp

(

py0‖A(y0+1)−A(0)‖2

4

( r/(r−1)
ry0/(r−1)+1 − 1

y0+1

)

)

·
∥

∥

∥Qm,G
∥

∥

∥

p

L2r/(r−1)(µ)

·1
(

max
1≤ℓ≤m

|Gℓ − G1| + max
1≤i≤m

|A(y0 + 1) − A(0)| < a

)]1/p

· µ(A)
1
r

(1− 1
p

)
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+P

(

max
1≤ℓ≤m

|Gℓ − G1| + max
1≤i≤m

|A(y0 + 1) − A(0)| ≥ a

)1/p

≤ exp
(

y0m2aa

4

( r/(r−1)
ry0/(r−1)+1 − 1

y0+1

)

)

· sup
max1≤ℓ≤m |Gℓ−G1|≤a

∥

∥

∥Qm,G
∥

∥

∥

L2r/(r−1)(µ)
· µ(A)

1
r

(1− 1
p

)

+P

(

max
1≤ℓ≤m

|Gℓ − G1| + max
1≤i≤m

|A(y0 + 1) − A(0)| ≥ a

)1/p

,

which when combined with (5.11), concludes the proof of the second part. �

6. Putting it all together: quantitative Brownian regularity

In this section, we establish a quantitative Brownian regularity of the KPZ fixed point started
from meagre initial data in Theorem 6.5. To summarise what we have obtained so far, recall that
having established the quantitative comparison in Theorem 5.4, we have estimated for m ≥ 1 the
truncated, finite-depth KPZ fixed point

Hm(·) = max
ℓ≤m

(Gℓ + A[(0, ℓ) → (·, 1)]), y ∈ [1, y0] (6.1)

in terms of

• the boundary data G = (Gℓ)
m
ℓ=1, Gℓ = max

x∈supp−∞(h0)
(h0(x) + A[x → (0, ℓ)])

• Qm,G̃a
, the Radon-Nikodym derivatives of

Y m,G̃a
:= max

1≤ℓ≤m
(G̃ℓ ∨ a + B[(0, ℓ) → (· + 1, 1)]) − max

1≤ℓ≤m
(G̃ℓ + B[(0, ℓ) → (1, 1)])

against rate two Brownian motion on [0, y0 − 1], where G̃a = (−a ∧ (Gℓ − G1) ∨ a)m
ℓ=1, for

some a > 0
• and the tails of max1≤ℓ≤m |Gℓ − G1|.

Now, Theorem 3.7 allows us to estimate Lp(µ)-norms of Y m,G̃a
for all a > 0, p > 1. Thus, the

only missing ingredient is to estimate the tails of

Gℓ − G1 := max
x∈supp−∞(h0)

(h0(x) + A[x → (0, ℓ)]) − max
x∈supp−∞(h0)

(h0(x) + A[x → (0, ℓ)]) .

Now, for x, x′ ∈ supp−∞(h0) ⊆ R, supp−∞(h0) compact, we estimate for ℓ ∈ N

|Gℓ − G1|
≤ max

x,x′∈supp−∞(h0)
|h0(x) + A[x → (0, ℓ)] − h0(x′) + A[x′ → (0, 1)]|

≤ max
x,x′∈supp−∞(h0)

|h0(x) − h0(x′)| + max
x,x′∈supp−∞(h0)

|A[x → (0, ℓ)] − A[x′ → (0, 1)]|

≤ max
x,x′∈supp−∞(h0)

|h0(x) − h0(x′)| + max
x∈supp−∞(h0)

|A[x → (0, ℓ)] − A[x → (0, 1)]|

+ max
x,x′∈supp−∞(h0)

|A[x → (0, 1)] − A[x′ → (0, 1)]|

= max
x,x′∈supp−∞(h0)

|h0(x) − h0(x′)| + max
x∈supp−∞(h0)

|A[x → (0, ℓ)] − A[x → (0, 1)]|

+ max
x,x′∈supp−∞(h0)

|S(x, 0) − S(x′, 0)|

= max
x,x′∈supp−∞(h0)

|h0(x) − h0(x′)| + max
x,x′∈supp−∞(h0)

|S(x, 0) − S(x′, 0)|

+ max
x∈supp−∞(h0)

lim
k→∞

(

|Astat[xk → (0, ℓ)] − Astat[xk → (0, 1)]|
)

,
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where xk = (−
√

k/2x, k) and recall that Astat(·) = A(·) + (·)2 is the stationary Airy line ensemble
and Tx, d(Tx) denote the coalescence time and depth for the infinite geodesics with respect to the
point x ∈ supp−∞(h0) respectively.2

We begin with some supporting lemmas. In what is to follow, we will take

K = (Q+ ∪ supp−∞(h0)) × Q2 .

In the following lemma, we prove a concentration result for the differences of the last passage
values of semi-infinite geodesics over the stationary Airy line ensemble with speeds concentrated
in a ‘meagre’ set and variable endpoints by controlling them in terms semi-infinite geodesic
coalescence terms.

Lemma 6.1. Fix 1 ≤ ℓ ≤ m, M > 1, and some countable compact K ⊆ R \ {0}. Let
Astat(·) = A(·) + (·)2 denote the stationary Airy line ensemble and Kx,ℓ the coalescence depth for
the infinite geodesics starting from (0, 1) and (0, ℓ) with respect to the point x ∈ K, see Definition
4.10. Then, one has the bounds with

a = O(inf{δ > 1 : 1 ≤ ℓ ≤ m ,P(max
x∈K

Kx,ℓ ≥ δ) ≤ 1/m2}3/2 ∨ m)

P
(

max
x∈K,1≤ℓ≤m

|Astat[x → (0, ℓ)] − Astat[x → (0, 1)]| ≥ a
)

.
1

m
.

Proof. We abuse notation and writing Gℓ, 1 ≤ ℓ ≤ m in place of the last passage values over the
stationary line ensemble. By a union bound, we estimate for any δ ≥ m using Proposition 3.10

P

(

max
x∈K,1≤ℓ≤m

|Gℓ − G1| ≥ a

)

≤P

(

max
x∈K,1≤ℓ≤m

|Gℓ − G1| ≥ a, max
x∈K,1≤ℓ≤m

Kx,ℓ ≤ δ

)

+ P

(

max
x∈K,1≤ℓ≤m

Kx,ℓ ≥ δ

)

.

Now, using Proposition 3.3 we estimate

max
x∈K,1≤ℓ≤m

|Astat[(−
√

δ/(2 inf
x∈K

|x|), δ) → (0, ℓ)]| ≤ (δ/(2 inf
x∈K

|x|)) 1
4 log

1
2 2 ·

δ
∑

i=1

ωi(Astat) ,

where the moduli of continuity

ωi(Astat) := sup
t,s∈[−

√

δ/(2 inf
x∈K

|x|),0],t6=s

|Astat
i (t) − Astat

i (s)|
√

|t − s| log(2
√

δ/(2 sup
x∈K

|x|)/|t − s|)
, 1 ≤ i ≤ δ

are sub-Gaussian random variables with uniform bounds on their tails (see Proposition 3.10). A
union bound now gives

P

(

max
x∈K

|Astat[(−
√

δ/(2x), δ) → (0, ℓ)] − Astat[(−
√

δ/(2x), δ) → (0, 1)]| ≥ a

)

≤ P

( δ
∑

i=1

ωi(Astat) ≥ a
(2 inf

x∈K
|x|) 1

4

2δ
1
4 log

1
2 2

)

≤ C1δ exp

(

− C2 inf
x∈K

|x| 1
2

a2

δ
5
2

)

,

2Since the difference of last passage values and respective geodesics are the same for the parabolic and stationary
versions of the Airy line ensemble.
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for universal C1, C2 > 0. Combining the above, we obtain (after possibly enlarging C1)

P

(

max
x∈K,1≤ℓ≤m

|Gℓ − G1| ≥ a

)

≤ C1δ exp

(

− C2 inf
x∈K

|x| 1
2

a2

δ
5
2

)

+
∑

1≤ℓ≤m

P(max
x∈K

Kx,ℓ ≥ δ) ,

for universal C1, C2 > 0. Now, with

δ = inf{δ > 1 : ∀x ∈ K, 1 ≤ ℓ ≤ m ,P
(

Kx,ℓ ≥ δ
)

≤ 1/m2}3/2 ∨ m

and a = O(δ) gives

P

(

max
x∈K,1≤ℓ≤m

|Gℓ − G1| ≥ a

)

≤ C1m exp

(

− C2 inf
x∈K

|x| 1
2 m1/2

)

+
C1

m

.K
1

m
,

which concludes the proof. �

Now with this concentration result for last passage values in the stationary Airy line ensemble,
we obtain an extension thereof to differences in the initial data of finite depth truncations of the
KPZ fixed point in the following lemma.

Lemma 6.2. For ℓ ∈ N, α > 0, with Gℓ := max
x∈supp−∞(h0)

(h0(x) + A[x → (0, ℓ)]) with h0 continuous

and bounded. Suppose furthermore that the support of h0 is in some countable bounded K. Then,
for some sufficiently large universal constant θ > 0,

a = O(inf{δ > 1 : 1 ≤ ℓ ≤ m ,P(max
x∈K

Kx,ℓ ≥ δ) ≤ 1/m2}3/2 ∨ m)

P

(

max
x∈K,1≤ℓ≤m

|Gℓ − G1| ≥ θdiam(K) ‖h0‖K,∞ ∨ a

)

.
1

m
.

Proof. First observe that since h0 is continuous over its support, we can find a countable K ′

(which we will identify with K in an abuse of notation) which is (M, r)-meagre such that
Gℓ := max

x∈K ′
(h0(x) + A[x → (0, ℓ)]) . Now, for ℓ ∈ N, we estimate using the triangle inequality,

|Gℓ − G1| ≤ max
x,x′∈K

|h0(x) − h0(x′)| + max
x,x′∈K

|S(x, 0) − S(x′, 0)|

+ max
x∈K

|Astat[x → (0, ℓ)] − Astat[x → (0, 1)]| ,

where Astat(·) = A(·) + (·)2 is the stationary Airy line ensemble. Now, by the modulus of
continuity estimate for the stationary version of the Directed Landscape (Proposition 10.5 of
[DOV18]), one has almost surely for all x, x′ ∈ K,

|S(x, 0) − S(x′, 0) + (x − x′)2| ≤ CKdiam(K)1/4 ,

where CK > 0 is random depending on K with EaC
3/2
K < ∞ for some a > 1. Thus, we further

estimate

max
1≤ℓ≤m

|Gℓ − G1| ≤ 2 ‖h0‖∞ + CKdiam(K)1/4 + diam(K)2

+ max
x∈K,1≤ℓ≤m

|Astat[x → (0, ℓ)] − Astat[x → (0, 1)]| .

Finally applying Lemma 6.1 gives the result. �

Combining the above, we are now in a position to provide a quantitative Brownian comparison
for the spatial increments of finite depth truncations of the KPZ fixed point. For the essence of
the arguments underlying the following results, one can refer to the proof of Proposition 7.1 under
the simplifying assumptions made in Section 7.
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Theorem 6.3. Let m ∈ N, y0 ≥ 1, α > 0 and let Hm(·) with boundary terms Gℓ be as in (6.1)
with continuous and bounded initial data h0. Suppose furthermore that the support of h0 is in
some countable bounded K. Then, one also has the estimates with

a = O(inf{δ > 1 : P(max
x∈K

Kx,ℓ ≥ δ) ≤ 1/m2}3/2)

for all p > 1 and A Borel

P (Hm(· + 1) − Hm(1) ∈ A)

≤ Oy0,p exp
(

cy0,Km2diam(K)2 ‖h0‖2
K,∞ ∨ a2)

)

· µ(A)
1
2

(1− 1
p

)
+ O(y0, p) 1

m1/p .

Proof. Theorem 5.4 gives that, with µ the rate two Wiener measure on [0, y0 − 1],
Hm(· + 1) − Hm(1) satisfies the norm estimates the following holds for all p, r > 1,
A ⊆ C([0, y0 − 1]) Borel and a > 0

P (Hm(· + 1) − Hm(1) ∈ A) ≤ Oy0(exp(m7)) · exp
(

y0m2a2

4

( r/(r−1)
ry0/(r−1)+1 − 1

y0+1

)

)

·Oy0(exp(m7)) · sup
max1≤ℓ≤m |Gℓ−G1|≤a

∥

∥

∥Qm,G
∥

∥

∥

L2r/(r−1)(µ)
· µ(A)

1
r

(1− 1
p

)

+Oy0(exp(m7)) · P
(

max
1≤ℓ≤m

|Gℓ − G1| + max
1≤i≤m

|A(y0 + 1) − A(0)| ≥ a

)1/p

,

for all p, r > 1, ǫ ∈ (0, 1) and some universal constant c > 0, where

• G denotes the boundary data G = (Gℓ)
m
ℓ=1, Gℓ = max

x∈supp−∞(h0)
(h0(x) + A[x → (0, ℓ)]).

• Qm,G is the Radon-Nikodym derivative of

Y m,G := max
1≤ℓ≤m

(Gℓ − G1 + B[(0, ℓ) → (· + 1, 1)]) − max
1≤ℓ≤m

(Gℓ − G1 + B[(0, ℓ) → (1, 1)])

against a rate two Brownian motion on [0, y0 − 1] .

Now, Lemma 6.1 with a = O(diam(K) ‖h0‖K,∞ exp(m
α
2

+8)) and a union bound combined with

Lemma 3.10 give for some universal θ > 0 the estimates for all p > 1 and A Borel (setting
ǫ = 1/2, r = 2)

P (Hm(· + 1) − Hm(1) ∈ A)

≤ Oy0,K,h0 exp
(

cy0,K,h0 exp(m
α
2

+8)
)

× sup
max

1≤ℓ≤m
|Gℓ − G1| ≤ a

∥

∥

∥Qm,G
∥

∥

∥

L4(µ)
· µ(A)

1
2

(1− 1
p

) + O(y0, K)
1

m
1
p

,

for some cy0,K,h0 > 0. Now, using the control on the Radon-Nikodym derivative of upward
reflections of Brownian motion from Theorem 3.7 we obtain,

sup
max

1≤ℓ≤m
|Gℓ − G1| ≤ a

∥

∥

∥Qm,G
∥

∥

∥

L4(µ)
≤ O(y0)am2

edm2 log m+cy0ma2
.

We thus have the estimates for all p > 1 and A Borel

P (Hm(· + 1) − Hm(1) ∈ A)

≤ Oy0,K,h0,p exp
(

cy0,K,h0m exp(mα+16)
)

· µ(A)
1
2

(1− 1
p

) + O(y0, K) 1

m
1
p

≤ Oy0,K,h0,p exp
(

cy0,K,h0 exp(mα+17)
)

· µ(A)
1
2

(1− 1
p

) + O(y0, K) 1

m
1
p

.
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Now with K finite, following the above steps, one estimates with
a = O(inf{δ > 1 : ∀x ∈ K, 1 ≤ ℓ ≤ m ,P(Kx,ℓ ≥ δ) ≤ 1/m2}3/2 ∨ m) for all p > 1 and A Borel

P (Hm(· + 1) − Hm(1) ∈ A)

≤ Oy0,p exp
(

cy0m2diam(K)2 ‖h0‖2
K,∞ ∨ a2)

)

· µ(A)
1
2

(1− 1
p

) + O(y0, p)
1/p

m1/p ,

which concludes the proof. �

Having established the quantitative Brownian regularity for spatial increments of finite depth
truncations of the KPZ fixed point in the previous theorem, we now translate this to a
quantitative comparison of spatial increments of the actual KPZ fixed point at unit time. This
comparison is expressed in terms of the geodesic intercept values as defined in Theorem 4.5, which
is the final step before obtaining the main result. Note that the comparison is uniform over a
wide class of meagre initial data; for an illustration of such initial data, see Figure 7.

Corollary 6.4. Fix y0 > 1 and let h(·) be the KPZ fixed point on [1, y0] as defined in (5.2) with
bounded initial data h0. Then there exist constants bK,y0, d0 > 0 such that for all initial data in
the class

h0 ∈ FM,K,δ := {h0 : R → R ∪ {−∞} : h0|supp−∞(h0) ∈ C(supp−∞(h0);R) ,

supp−∞(h0) ⊆ K , dimM (supp−∞(h0)) < d0 − ǫ , ‖h0‖∞ ≤ M}
for some M > 0 and K ⊆ [1, ∞) compact, which is (M, r)-meagre for some M > 1 and
r < 1/882, one has the uniform bounds for any p > 1, with θ = 1

2(1 − 1/p), ǫ ∈ (0, 1) and

m∗ = sup

{

m ∈ N :

(

inf{δ > 1 : 1 ≤ ℓ ≤ m ,P(sup
x∈K

Kx,ℓ ≥ δ) ≤ 1/m2} ≤

log1/3 (1/µ(A)
ǫθ

bK,y0
)

)}

∧
⌊

log1/2 (1/µ(A)
ǫθ

bK,y0
)

⌋

,

one further estimates for all A Borel

P(h(· + 1) − h(1) ∈ A) ≤ Oy0,p

(

exp
(

diam(K)2 ‖h0‖2
K,∞

)

µ(A)
ǫ
2

(1− 1
p

)

+ 1
m∗1/p + P(L0 ≥ m∗)

)

.

Proof of Corollary 6.4. From Theorem 6.3, we have the estimates for all p > 1 and A Borel

P (Hm(· + 1) − Hm(1) ∈ A)

≤ Oy0,K,h0,p exp
(

cy0m exp(mα+16)
)

· µ(A)
1
2

(1− 1
p

) + O(y0, K) 1

m
1
p

≤ Oy0,K,h0,p exp
(

cy0 exp(mα+17)
)

· µ(A)
1
2

(1− 1
p

) + O(y0, K) 1

m
1
p

,

Now, Proposition 7.1 gives the bounds with
a = O(inf{δ > 1 : ∀x ∈ K, 1 ≤ ℓ ≤ m ,P(Kx,ℓ ≥ δ) ≤ 1/m2}3/2 ∨ m) for all p > 1 and A Borel

P (Hm(· + 1) − Hm(1) ∈ A)

≤ Oy0,p exp
(

cy0,Kdiam(K)2 ‖h0‖2
K,∞ ∨ a2)

)

· µ(A)
1
2

(1− 1
p

) + O(y0, p)
1/p

m1/p .

One thus estimates for all A Borel measurable

P(h(· + 1) − h(1) ∈ A) = inf
m∈N

P(h(· + 1) − h(1) ∈ A, L0 ≤ m) + P(L0 ≥ m + 1)

≤ inf
m∈N

P(Hm(· + 1) − Hm(1) ∈ A, L0 ≤ m) + P(L0 ≥ m)

≤ Oy0,p inf
m∈N

(

exp
(

cy0,Kdiam(K)2 ‖h0‖2
K,∞ ∨ a2)

)

· µ(A)
1
2

(1− 1
p

)

+
1/p

m1/p + P(L0 ≥ m)
)

.
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Now, with θ = 1
2(1 − 1/p) and any ǫ ∈ (0, 1), let

m∗ = sup







m ∈ N :



diam(K)2 ‖h0‖2
K,∞ ∨ a2

m ≤ log





1

µ(A)
ǫθ

bK,y0















< ∞ ,

one further estimates for all A Borel

P(h(· + 1) − h(1) ∈ A) ≤ Oy0,p

(

exp
(

cy0,Kdiam(K)2 ‖h0‖2
K,∞ ∨ a2

m∗)
)

· µ(A)
1
2

(1− 1
p

)

+
1/p

m∗1/p + P(L0 ≥ m∗)
)

≤ Oy0,p

(

µ(A)(1−ǫ) 1
2

(1− 1
p

) +
1/p

m∗1/p + P(L0 ≥ m∗)
)

.

Thus, simplifying we obtain that with

m∗ = sup

{

m ∈ N : inf
{

δ > 1 : ∀x ∈ K, 1 ≤ ℓ ≤ m, P(Kx,ℓ ≥ δ) ≤ 1/m2}

≤ log1/3
(

1/µ(A)
ǫθ

bK,y0

)

}

∧
⌊

log1/2
(

1/µ(A)
ǫθ

bK,y0

)

⌋

,

P(h(· + 1) − h(1) ∈ A) ≤ Oy0,p exp
(

diam(K)2 ‖h0‖2
K,∞

)

·
(

µ(A)(1−ǫ) 1
2

(1− 1
p

) +
1/p

m∗1/p + P(L0 ≥ m∗)
)

.

�

Finally, using the tail bounds on L0 established in Theorems 4.5 and 4.14, we establish using
Corollary 6.4 the uniform quantitative Brownian regularity of spatial increments of the KPZ fixed
point at general times with compactly supported data and sufficiently ‘meagre’ support. The
uniformity is with respect to a suitable class of functions. This is the content of the following
theorem, which is the main result of this paper.

Theorem 6.5. Let ht(·) := L(t; h0), t ≥ 0 be the KPZ fixed point as defined in (5.2). Then, fixing
t > 0 K ⊆ R compact, and for any ℓ < r both bounded, with |ℓ| + |r| ≤ y0 for some y0 > 0, one
obtains the estimates for all A Borel Borel measurable A ⊆ C0,∗([0, r − ℓ]) with µ(A) > 0

P(ht(· + ℓ) − ht(ℓ) ∈ A)

≤ OK,t,y0,ǫ

(

exp
(

dKM̃2
)

µ(A)1/8 + exp

(

−d′
K,t,y0,ǫ

log1/882−ǫ log
(

1/µ(A)
bK,t,y0,ǫ

)

M1/882−ǫ

))

,

for some bK,t,y0,ǫ, dK , d′
K,t,y0,ǫ > 0 uniformly in initial data in the class

h0 ∈ FM,M̃,K,ǫ := {h0 : R → R ∪ {−∞} : h0|supp−∞(h0) ∈ C(supp−∞(h0);R) ,

supp−∞(h0) ⊆ K , supp−∞(h0) is (M, 1/882 − ǫ) meagre , ‖h0‖∞ ≤ M̃} ,

for any fixed M̃, M > 1 and ǫ < 1/882.

Hence, in particular, one obtains that the family of laws of the increment process of the KPZ
fixed point for any r, ℓ bounded and t, M > 0 fixed on [0, r − ℓ],

Law
(

ht(· + ℓ) − ht(ℓ)
)

, 0 ≤ t ≤ T , h0 ∈ FM,M̃,K,ǫ

is tight.
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Proof of Theorem 6.5. By the 3 : 2 : 1 scaling invariance of the Directed landscape, we can
without loss of generality assume that t = ℓ = 1. For ease of notation, let h(·) := h1(·) denote the
KPZ fixed point at unit time.

Now, observe that the estimates in Theorems 4.5 and 4.14 with p = 2 gives for m ≥ 1

inf{δ > 1 : 1 ≤ ℓ ≤ m ,P(sup
x∈K

Kx,ℓ ≥ δ) ≤ 1/m2} ≤ CKm256
(

exp
(

dK,ǫM log1/(1/882−ǫ)(m)
))

.

Thus, we can take

m∗ = sup
{

m ∈ N :
(

CKm256
(

exp
(

dK,ǫM log1/(1/882−ǫ)(m)
))

≤

log1/3 (1/µ(A)bK,y0
)

)}

∧
⌊

log1/2 (1/µ(A)bK,y0
)

⌋

,

or

m∗ = sup
{

m ∈ N : CK

(

exp
(

dK,ǫM log1/(1/882−ǫ)(m)
))

≤

log1/3 (1/µ(A)bK,y0
)

)}

∧
⌊

log1/2 (1/µ(A)bK,y0
)

⌋

,

which simplifies to

m∗ =

⌈

CK,ǫ exp

(

dK,ǫ
log1/882−ǫ log

(

1/µ(A)bK,y0
)

M1/882−ǫ

)⌉

.

for some CK,ǫ, dK,ǫ > 0 which upon simplification, gives the estimates for all A Borel

P(h(· + 1) − h(1) ∈ A) ≤ Oy0,p

(

exp
(

diam(K)2 ‖h0‖2
K,∞

)

µ(A)1/8

+CK,ǫ exp

(

−dK,ǫ
log1/882−ǫ log

(

1/µ(A)
bK,y0

)

M1/882−ǫ

))

≤ OK,y0,ǫ

(

exp
(

dK ‖h0‖2
K,∞

)

µ(A)1/8 + exp

(

−dK,ǫ
log1/882−ǫ log

(

1/µ(A)
bK,y0

)

M1/882−ǫ

))

,

for some dK,ǫ, dK > 0. We thus obtain that there exists δK,y0 > 0 such that the estimates for all
A ⊆ C0,∗([0, y0 − 1]) Borel with µ(A) ∈ (0, δ(K, y0))

P(h(· + 1) − h(1) ∈ A)

≤ OK,y0,ǫ

(

exp
(

dK ‖h0‖2
K,∞

)

µ(A)1/8 + exp

(

−dK,ǫ
log1/882−ǫ log

(

1/µ(A)
bK,y0

)

M1/882−ǫ

))

≤ exp
(

dK ‖h0‖2
K,∞

)

OK,y0,ǫ

(

1

log
θM,K,ǫ log

(

1/µ(A)
bK,y0

)

)

hold for some θM,K,ǫ, dK,ǫ, dK > 0 and µ denotes the Wiener measure on [0, y0 − 1], completing
the proof. �

7. Future directions

In this section, we discuss possible ways of strengthening the quantitative Brownian
comparison of the KPZ fixed point on compacts.

A key to improving Brownian regularity is to strengthen the estimates satisfied by the
truncated versions of the KPZ fixed point. This would include improving the inverse acceptance
probability estimates as well as the Radon-Nikodym derivative bounds of inhomogeneous BLPP.
Next, a refinement of the picture of geodesic geometry in the Airy line ensemble, in particular
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−∞

M̃

I1 I2 I3
K =

⊔3
j=1 Ij

supp−∞(h0)

h0

Figure 7. Cartoon representation of initial data h0 ∈ FM,M̃,K,ǫ for some positive

M, M̃, ǫ and K =
⊔3

j=1 Ij a disjoint union of intervals Ii, i = 1, 2, 3, where the
constants M, ǫ given by meagreness condition are suppressed. Also note that the
support of h0, supp−∞(h0) is also an approximation and the initial data should look
like ‘dust’ inside its support, with the parameters M, ǫ controlling how ‘sparse’ it is.

improving tail bounds on semi-infinite geodesic intercepts and finer control over uniform geodesic
coalescence events on Brownian melons would also help improve Brownian regularity.

In particular, for any given x > 0, if one could strengthen the comparison in Theorem 3.17 by
showing that there for every ǫ > 0, we have for all δ ∈ (0, 1/14),

P
(

k1/6|A[(0, k) → (x, 1)] − 2
√

2kx| > ǫ
)

ǫ→0−→ 0 k ≥ 1 ,

then one would obtain improved tail bounds for L0, compared to those in Theorem 4.5, possibly
even showing that for all ǫ > 0, L0 satisfies the tail bounds

sup
j∈N

ej(3−ǫ) · P(L0 ≥ j) < ∞ .

Ultimately, the fruits of such an endeavour would be the following proposition.

Proposition 7.1. Fix y0 > 1 and let h(·) be the KPZ fixed point as defined in (5.2). Suppose that
there exists some p > 1, d ≥ 1, r > 0 such that we have the estimate for all m ∈ N and
A ⊆ C∗,∗([0, y0 − 1]) Borel set,

P(Hm(· + 1) − Hm(1) ∈ A) ≤ cp
(

emd · µ(A)1−1/p + e−mr)
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for all m ∈ N with cp > 0 independent of m ∈ N, where µ denotes the law of a rate two Brownian
motion on [0, y0 − 1] and Hm as defined in (6.1). Furthermore, let L0 satisfy some tail bound

sup
j∈N

ejr · P(L0 ≥ j) < ∞

for d > 0. Then, for any Borel A ⊆ C(0, y0 − 1) with µ(A) > 0

P(h(· + 1) − h(1) ∈ A) ≤ c′
p exp



−
⌊

(ǫ(1 − 1/p))1/d log

(

1

µ(A)

) 1
d

⌋r


 , r ≤ d

and for any t ∈ (1, p)

P(h(· + 1) − h(1) ∈ A) ≤ c′
t · µ(A)1−1/t , r > d

for some positive c′
p, c′

t > 0 independent of m ∈ N. In other words if r > d, then the
Radon-Nikodym derivative of the increment process of the KPZ fixed point h(· + 1) − h(1) is in
Lp−(µ) on [0, y0 − 1].

Proof. Fix A ⊆ C0,∗([0, y0 − 1]) Borel measurable. Then we estimate for all m ∈ N

P(h(· + 1) − h(1) ∈ A) = P(h(· + 1) − h(1) ∈ A, L0 ≤ m) + P(L0 ≥ m + 1)
≤ P(Hm(· + 1) − Hm(1) ∈ A, L0 ≤ m) + P(L0 ≥ m)

≤ cp
(

emd · µ(A)1−1/p + e−mr)

,

for some universal in m ∈ N (though possibly p-dependent) constant cp > 0.

Now, if d ≥ r fix any ǫ ∈ (0, 1) and let

m∗ =

⌊

log

(

1

µ(A)ǫ(1−1/p)

) 1
d

⌋

.

We can without loss of generality assume m∗ ≥ 1 otherwise, we would have
µ(A) ∈ (e−1/(ǫ(1−1/p)), 1] which gives

ν(A) ≤ 1 = e1/(ǫ(1−1/p)) · e−1/(ǫ(1−1/p)) ≤ e1/(ǫ(1−1/p)) · µ(A) .

Hence, we estimate

P(h(· + 1) − h(1) ∈ A) ≤ inf
m∈N

cp
(

emd · µ(A)1−1/p + e−mr)

≤ cp
(

em∗d · µ(A)1−1/p + e−m∗r)

≤ c′
p



µ(A)(1−ǫ)(1−1/p) + exp



−
⌊

(ǫ(1 − 1/p))1/d log

(

1

µ(A)

) 1
d

⌋r








≤ c′
p exp



−
⌊

(ǫ(1 − 1/p))1/d log

(

1

µ(A)

)
1
d

⌋r




for some positive c′
p > 0 independent of m ∈ N, concluding the proof of the first part.

If on the other hand, d < r, then for any t ∈ (1, p) with

m∗ =

⌈

log

(

1

µ(A)1−1/t

) 1
r

⌉

≥ 1 ,
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we estimate,

P(h(· + 1) − h(1) ∈ A) ≤ inf
m∈N

cp
(

emd · µ(A)1−1/p + e−mr)

≤ cp

(

em∗d · µ(A)1−1/p + e−m∗r)

≤ c′
p



exp





⌈

log

(

1

µ(A)1−1/t

) 1
r

⌉d


 · µ(A)
p−t
tp + 1



 · µ(A)1−1/t

≤ c′
p



exp





⌈

log

(

1

µ(A)1−1/t

)
1
r

⌉d

− p − t

tp
log

1

µ(A)



+ 1



 · µ(A)1−1/t

≤ c′
p

(

sup
z∈[1,∞)

exp

(

⌈(1 − 1/t)
1
r (log z)

1
r ⌉d − p − t

tp
log z

)

+ 1

)

· µ(A)1−1/t

≤ c′
p

(

sup
z∈[0,∞)

exp

(

((1 − 1/t)
1
r z

1
r + 1)d − p − t

tp
z

)

+ 1

)

· µ(A)1−1/t

= c′
t · µ(A)1−1/t

for some positive c′
p, c′

t > 0 (possibly changing from line to line) independent of m ∈ N, concluding
the proof of the second part. �

In short, applying Proposition 7.1 with r > d, one can convert the finite depth bounds to a
bound on spatial increments of the KPZ fixed point of the form

P(h(· + 1) − h(1) ∈ A) ≤ c′
t · µ(A)1−1/t

for any t ∈ (1, p), for some positive c′
t > 0 independent of m ∈ N. In other words, the

Radon-Nikodym derivative of the increment process of the KPZ fixed point h(· + 1) − h(1) is in
Lp−(µ) on compacts. We believe that one can achieve r = 3 from transversal fluctuation of
geodesics in discrete environments. Moreover, we also expect to have d < 3 from our already
established inhomogeneous Brownian LPP estimates, in addition to an improvement in estimating
inverse acceptance probabilities.

Moreover, a more refined understanding of geodesic geometry is crucial in obtaining improved
Brownian regularity for the KPZ fixed point. In this direction, we note that [RV23, Propositon
3.10] states that almost surely, the set of emanation points from weighted geodesics in the
directed landscape with respect to any initial data h0 is almost surely countable across all times.
Moreover, the set of maximiser emanation points from (5.2) have the representation as the set of
points

{e(x, t) : x ∈ R, t ≥ 0} , (7.1)

where for any t > 0, e(·, t) is right-continuous. That means that at unit time, the effective
max-plus support supp−∞(h0) is the countable point process (7.1). If one could obtain a
‘meagreness’-like property of supp−∞(h0), then one should be able to obtain uniform coalescence
depths and proceed as above to extend the Brownian regularity to arbitrary initial data.
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