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Abstract. We show that the Radon-Nikodym derivative of the law of the spatial increments
(with endpoints away from the origin) of inhomogeneous Brownian last passage percolation (LPP)
with non-decreasing initial data against the Wiener measure µ on compacts is in L∞−(µ); and for
any fixed p > 1, the Lp norm is at most of the order Op(edpm2 log m) for some p-dependent
constant dp > 0.

Furthermore, when the initial data is homogeneous, we establish optimal growth on Lp norms
(≍ O(exp(dm2))) of the Radon-Nikodym derivative of the Brownian LPP (i.e. top line of an
m-level Dyson Brownian motion) away from the origin, as the number of curves m tends to
infinity, for all p > 1 sufficiently large.

As an application of our framework, we show that the Radon-Nikodym derivative of certain toy
models for the KPZ fixed point lies in L∞−(µ), inspired by its variational characterisation in
terms of the directed landscape.
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1. Introduction

For a collection of m ∈ N independent Brownian motions B1, . . . , Bm defined on a compact
interval [0, t] for t > 0, one can define their last passage percolation (LPP for short) value,

B[(0, m) → (t, 1)]
as the maximum ‘length’ across all non-increasing integer valued paths π : [0, t] → N with
π(0) = m and π(t) = 1. Here the length of such a path with respect to the random environment is
the total cost incurred by traversing each curve in the environment; where for every index i from
1 to m, the contribution of the i-th Brownian motion to the cost is the increment in the value of
the curve along the path, see Definition 3.4 and Figure 1.

One can construct the Brownian LPP (or BLPP for short) by starting from Bm and
recursively reflecting upwards an independent Brownian motion off it. More generally, when one
carries this recursive construction of upward reflections for Brownian motions with initial values
g1 ≥ . . . ≥ gm, one obtains at the kth iteration

max
k≤ℓ≤m

(gℓ + B[(0, ℓ) → (t, k)]) .

We refer to the resulting process at the final m-th iteration, namely,
max

1≤ℓ≤m
(gℓ + B[(0, ℓ) → (t, 1)]) (1.1)

as the inhomogeneous Brownian LPP and the tuple
( max
k≤ℓ≤m

(gℓ + B[(0, ℓ) → (t, k)]))m
k=1

as the Brownian TASEP, where TASEP stands for totally asymmetric simple exclusion process.
Intuitively, one can think of this system as a collection of interacting Brownian particles with

asymmetric (upward) collisions. Indeed, Brownian TASEP can be obtained as the low density
limit of the totally asymmetric simple exclusion process (TASEP), see [GS15]. Briefly, in this
model, one considers an infinite sequences of particles with positions

· · · < Xt(2) < Xt(1) < Xt(0) < Xt(−1) < Xt(−2) < . . . on Z ∪ ±∞.

The evolution of the system is driven by each particle independently attempting to occupy its
right-adjacent spot, provided it is empty, with exponential waiting time with rate 1. To each
integer u, one can associate X−1

t (u) = min{k ∈ Z : Xt(k) ≤ u}, that the label of the right-most
particle with position up to u.

When the initial data is homogeneous, that is gi = 0 for all i = 1, . . . , m, the above
construction coincides with that of Dyson’s Brownian motion through the RSK correspondence
and was established in [OY02]. In that case, for all p > 1 sufficiently large, we establish optimal
growth on Lp norms (≍ O(exp(dm2))) of the Radon-Nikodym derivative of the top level of Dyson
Brownian motion away from the origin, as the number of levels tends to infinity by observing that
the measure of Dyson Brownian motion paths can be constructed by the h-transform of a
Brownian motion conditioned to never leave the Weyl chamber.

Now if the Brownian motion starting points are arbitrary, in [SV21, Theorem 4.3], it was shown
that away from zero, inhomogeneous Brownian LPP is absolutely continuous with respect to
Brownian motion on compacts. When the initial conditions are non-increasing, we substantially
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strengthen this comparison and show using diffusion interlacing arguments and the theory of
Markov processes that the Radon-Nikodym derivative of the law of the spatial increments (with
endpoints away from zero) of the inhomogeneous BLPP against the Wiener measure µ on
compacts is in L∞−(µ). Also, for any fixed p > 1, one has that the Lp norm is at most of the
order Op(edpm2 log m) for some p-dependent constant dp > 0, which is the main technical result of
this paper (Theorem 7.9). We state it below.

Theorem 1.1. (Radon-Nikodym derivative estimates) Fix m ≥ 1, and let H(·) denote the
inhomogeneous Brownian LPP started from initial data g1 ≥ . . . ≥ gm as defined in (1.1). Then,
for all 0 < ℓ < r < ∞, we have that the Radon-Nikodym derivative of the law of H(·) against a
rate two Brownian motion starting from the origin µ on [ℓ, r] is in L∞−(µ|[ℓ,r]). In particular,
with ξℓ,r,m,b denoting the law of H as defined above on [ℓ, r],∥∥∥∥∥dξℓ,r,m,b

dµ|[ℓ,r]

∥∥∥∥∥
Lp(µ|[ℓ,r])

= Op(edpm2 log m), for all p > 1.

for some universal in m ∈ N (though possibly p-dependent) constant dp > 0 for all p > 1.

The key observation that enables us to proceed with the proof is that the inhomogeneous
Brownian LPP with non-increasing initial data is a version of the regular conditional distribution
of the Warren process (see [War07]), in the Gelfand-Tsetslin cone. This arises from the iteration of
a certain diffusion interlacing procedure consisting of upward and downward Skorokhod reflections
to ‘interlace’ newly added independent Brownian motions between existing processes. One can
thus obtain explicit densities, and owing to the Markovian nature of the inhomogeneous Brownian
LPP, the proof of Theorem 7.9 is reduced to estimating the ratio of densities using the estimates
obtained for Dyson Brownian motion. The final ingredient consists of several integral estimates,
relegated to the Appendix, that are crucial in estimating the Radon-Nikodym derivative.

As an application, we provide a framework to obtain Lp estimates for the Radon-Nikodym
derivative of various toy models for the KPZ fixed point inspired by its variational
characterisation in terms of the directed landscape. Moreover, in [TS, Theorem 6.2], we use these
estimates to obtain a form of quantitative Brownian regularity for the spatial increments of the
KPZ fixed point with respect to a certain class of ‘meagre’ initial data. We believe our arguments
can be strengthened to obtain Lp norm estimates for the Radon-Nikodym derivative of spatial
increments of the KPZ fixed point on compacts for all finitary initial data.

1.1. Organisation of paper. In Section 2, we set up the notation we will be using throughout.
In Section 3 we provide necessary background material. Section 4 is devoted to establishing
pathwise Radon-Nikodym derivative estimates for the top line of Dyson Brownian motion, see
Proposition 4.1. This leads to a characterisation of the growth of Lp norms for all p > 1
sufficiently large of the Radon-Nikodym derivative away from the origin, as the number of curves
in the Dyson Brownian motion tends to infinity, see Theorem 4.2. Then, in Section 5 we introduce
Brownian TASEP and investigate some of its structural properties leading to its characterisation
as a semi-martingale satisfying a singular stochastic differential equation, see Theorem 5.4. Next,
we introduce the Warren process in Section 6 and establish its close connection to inhomogeneous
BLPP. This allows us to compute explicit densities of the iterated reflection processes, and obtain
an explicit expression for the Radon-Nikodym derivative of inhomogeneous BLPP against that of
Dyson Brownian motion in Theorem 6.6. In Section 7, the main result of this paper is established
in Theorem 7.9. It provides pathwise and L∞− estimates for the Radon-Nikodym derivative of
inhomogeneous BLPP with respect to Brownian motion on compacts and the Lp norm of the
derivative for any p > 1. The technical integral estimates used here have been relegated to the
Appendix (Section 9.1). Finally, in Section 8, we apply our estimates to obtain pathwise and
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L∞− estimates for a ‘toy’ model of the KPZ fixed point, namely for inhomogeneous BLPP of
“random depth”; see Theorem 7.9. Finally, we briefly discuss [TS, Theorem 6.2], and how we use
the estimates in this paper to obtain a form of quantitative Brownian regularity for the spatial
increments of the KPZ fixed point started from a certain class of ‘meagre’ initial data.

1.2. Related work. In [War07, AOW19], the authors construct systems of diffusions with
singular drifts corresponding to collisions induced by ‘interlacing’ various diffusion semigroups. In
particular, they construct Brownian motion in the Gelfand-Tsetslin cone, whose diagonal section
is shown to be identical in [War07, Proposition 6] in law to Dyson Brownian motion. Various
determinantal formulae are obtained for transition densities related to such interlaced diffusions.
This is a crucial input in the proof of Theorem 7.9.

In [SV21, Theorem 4.3] it is shown that general inhomogeneous BLPP is locally absolutely
continuous with respect to Brownian motion away from the origin. In our work, Theorem 7.9 is a
considerable strengthening of the comparison of inhomogeneous BLPP against Brownian motion,
giving the aforementioned L∞− control against the Wiener measure.

In [TS, Theorem 6.2], we use these estimates to obtain a form of quantitative Brownian
regularity for the spatial increments of the KPZ fixed point with a certain class of ‘meagre’ initial
data.

1.3. Acknowledgement. SS would like to thank Bálint Virág for some initial helpful discussions.

2. Notation

We introduce some notation and conventions we will be using throughout.
When in some estimates a constant appears that will depend on some parameters a, b, c, · · · , it

will be denoted by Ca,b,c,··· unless otherwise specified. Constants without subscripts are deemed to
be universal, unless otherwise stated. Additionally, for ease of notation, such constants are
allowed to change from line to line. Moreover, for ease of notation such constants may be dropped
and instead replaced with the symbols ≲a,b,c,··· (≡ Oa,b,c,···(·)) and ≳a,b,c,··· for some parameters
a, b, c, · · · which stand for ≤ Ca,b,c,··· and ≥ C ′

a,b,c,··· for some constants Ca,b,c,···, C ′
a,b,c,··· respectively.

We take the set of natural numbers N to be {1, 2, . . .}. For k ∈ N, we use an underbar to
denote a k-vector, that is, x ∈ Rk. We denote the integer interval {i, i + 1, . . . , j} by Ji, jK. A
k-vector x = (x1, . . . , xk) ∈ Rk is called a k-decreasing list if x1 > x2 > . . . > xk. For a set I ⊆ R,
let Ik

> ⊆ Ik be the set of k-decreasing lists of elements of I, and Ik
≥ be the analogous set of

k-non-increasing lists.
The symbols · ∧ ·, · ∨ · denote min{·, ·} and max{·, ·} respectively. For any a ∈ R, a+ denotes

a ∨ 0.
We now turn to some notational conventions for the path spaces that will be used throughout.

For general domains of paths J , we denote the space of continuous paths, in the usual topologies,
by C∗,∗(J,R). More specifically, if the domain is an interval [a, b] ⊆ R, we denote the space of
continuous functions with domain [a, b] which vanish at a by C0,∗([a, b],R). For random functions
taking values in these spaces, we will always endow them with their respective Borel σ-algebras
generated by the topologies of uniform convergence (which makes them into Polish spaces).
Similarly, for k ≥ 1, a < b, define Ck

∗,∗([a, b],R) :=×k
i=1 C∗,∗([a, b],R) and equip it with the

product of the uniform topologies.
We say that a Brownian motion or a Brownian bridge has rate v if its quadratic variation in an

interval [s, t] is equal to v(t − s). We say that a Dyson’s Brownian motion or a Brownian k-melon
has rate v if the component Brownian motions have rate v. From now on, all Brownian motions
are rate two unless stated otherwise.
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3. Preliminaries

We will now collect some basic definitions and provide necessary background material that will
be crucial in setting up pathwise Radon-Nikodym derivative estimates for Brownian last passage
percolation (BLPP). To this end, we start with the definition of random line ensembles and last
passage percolation (LPP), that underlie the constructions we will be henceforth considering.

Definition 3.1 (Random ensemble). Let Σ be a (possibly infinite) interval of Z, and let Λ be an
interval of R. Consider the set X := CΣ of continuous functions f : Σ × Λ → R. We endow it
with the topology of uniform convergence on compact subsets of Σ × Λ. Let C denote the
sigma-field generated by Borel sets in X.

A Σ-indexed line ensemble L is a random variable defined on a probability space (Ω,B,P),
taking values in X such that L is a (B, C )-measurable function. Furthermore, we write
Li := (L(ω))(i, ·) for the line indexed by i ∈ Σ.

3.1. Last passage percolation. We begin with the collection of some preliminary facts
regarding last passage percolation (sometimes abbreviated as LPP in the paper) over ensembles of
functions.

Formally, let I ⊂ Z be a possibly finite index set and define the space CI of sequences of
continuous functions with real domains, that is, the space

f : R × I → R (x, i) 7→ fi(x) .

Definition 3.2 (Path). Let x ≤ y ∈ R, and m ≤ ℓ ∈ Z respectively. A path, from (x, ℓ) to (y, m)
is a non-increasing function π : [x, y] → N which is cadlag on (x, y) and takes the values π(x) = ℓ
and π(y) = m.

Remark. The convention that the paths be non-increasing is so that they match the natural
indexing of the Airy line ensemble, see the seminal paper of [CH14].

We now define an important quantity associated to each such path, namely, its length as the
sum of increments of f along π. This also leads one to naturally define a derived quantity, namely
the last passage value.

Definition 3.3 (Length). Let x ≤ y ∈ R and m < ℓ ∈ Z. For each m ≤ i < ℓ, let tℓ−i denote the
jump of the path π, on an ensemble (fi)i∈I , from fi+1 to fi. Then the length of π is defined as

ℓ(π) = fm(y) − fm(tℓ−m) +
ℓ−m−1∑

i=1
(fℓ−i(ti+1) − fℓ−i(ti)) + fℓ(t1) − fℓ(x) .

Definition 3.4 (Last passage value). With x ≤ y, m < ℓ as before and f ∈ CI , define the last
passage value of f from (x, ℓ) to (y, m) as

f [(x, ℓ) → (y, m)] := sup
π

ℓ(π) ,

where the supremum is over precisely the paths π from (x, ℓ) to (y, m).

Remark. Any path π from (x, ℓ) to (y, m) such that its length is equal to its last passage value is
called a geodesic. To establish the existence of geodesics one can proceed by first noticing that the
length of a path ℓ(π), can be viewed as a function on the subset Z of non-increasing cadlag
functions with fixed endpoints, of the space of cadlag functions D := D([x, y],N). When endowed
with respect to the Skorokhod topology, which is metrisable, the above function is continuous.
Since Z is closed with respect to the above topology of “jump times”, a compactness argument
using Arzela-Ascoli, see [Bil13, ch. 3], implies that the supremum over admissible paths is indeed
attained.
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∆1

∆2

∆3

∆4

(x, 4)

(y, 1)

x t1 t2 t3 y

Figure 1. Visualisation of a possible path (blue) ‘embedded’ on the underlying
environment (random ensemble F : [x, y] × J1, 4K → R), here (F1, F2, F3, F4) from
top to bottom, and m = 1, ℓ = 4. Here ∆1 = F4(t1) − F4(x), ∆2 = F3(t2) − F3(t1),
∆3 = F2(t3) − F2(t2), ∆4 = F1(y) − F1(t3) and ℓ =

∑4
i=1 ∆i.

Last passage percolation enjoys the following metric composition law, Lemma 3.2 in DOV
[DOV18].

Lemma 3.5 (Metric composition law). Let x ≤ y ∈ R, m < ℓ ∈ Z and f ∈ CI . If k ∈ {m, . . . , ℓ},
then we have

f [(x, ℓ) → (y, m)] = sup
z∈[x,y]

(f [(x, ℓ) → (z, k)] + f [(z, k) → (y, m)]) ,

and if k ∈ {m + 1, . . . , ℓ}, then
f [(x, ℓ) → (y, m)] = sup

z∈[x,y]
(f [(x, ℓ) → (z, k)] + f [(z, k − 1) → (y, m)]) .

Furthermore for any z ∈ [x, y],
f [(x, ℓ) → (y, m)] = sup

k∈{m,...,ℓ}
(f [(x, ℓ) → (z, k)] + f [(z, k) → (y, m)]) (3.1)

3.2. The Pitman transform. Recall that with f = (f1, f2) where fi : [0, ∞) 7→ R for i = 1, 2,
for f ∈ C2

∗,∗([0, ∞)), we define Wf = (Wf1, Wf2) ∈ C2
∗,∗([0, ∞)), the Pitman transform of f as

follows. For x < y ∈ [0, ∞), define the maximal gap size

G(f1, f2)(x, y) := max
(

max
s∈[x,y]

(
f2(s) − f1(s)

)
, 0
)

.

Then define
Wf1(t) = f1(t) + G(f1, f2)(0, t) , (3.2)
Wf2(t) = f2(t) − G(f1, f2)(0, t) ,

for all t ∈ [0, ∞).
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Figure 2. An illustration of the Pitman transform WB of two Brownian motions
B1, B2.

One can express the top line of the Pitman transform in terms of last passage values.

Lemma 3.6. Let f ∈ C2
+ and let Wf = (Wf1, Wf2) be as above. Then for all t ∈ [0, ∞),

Wf1(t) = max
i=1,2

{fi(0) + f [(0, i) → (t, 1)]} .

Proof. By definition,
Wf1(t) = f1(t) + G(f1, f2)(0, t)

= f1(t) + max{ max
s∈[x,y]

(f2(s) − f1(s)), 0}

= max{ max
s∈[x,y]

(f2(s) + f1(t) − f1(s)), f1(t)} .

From 3.1, we get f1(t) = f1(0) + f [(0, 1) → (t, 1)] and
max
s∈[0,t]

(f2(s) + f1(t) − f1(s))} = f2(0) + f [(0, 2) → (t, 1)] .

Combining the above gives the result. □

Particularly in the case where f1(0) = f2(0) = 0, we obtain that
Wf1(t) = f [(0, 2) → (t, 1)] .

Wf is commonly referred to as the 2-melon (which will be generalised in the following section to
so-called n-melons) of f , since paths in Wf avoid each other and thus resemble the stripes of a
watermelon. For an illustration involving two Brownian motions, see Figure 2.

3.3. Dyson Brownian motion. Fix any ϵ, t > 0 and let Bn be the collection of n independent
Brownian motions with initial conditions Bn

i (0) = 0 conditioned not to intersect on [ϵ, t] (note the
non-intersection event has positive probability). Then, as ϵ ↘ 0, t ↗ ∞, Kolmogorov’s extension
theorem gives that the Bn converges in law to a limiting process, namely, n-level Dyson Brownian
motion.

An alternative construction is to first take x ∈ Rn
> and with Px denoting the law of n

independent Brownian motions B started at x and P̂x the law of the h-transform of B started at
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x where h(x1, x2, · · · , xn) =
∏

1≤i<j≤n(xi − xj)+. Then the weak limit of P̂x as Rn
> ∋ x → 0 can

be realised as a random ensemble with law on paths P̂0+ which agrees with the n-level Dyson
Brownian motion starting from the origin. The advantage of this construction is that it is more
amenable to Radon-Nikodym estimates.

It is worth mentioning that the Dyson Brownian motion was initially described in [Dys62] as
the eigenvalues of n × n time-dependent Hermitian matrices with entries independent
complex-valued Brownian motion.

3.4. Melons. An application of the above that is of interest is that of two independent standard
Brownian motions (starting from zero) B = (B1, B2). Let B̂ = (B̂1, B̂2) be two independent
Brownian motions conditioned not to collide, in the sense of Doob (a 2-Dyson Brownian motion).
Then, the law of the melon WB as defined above in (3.2) is the same as that of B̂. In [OY02], a
generalisation was proved for n Brownian motions, using a continuous analogue of the
Robinson–Schensted–Knuth (RSK) correspondence, where each level in the n-melon
WBn = (WBn

1 , WBn
2 , · · · , WBn

n) is obtained from a family of n Brownian motions by a sequence
of deterministic operations that are analogous to the sorting algorithm ‘bubble sort’ where the top
curve WBn

1 coincides with the top level of an n-Dyson Brownian motion. The term melon comes
from the ordering of paths: for some continuous n−tuple f , (Wf)n

1 ≥ (Wf)n
2 ≥ · · · ≥ (Wf)n

n and
their initial value which is 0, which means they look like stripes on a watermelon. When clear
from context, we will abuse notation and drop the superscript, writing instead Wf .

In particular, [DOV18, Proposition 4.1] gives an important property of melon paths in that
they preserve last passage values (with no restriction on their starting point). In particular,

WB[(0, n) → (t, 1)] = B[(0, n) → (t, 1)] , ∀t ≥ 0 .

Using the fact that WBn(0) = 0 and the ordering of melon paths, one gets that the left-hand-side
of the above equation is just WB1(t). Thus the top line of melon paths is completely
characterised in terms of Brownian last passage percolation. For a more complete definition of
melons involving the remaining lines, see [DOV18, sec. 2] and [OY02].

After appropriate rescaling, WBn converges in law to a non-intersecting ensemble on CN (with
respect to the product of the uniform-on-compact topologies on CN), called the parabolic Airy
line ensemble; see Theorem 2.1 in [DOV18] for more on this.

4. Dyson Brownian motion: Radon-Nikodym derivative estimates

In this section, we consider iterating the Pitman transform on a family of independent
Brownian motions starting from the origin. We obtain pathwise, as well as optimal Lp

Radon-Nikodym derivative estimates for all p > 1 against Brownian motion on compacts away
from zero. This approach is inspired by [OY02] (see Subsection 3.4), wherein the authors
introduce a ‘sorting’ procedure for a family of independent Brownian motions involving Pitman
transforms and (with inputs from queueing theory) show that BLPP is equal in distribution with
the top curve in a Dyson ensemble, [OY02, Theorem 7]. This allows us to exploit the
representation of the Dyson ensemble as the Doob h-transform of Brownian motions conditioned
to not leave the Weyl chamber, and obtain the desired estimates.

We first establish pointwise estimates for the Radon-Nikodym derivatives of the top line of the
Dyson Brownian motion in Proposition 4.1 leading to Theorem 4.2 establishing optimal growth of
the Lp norms of the Radon-Nikodym derivative of Brownian LPP away from the origin, as the
number of curves tends to infinity.

Proposition 4.1. Fix n ∈ N, 0 < ℓ < r and let H(·) denote the top line of an n-Dyson Brownian
motion. Then the law of H restricted to [ℓ, r] is absolutely continuous with respect to that of a
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standard Brownian motion starting from 0 restricted to [ℓ, r]. The Radon-Nikodym derivative of
H at a path ξ is bounded above by

cn(n−1)nn(n−1)∏n−1
j=1 j!

· (ξ(ℓ)+/
√

ℓ + 1)n−1 · (ξ(r)+/
√

r + 1)n−1.

for some universal constant c > 1.

Proof. Let x ∈ Rn
> and Px denote the law of a Brownian motion B started at x and P̂x the law of

the h-transform of B started at x where h(x1, x2, · · · , xn) =
∏

1≤i<j≤n(xi − xj)+. With
T = inf{t ≥ 0 : B hits ∂rn

>}, we have for A ∈ Ft, the natural filtration of B,

P̂x(A) = Ex

[
h(Bt)
h(x) 1{t<T }∩A

]
≤ Ex

[
h(Bt)
h(x) 1A

]
where Ex denotes the expectation with respect to Px. Now also observe that we have established
a pointwise bound on the Radon-Nikodym derivative of P̂x ≪ Px on C∗,∗([0, t]) for all t ≥ 0. It is
also not hard to see that upon taking the limit Rn

> ∋ x → 0, H can be realised as the top curve of
a random ensemble with P̂0+ satisfying ([OY02])

P̂0+(A) = P0
[
Cth(Bt)2P̂Bt(θtA)

]
, A ∈ σ(Bu, u ≥ t),

where θt is the shift operator on path space A ∈ σ(Bu, u ≥ t) 7→ θtA ∈ σ(Bu, u ≥ 0) and

Ct =

tn(n−1)/2
n−1∏
j=1

j!

−1

Now let 0 < ℓ < r be given and let A ⊆ C∗,∗([ℓ, r]) be Borel measurable, then with t = ℓ > 0, we
compute

P̂0+(A) = P0
[
Cℓh(B(ℓ))2P̂Bt(θLA)

]
≤ E0

[
Cℓh(B(ℓ))2E0

[
h(B̄(r−ℓ)+B(ℓ))

h(B(ℓ)) 1θLA

]]
= E0

[
Cℓh(B(ℓ))E0

[
h(B̄(r − ℓ) + B(ℓ))1θLA

]]
= E0 [Cℓh(B(ℓ))h(B(r))1A]

where B̄ denotes a standard Brownian motion independent from B and for the last equality the
Markov property for Brownian motion was used (independent increments). Thus, the
Radon-Nikodym derivative of H against standard Brownian motion on [ℓ, r] is pointwise bounded
for µ-a.a. paths ξ by (essentially computing the marginal)
CℓE0 [h(ξ(ℓ), B2(ℓ), · · · , Bn(ℓ)) · h(ξ(r), B2(r), · · · , Bn(r))]

= CℓE0

 ∏
1<j≤n

(ξ(ℓ) − Bj(ℓ))+ ·
∏

1<j≤n

(ξ(r) − Bj(r))+ ·
∏

2≤i<k≤n

(Bi(ℓ) − Bk(ℓ))+(Bi(r) − Bk(r))+


≤ CℓE0

[ ∏
1<j≤n

(ξ(ℓ)+ + Bj(ℓ)−)
∏

1<j≤n

(ξ(r)+ + Bj(r)−)

×
∏

2≤i<k≤n

(Bi(ℓ)+ + Bk(ℓ)−)(Bi(r)+ + Bk(r)−)
]

≤ Cℓ

∏
1<j≤n

(
ξ(ℓ)+ + ∥Bj(ℓ)−∥n(n−1)

)
·
(
ξ(r)+ + ∥Bj(r)−∥n(n−1)

)
×

∏
2≤i<k≤n

(
∥Bi(ℓ)−∥n(n−1) + ∥Bk(ℓ)−∥n(n−1)

)
·
(
∥Bi(r)−∥n(n−1) + ∥Bk(r)−∥n(n−1)

)
,
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by generalised Hölder, where ∥·∥n(n−1) denotes the Ln(n−1)(P) norm. Now observe that for all
1 ≤ j ≤ n,

∥Bj(ℓ)−∥n(n−1) ≤ cn
√

ℓ,

where c > 0 is a universal constant, and similarly for B(r) (which follows from the asymptotics of
the moments of the gaussian distribution). Thus, we have the further estimate for the
Radon-Nikodym derivative for µ-a.a. paths ξ

≤ Cℓ

∏
1<j≤n

(ξ(ℓ)+ + cn
√

ℓ) · (ξ(r)+ + cn
√

r) ·
∏

2≤i<k≤n

(cn
√

ℓ + cn
√

ℓ) · (cn
√

r + cn
√

r)

≤ cn(n−1)nn(n−1)∏n−1
j=1 j!

· (ξ(ℓ)+/
√

ℓ + 1)n−1 · (ξ(r)+/
√

ℓ + 1)n−1.

□

Remark. These pathwise estimates also yield some uniform estimates for the Radon-Nikodym
derivative processes of homogeneous BLPP against Brownian motion on compacts, see Section 9.2
in the Appendix.

A simple calculation gives the prefactor in the pointwise bound of the Radon-Nikodym
derivative in Proposition 4.1

cn(n−1)nn(n−1)∏n−1
j=1 j!

= O(edn2) ,

for some d > 0. It turns out that for large enough p > 1, one can show that this growth is
optimal, which is the content of the following theorem.

Theorem 4.2. Fix n ∈ N, 0 < ℓ < r and let H(·) be the top line of an n−Dyson Brownian
motion. Then the Radon-Nikodym derivative of the law of H against the Wiener measure µ
restricted to [ℓ, r] satisfies the following asymptotic behaviour for all p > 1 sufficiently large∥∥∥∥dLawH

dµ

∥∥∥∥
Lp(µ)

≥ cpedpn2
, n ≥ 1 .

for some p-dependent constants cp, dp > 0.

Proof. Now, arguing as in the proof of Proposition 4.1, we can obtain that the Radon-Nikodym
derivative of H against standard Brownian motion on [ℓ, r] on paths ξ by

CℓE0 [h(ξ(ℓ), B2(ℓ), · · · , Bn(ℓ)) · h(ξ(r), B2(r), · · · , Bn(r)) · 1(NoInt(ξ, B2:n; [ℓ, r]))] ,

where

Cℓ =

ℓn(n−1)/2
n−1∏
j=1

j!

−1

.

This gives the norm estimates∥∥∥∥dLawHn

dµ

∥∥∥∥
Lp(µ)

= CℓE0 [hp(B(ℓ)) · hp(B(r)) · 1(NoInt(B; [ℓ, r]))]1/p , p > 1 .

Now, conditioning on B(ℓ) and using the Karlin-McGregor formula (see [KM59]) and a Monotone
class argument allows us to express the above as

Cℓ

(∫
Rn

<×Rn
<

hp(x)hp(y)det
(
e−

(xi−yj )2

4(r−ℓ)
)

1≤i,j≤n
e− ∥x∥2

4ℓ dx dy

)1/p

. (4.1)
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Now, the Harish-Chandra formula from [HC57] and the multi-linearity of the determinant give

det
(

e−
(xi−yj )2

4(r−ℓ)

)
1≤i,j≤n

= e− ∥x∥2
4(r−ℓ) e− ∥y∥2

4(r−ℓ)

(4(r − ℓ))
n(n−1)

2
∏n−1

j=1 j!

×
∫

U(m)
e

1
4(r−ℓ) tr

(
diag(x)Udiag(y)U∗

)
µU(m)(dU) h(x)h(y) ,

where µU(m) is the normalised Haar measure on the group U(m) of unitary transformations on
Cm. Observe that for any U ∈ U(m) we can estimate using Cauchy-Schwarz

|tr(diag(x)Udiag(y)U∗)| ≤ ∥x∥2 · ∥y∥2 ≤ 1
2 ∥x∥2

2 + 1
2 ∥y∥2

2 .

Thus, we can estimate equation (4.1) as a product of two integrals (where we have expanded the
domains of integral to Rn by symmetry)

(4.1) ≥ cℓ,re−dℓ,rn2(∏n
j=1 j!

)2

(∫
Rn

∆p(x)e−c′
ℓ,r∥x∥2

dx

)1/p

·
(∫

Rn
∆p(y)e−c′′

ℓ,r∥y∥2
dy

)1/p

,

where for x ∈ Rn, ∆(x) =
∏

1≤i<j≤n |xi − xj |. Observe that the RHS above is the product of two
Mehta integrals, see [FW08, Eq. (1.1)], which can be evaluated exactly in terms of the Gamma
function resulting in the estimates

(4.1) ≥ cℓ,r,pe−dℓ,rn2

(∏n
j=1 Γ

(
1 + j p

2
))2/p

(∏n
j=1 j!

)2 ≥ cℓ,r,ped′n2 log p−dℓ,rn2
,

by the asymptotics of the Gamma function Γ(·), for some positive constants cℓ,r,p, c′
ℓ,r, c′′

ℓ,r, dℓ,r, d′,
which concludes the proof. □

Remark. Note that Proposition 9.8 in Section 9.3 in the Appendix shows that in principle the
growth for the Radon-Nikodym derivative of spatial increments of the top line of Dyson Brownian
motion can be improved, though at present it is not clear how to translate the estimates thus
obtained to this context.

5. Inhomogeneous Brownian LPP

In this section, we will consider the operation of iterating Skorokhod reflections on a family of
independent Brownian motions B1, · · · , Bn with non-decreasing initial conditions
g1 ≥ g2 ≥ · · · ≥ gn (Brownian TASEP). In particular, we will uncover the Markovian structure of
Brownian TASEP in Proposition 5.3 and then in Theorem 5.4 uncover its semi-martingale
structure by showing that it solves a particular system of singular stochastic differential equations.

Now let n ∈ N and consider the Brownian LPP (or BLPP) (Hk)n
k=1 as in Proposition 4.1. A

simple induction unravelling the definition of the Pitman transform (3.2) gives

(Hn−k+1)n
k=1(·) d= (B[(0, 1) → (·, k)])n

k=1

as processes on [0, ∞), where B is a family of independent Brownian motions starting from the
origin. Now, by the metric composition law enjoyed by LPP, we obtain

B[(0, 1) → (· + 1, k)] = max
1≤ℓ≤k

(B[(0, 1) → (1, ℓ)] + B[(1, ℓ) → (· + 1, k)]) on [0, ∞) .

Thus, by independence of increments of Brownian motion, conditioning on
(B[(0, 1) → (1, ℓ)])1≤ℓ≤k ≡ (bℓ)1≤ℓ≤k, we are hinted to the Markovian structure of (Hk)n

k=1 (with
respect to its own filtration, to be made precise below) and are led to the following definition of
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Brownian LPP with inhomogeneous boundary data, as a way of studying its regular conditional
distributions, or Markov kernel.

Definition 5.1. (Brownian TASEP) Fix m ≥ 1, B1, · · · , Bm be independent Brownian motions
starting from the origin, g = (gℓ)m

ℓ=1 ∈ Rm
≥ and define the Brownian TASEP started from initial

data (gℓ)m
ℓ=1 as the random ensemble

max
k≤ℓ≤m

(gℓ + B[(0, ℓ) → (y, k)]) , y ∈ [0, ∞) , k ∈ J1, mK

where B[(0, ·′) → (·, 1)] denotes Brownian LPP.
Furthermore, the process

max
1≤ℓ≤m

(gℓ + B[(0, ℓ) → (y, 1)]) , y ∈ [0, ∞)

is called inhomogeneous BLPP started from initial data g.

We start with a lemma that gives a deterministic procedure for constructing Brownian TASEP
of any depth in terms of iterated Skorokhod reflections of independent Brownian motions. This
will be useful in obtaining a better understanding of its structural properties.

Lemma 5.2. Let B = (B1, B2, · · · ) ∈ CN be an ensemble of independent rate two Brownian
motions starting from the origin. Fix m ≥ 2 and g = (g1, g2, · · · , gm) ∈ Rm

≥ and let H(·) denote
an inhomogeneous Brownian LPP started from initial data g = (g1, g2, · · · , gm) ∈ Rm

≥ . Then, H
satisfies

H = WL1(y) for all y ≥ 0 ,

where g′ = (g2, · · · , gm) ∈ Rm−1, L = (g1 + B1, H ′) and for all y ≥ 0,
H ′(y) := max

2≤ℓ≤m
(gℓ + B[(0, ℓ) → (y, 2)]) .

In other words, H is the top line of the melon of a Brownian motion starting from g1 and an
inhomogeneous BLPP starting from data g′.

Proof. Straightforward application of Metric composition law for last passage values, Lemma
3.5. □

We obtain some elementary structural properties of the laws of Brownian TASEP and in doing
so, obtain a natural generalisation of Lemma 4.2 in [SV21] by showing that Brownian TASEP
enjoys a description as a Markov process.

Proposition 5.3. Fix m ≥ 1, a sequence (gℓ)m
ℓ=1 ∈ Rm

≥ and let (H1, H2, · · · , Hm)(·) denote
Brownian TASEP starting from initial data g. Then, we have for all A ⊆ Cm

∗,∗([x, y]) Borel
measurable, the following

E
[
1((H1, · · · , Hm) ∈ A)|(H1, · · · , Hm)|[0,x]

]
= E [1((H1, · · · , Hm) ∈ A)|(H1(x), · · · , Hm(x))] .

In other words, the process (Hk)m
k=1 is a continuous Markov process with respect to its own

filtration on [0, ∞).

Proof. We proceed via induction.
m = 1: This case follows from the Markov property of Brownian motion and the fact that

H1 = g1 + B1.
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m ≥ 2: Suppose now the claim holds for some m ≥ 2. Now we wish to show it for m + 1. That
is fix (gℓ)m+1

ℓ=1 ∈ Rm+1
≥ and let let (H1, H2, · · · , Hm)(·) denote Brownian TASEP starting from

initial data g. Observe that from Lemma 5.2, we can express

H1(y) = W L̂1(y) ,

where L̂ = (g1 + B1, H2) and B1 is a rate two Brownian motion starting from the origin
independent of H2 = max

2≤ℓ≤m+1
(gℓ + B[(0, ℓ) → (·, 2)]). Now, from the formula of the top line of the

Pitman transform we have
H1(z) = B1(z) − B1(x)

+ max
(

max
x≤r≤z

(H2(r) − B1(r) + B1(x)), H1(x)
)

, z ∈ [x, y].

Hence, we can express
H1|[x,y](·) = F (H1(x), H2|[x,y], (B1(·) − B1(x))|[x,y])(·),

where F is a measurable functional and (B1(·) − B1(x))|[x,y] is independent of H2 and H1|[0,x].
Now, fix A ⊆ C∗,∗([x, y]) Borel measurable, then by the induction hypothesis applied to

H2:m+1, we have

E
[
1(H1 ∈ A)

∣∣∣H1:m+1|[0,x]
]

= E
[
1(F (H1(x), H2|[x,y], (B1(·) − B1(x))|[x,y])(·) ∈ A)

∣∣∣H1:m+1|[0,x]
]

= E
[
1(H1 ∈ A)

∣∣∣H1:m+1(x)
]

,

by disintegration of measures, see [KK97], and independence, and a monotone class argument now
allows us to complete the proof. □

Remark. Note that the Markov generator does not depend on the choice of sequence (gℓ)∞
ℓ=1 and

that it is a homogeneous-time Markov process. It turns out that it can be computed explicitly using
determinants and so called diffusion interlacing arguments, as will be done in the forthcoming
sub-sections.

5.1. Semi-martingale decomposition of Brownian TASEP. The construction of Brownian
TASEP by inductively iterating the Skorokhod reflection on a family of Brownian motions
suggests it has a natural decomposition as a semi-martingale. That this is so is the content of the
following theorem which follows from an inductive argument and the deterministic Lemma 2.1 in
[RY13].

Theorem 5.4. (Semi-martingale decomposition of Brownian TASEP) Fix m ≥ 1, a sequence
(gℓ)m

ℓ=1 ∈ Rm
≥ , a family of independent Brownian motions B1, · · · , Bm and let (H1, H2, · · · , Hm)(·)

be a Brownian TASEP started from initial data g. Then, there exist continuous non-decreasing
processes (αk(·))m

k=2 such that for all 2 ≤ k ≤ m, the Stieltjes measure dαk−1 is almost surely
supported on the set {Hk−1 = Hk} and

Hk−1(t) = Bk−1(t) + αk−1(t)
= Bk−1(t) +

∫
(0,t]

1([Tk−1, ∞))(s) dαk−1(s), a.s. for all t ≥ 0,

where Tk−1 = inf{t ≥ 0 : Hk−1(t) = Hk(t)} and is almost surely positive. In other words, for all
1 ≤ k ≤ m, Hk is a semi-martingale.

Proof. Let B1, B2 be two continuous-time processes such that B1(0) ≥ B2(0). Then, the
Skorokhod reflection lemma, Lemma 2.1 in [RY13] gives that the process

Z(t) = B1(t) − B2(t) + α(t), t ≥ 0
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is positive and α(t) = sups≤t((B2(s) − B1(s)) ∨ 0) is continuous, non-decreasing and the (random)
measure dα induced by the increments of α is almost surely supported on the set
{Z = 0} = {WB1 = B2} upon noticing that

sup
s≤t

((B2(s) − B1(s)) ∨ 0) = sup
s≤t

(B2(s) − B1(s)) ∨ 0, for all t ≥ 0.

Thus, we have the semi-martingale decomposition of the top line of the Pitman transform

WB1(t) = B1 + α(t) = Bk+1(t) +
∫

(0,t]
1([T, ∞))(s) dα(s), a.s. for all t ≥ 0,

where T = inf{t ≥ 0 : WB1 = B2} and is almost surely positive. A quick induction, replacing B1
with Bk−1, B2 with Hk and α with αk−1 in the inductive step allows us to conclude. □

6. Diffusion interlacing and Brownian motion in the Gelfand-Tsetslin cone

Having obtained some elementary structural properties of the Brownian TASEP, we aim to
compute explicitly its transition probability densities. Remark 5 would then give an explicit
representation of the Radon-Nikodym derivative of Brownian TASEP as a ratio of the
aforementioned transition densities. This would then allow us transfer the pathwise estimates for
Brownian LPP to Brownian TASEP. To this end, we now introduce the Warren process and
establish its close connection to Brownian TASEP using Theorem 5.4.

Let K be the cone of points x =
(
x1, x2, . . . xn

)
with xk =

(
xk

1, xk
2, . . . , xk

k

)
∈ Rk satisfying the

inequalities
xk+1

i ≤ xk
i ≤ xk+1

i+1 .

K is sometimes called the Gelfand-Tsetlin cone, and arises in representation theory. We will
consider a process X(t) =

(
X1(t), X2(t), . . . Xn(t)

)
taking values in K so that

Xk
i (t) = xk

i + γk
i (t) + Lk,−

i (t) − Lk,+
i (t),

where
(
γk

i (t); t ≥ 0
)

for 1 ≤ k ≤ n, 1 ≤ i ≤ k are independent Brownian motions, and(
Lk,+

i (t); t ≥ 0
)

and
(
Lk,1

i (t); t ≥ 0
)

are continuous, increasing processes growing only when
Xk

i (t) = Xk−1
i (t) and Xk

i (t) = Xk−1
i−1 (t) respectively, the exceptional cases Lk,+

k (t) and Lk,−
1 (t)

being identically zero for all k.
Now, observe that upon extracting the ‘diagonal’ subprocess (X1

1 , · · · , Xn
n ), the

semi-martingale decomposition of Brownian TASEP just established in Proposition 5.4 and the
deterministic Skorokhod Lemma, [RY13, Lemma 2.1], give through a quick induction argument
the following proposition.

Proposition 6.1. The process (Xn
n , · · · , X1

1 )(·) as the same law on paths as a Brownian TASEP
started from the origin.

This identification allows one to use the following lemma from [War07] to obtain an explicit
form of the one point marginals of homogeneous BLPP, which is the content of the following
lemma.

Lemma 6.2. ([War07, Proposition 8]) Fix r > 0, m ∈ N and let (H1, H2, · · · , Hm)(·) be a
Brownian TASEP started from the origin. Then, the density of qr of (H1(r), H2(r), · · · , Hm(r))
on Rm

≥ against the Lebesgue measure is given by

qr(x1, · · · , xm) = det
{
Φ(i−j)

r (xm−j+1); 1 ≤ i, j ≤ m
}
.
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where for Φ(m)
t denotes the mth order (m ≥ 1) iterated integral of the rate two Gaussian density

φt t > 0,

Φ(m)
t (y) =

∫ y

−∞

(y − x)m−1

(m − 1)! φt(x)dx =
∫ ∞

0

zm−1

(m − 1)!φt(z − y)dz

= φt(y)
∫ ∞

0

zm−1

(m − 1)!e
− z2

4t e
yz
2t dz,

and for k ≥ 0 Φ(−k)
t denotes the kth order derivative of φt, t > 0, which is equal to

Φ(−k)
t (y) = (−1)k

( 1
4t

) k
2

Hk

(
y√
4t

)
φt(y)

where (Hn)n∈N are the Hermite polynomials as defined in [Wei02].

Remark. Observe that Φ(m)
t , m ∈ Z, t > 0 are real analytic.

The following lemma finally allows one to obtain an explicit form of transition kernel of
Brownian TASEP by a conditioning argument, that is, the essential uniqueness of regular
conditional distributions and the metric composition law enjoyed by LPP.

Lemma 6.3. Fix r > 0, Fix m ≥ 1, a sequence b = (bℓ)m
ℓ=1 ∈ Rm

≥ , let (H1, H2, · · · , Hm)(·) be a
Brownian TASEP started from initial data b and let (G1, G2, · · · , Gm)(·) be a Brownian TASEP
started from the origin. Then, we have that Law(Hℓ)m

ℓ=1(r) is a version of the regular conditional
distribution

Law ((Gℓ)m
ℓ=1(r + 1) conditioned on (Gℓ)m

ℓ=1(1) = (bℓ)m
ℓ=1)

and in particular

P((H1, H2, · · · , Hm)(r) ∈ A) =
∫

A
qr(x1, · · · , xm; b1, · · · , bm)λ(dx1 · · · dxm), A ∈ B(Rm

≥ )

for all r > 0, where qr is as in Lemma 6.2.

Proof. Observe that one can express Hk(y) = maxm−k+1≤ℓ≤m(bk + B[(0, ℓ) → (y, k)]), for
y ∈ [0, ∞), 1 ≤ k ≤ m, where B[(·, ·) → (·, ·)] denotes Brownian LPP. By translation invariance we
have that Hk(y) d= maxm−k+1≤ℓ≤m(bℓ + B[(1, ℓ) → (y + 1, k)]), y ≥ 0. If we replace bℓ with
B[(0, 0) → (1, m − ℓ + 1)], by metric composition, we obtain that

max
m−k+1≤ℓ≤m

(B[(0, 0) → (1, ℓ)] + B[(1, ℓ) → (y + 1, k)]) = B[(0, 0) → (y + 1, k)] d= G(y + 1).

Thus, by independence of increments of Brownian motion, we see that for any r > 0 and choice of
(bℓ)1≤ℓ≤m, the law of (Hℓ)m

1 (r) is a version of the regular conditional distribution of
Law ((Gℓ)m

ℓ=1(r + 1) conditioned (Gℓ)m
ℓ=1(1)).

From Lemma 6.2, we have that (Gℓ)m
ℓ=1 is a Markov process with transition density qr of

(Hk)m
k=1(r) on Rm

≥ × Rm
≥ . Hence, we have by uniqueness of regular conditional distributions on

Polish spaces, see [KK97], that for almost all with respect to the law of (Gk)m
k=1(1) d= (bℓ)m

ℓ=1 ∈ Rm
≥

P((Hℓ)m
ℓ=1(r) ∈ A) =

∫
A

qr(x1, · · · , xm; b1, · · · , bm)λ(dx1 · · · dxm).

for all Borel A ⊆ Rm
≥ . We now claim that this equality in distribution holds true for all

(bℓ)m
ℓ=1 ∈ Rm

≥ . Indeed, observe by Proposition 6.5 that the law of (Gℓ)m
ℓ=1 is mutually absolutely

continuous with respect to the Lebesgue measure and so the above equality holds for almost all
(bℓ)m

ℓ=1 ∈ Rm
≥ with respect to the Lebesgue measure. Now, fix arbitrary (bℓ)m

ℓ=1 ∈ Rm
≥ and by

density obtain a sequence ((bn
ℓ )m

ℓ=1)n∈N ⊆ Rm
≥ , n ∈ N converging to (bℓ)m

ℓ=1 ∈ Rm
≥ such that (6)



16 PANTELIS TASSOPOULOS AND SOURAV SARKAR

Figure 3. Here, the contents of Lemma 6.3 with m = 3 are schematically de-
picted. It states that the conditional law of the inhomogeneous Brownian LPP on
the positive reals (Hℓ)3

ℓ=1(·) is a version of the regular conditional distribution of
the Brownian melon WB3(· + 1) conditioned on WB3(1) = (bℓ)3

ℓ=1. Thus, if one
‘traces back’ the inhomogeneous Brownian LPP by one unit to the left one recovers
the Brownian 3-melon WB3(· + 1).

holds for all n ∈ N. To show (6) holds for the limit, simply observe that the Markov density qr is
continuous in all of its arguments, use dominated convergence and the convergence in distribution

max
m−k+1≤ℓ≤m

(bn
k + B[(0, ℓ) → (r, k)]) d−→ max

m−k+1≤ℓ≤m
(bk + B[(0, ℓ) → (r, k)]), n → ∞

which holds by continuity; conclude noting that limits in distribution on Polish spaces are
unique. □

Remark. The same argument shows that Law(Hℓ)m
ℓ=1(·) is a version of the regular conditional

distribution Law ((Gℓ)m
ℓ=1(· + 1) conditioned on (Gℓ)m

ℓ=1(1)) for all understood as random
continuous functions on [0, ∞). Particularly, as a Markov process it has the Markov transition
densities qr, r > 0 as in Lemma 6.2. Alternatively, we could have used the semi-martingale
decomposition of the above ensemble in terms of independent Brownian motions and local times
and use the argument in [War07, Proposition 8]. For an illustration, see Figure 3.

Thus, from the above propositions, we are able to compute the density of the non-homogeneous
ensemble in the following lemma.

Lemma 6.4. Fix r > 0, m ≥ 1, a sequence b = (bℓ)m
ℓ=1 ∈ Rm

≥ and let (H1, H2, · · · , Hm)(·) be a
Brownian TASEP started from initial data b. Then, the density qr(x1, · · · , xm) of (Hk)m

k=1(r) on
Rm

≥ against the Lebesgue measure is given by

qr(x1, · · · , xm; b1, · · · , bm) = det
{
Φ(j−i)

r (xm−i+1 − bm−j+1); 1 ≤ i, j ≤ m
}
, x ∈ Rm

>

with Φ(m)
r , Φ(−m)

r , m ∈ N, r > 0 as in Lemma 6.2.

We also record the following proposition which gives mutual absolute continuity of the
Lebesgue densities qr, being real analytic in several variables.
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Proposition 6.5. Fix r > 0, m ≥ 1, a sequence b = (bℓ)m
ℓ=1 ∈ Rm

≥ and let (H1, H2, · · · , Hm)(·) be
a Brownian TASEP started from initial data b. Then, the support is

supp(νr) = {x ∈ Rm
> : νr(Bx,ϵ) > 0 , ∀ϵ > 0} = Rm

≥ ,

where for x ∈ Rm
> and ϵ > 0, Bx,ϵ denotes the open ball of radius ϵ centred at x.

Furthermore, the law of (Hℓ)m
ℓ=1 is mutually absolutely continuous with respect to (equivalent

to) the Lebesgue measure on Rm
≥ .

Proof. Observe that one can express Hk(y) = B[(0, m) → (y, m − k + 1)], for y ∈ [0, ∞),
1 ≤ k ≤ m, where B[(·, ·) → (·, ·)] denotes Brownian LPP. Furthermore, fix r > 0 and observe that
LPP is continuous in the product uniform topology on Cn

∗,∗([0, r]). It is also a well known fact that
with positive probability a Brownian motion starting from zero can approximate any continuous
function starting from the origin on [0, r]. Thus, by independence, we have for all δ > 0 that

P(∥B1(t) − a1t∥∞,[0,r] < δ, · · · , ∥Bm(t) − amt∥∞,[0,r] < δ) > 0

where (aℓ)m
ℓ=1 ∈ Rm

> . Now, observe that with the ensemble
L : J1, mK × [0, ∞) : (n, x) 7→ L(n, x) = am−n+1x, the last passage percolation is simply
L[(0, m) → (r, k)] = rak ∈ Rm

> , by the ordering of the coefficients. The above combined easily
imply that

Rm
< ⊆ supp(νr) = {x ∈ Rm

> : νr(Bx,ϵ) > 0∀ϵ > 0} = Rm
≥ .

Now, {q > 0} = supp(νr) = Rm
≥ and we have that q ̸≡ 0 on Rm

≥ ; since the density qr(x1, · · · , xm) is
real analytic (in several variables), its zero set {q = 0} must have zero Lebesgue measure on Rm

≥ ,
see [zh]. We thus conclude that the law of (Hℓ)m

ℓ=1 is mutually absolutely continuous (that is,
equivalent) with respect to the Lebesgue measure on Rm

≥ , as required. □

We thus have the following theorem which gives an expression for the Radon-Nikodym
derivative of the inhomogeneous ensemble at a point and the homogeneous one at zero.

Theorem 6.6. Fix r > 0, m ≥ 1, a sequence b = (bℓ)m
ℓ=1 ∈ Rm

≥ let (H1, H2, · · · , Hm)(·) be a
Brownian TASEP started from initial data b and let (G1, G2, · · · , Gm)(·) be a Brownian TASEP
started from the origin. Then, the Radon-Nikodym derivative between the distributions of two
processes at r > 0 on Rm

≥ is almost surely given by

dLaw(Hℓ)m
ℓ=1(r)

dLaw(Gℓ)m
ℓ=1(r) (x1, · · · , xm) =

det
{
Φ(i−j)

r (xm−j+1 − bm−i+1); 1 ≤ i, j ≤ m
}

det
{
Φ(i−j)

r (xm−j+1); 1 ≤ i, j ≤ m
}

=

 n∏
j=1

e−
b2
j

4r

 det
{
e

xm−j+1bm−i+1
2r F

(i−j)
r (xm−j+1 − bm−i+1); 1 ≤ i, j ≤ m

}
det
{
F

(i−j)
r (xm−j+1); 1 ≤ i, j ≤ m

} , x ∈ Rm
> (6.1)

with Hm, Φ(m)
r , Φ(−m)

r , m ∈ N, r > 0 as in Lemma 6.2 and

F k
r (y) =


∫∞

0
zk−1

(k−1)!e
− z2

4r e
yz
2r dz, k ≥ 1

(−1)k
(

1
4r

)− k
2 H−k

(
y√
4r

)
, k ≤ 0.

Proof. Using Proposition 6.5, we see that the law of (Hℓ)m
ℓ=1(r) for all choices of non-decreasing

(bℓ)m
ℓ=1 are mutually absolutely continuous with respect to the Lebesgue measure on Rm

> . Hence,
one can take their pointwise ratios as the Radon-Nikodym derivative of the Markov processes
defined above to conclude. □
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7. Inhomogeneous BLPP: Radon-Nikodym derivative estimates

In this section, the main result of this paper providing pathwise and L∞− estimates for the
Radon-Nikodym derivative of inhomogeneous BLPP with respect to Brownian motion on
compacts, namely Theorem 7.9, is established. Technical integral estimates have been relegated to
the Appendix (Section 9.1).

Recall that in Theorem 6.6, we obtained an explicit form of the Radon-Nikodym derivative of
Brownian TASEP with respect to its homogeneous counterpart in terms of the transition densities
given in Lemma 6.2. Hence, to obtain pathwise Radon-Nikodym derivative bounds, we now
estimate the transition densities of the Warren process. In [War07], the author deduces that the
distribution of the diagonal section of X(t) given by the SDEs (6) has the density

µn
t (x) = (2π)−n/2(2t)−n2/2 exp

{
−
∑

i

(xn
i )2/(4t)

}∏
i<j

(xn
j − xn

i )

 , t > 0

with respect to the Lebesgue measure on K. We thus obtain by taking the marginal, the following
proposition.

Proposition 7.1. Fix ℓ > 0, n ∈ N and let qℓ(·; 0) be as in Lemma 6.2. Then we have for all
(x1

1, · · · , xn
n) ∈ Rn

≤

qℓ(xn
n, · · · , x1

1; 0) =
∫

K
µn

r (x) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
where

µn
r (xn, xn−1, · · · , x2, x1) = (2π)−n/2(2r)−n2/2(4πr)n/2

n∏
i=1

ϕr
(
xn

i

)
·

∏
i<j

(xn
j − xn

i )

 .

Now, by estimating the determinants in the definition of the densities qr, r > 0, see Lemma 6.2,
we arrive at the following proposition.

Proposition 7.2. Fix r > 0, m ≥ 1, a sequence (bℓ)m
ℓ=1 ∈ Rm

> with bm = 0. Then we have for
ℓ > 0 and (x1

1, · · · , xn
n) ∈ Rn

≤ the pointwise upper bound on qℓ(x1:m; b1:m) as defined in Lemma 6.2

qr(xn
n, · · · x1

1; b1, · · · , bn) ≤
∫

K
νn

r (x) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
where

νn
r (xn

1 , · · · , xn
n) =

n∏
i=1

exp
(

− b2
i /(4r)

)(
(4r)(i−n)/2)n ·

n∏
i=1

ϕr
(
xn

i

)
·
∏
i<j

(xn
j − xn

i )

·
∑

0≤ki≤n−i

1≤i≤n

Gk(xn
1 , · · · , xn

n)
n∏

i=1

(
2|bn−i+1|/

√
4r
)n−i−ki

(
n − i

ki

)

and

Gk(xn
1 , · · · , xn

n) =

∣∣∣∣∣∣∣∣∣
det
(
Hki

(
xn

j /
√

4r
)

· exp
(
xn

j bn−i+1/(2r)
)

1≤i,j≤n∏
i<j

(xn
j − xn

i )

∣∣∣∣∣∣∣∣∣
where k = (0 ≤ ki ≤ n − i)1≤i≤n.
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Proof. Recall the definition of K as the cone of points x =
(
x1, x2, . . . xn

)
with

xk =
(
xk

1, xk
2, . . . , xk

k

)
∈ Rk satisfying the inequalities

xk+1
i ≤ xk

i ≤ xk+1
i+1 .

Notice that for all 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1, we have

Φ(i−j)(xj
j − bn−i+1) =

∫ xj
j

−∞

∫ xj+1
j

−∞
· · ·
∫ xn−1

j

−∞
Φ(i−n)(xn

j − bn−i+1) dxn
j · · · dxj+2

j dxj+1
j

Now, by the multi-linearity of the determinant, we obtain

qℓ(xm
m, · · · , x1

1; b1:m) =
∫

D
det
(
Φ(i−n)(xn

j − bn−i+1)
)

1≤i,j≤n
d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
where

D = {xk
i , 1 ≤ i ≤ k ≤ n : xk+1

i ≤ xk
i for 1 ≤ k ≤ n − 1}

Since the determinant in the integral above is antisymmetric in (xn
1 , · · · , xn

n), we conclude using
[WFS17, Lemma 5.6] that

qℓ(xn
n, · · · , x1

1; b1, · · · , bn) =
∫

K
det
(
Φ(i−n)(xn

j − bn−i+1)
)

1≤i,j≤n
d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
for all (x1

1, · · · , xn
n) ∈ Rn

≤. Now using an identity satisfied by Hermite polynomials, see [Wei02],
observe that for 1 ≤ i, j ≤ n

Φ(i−n)(xn
j − bn−i+1) = (−1)i−n(4r)(i−n)/2Hn−i

(
(xn

j − bn−i+1)/
√

4r
)
ϕr
(
xn

j − bn−i+1
)

= (−1)i−n(4r)(i−n)/2
n−i∑
k=0

(
n − i

k

)
Hk

(
xn

j /
√

4r
) (

−2bn−i+1/
√

4r
)n−i−k

·ϕr
(
xn

j ) exp
(
xn

j bn−i+1/(2r)
)

exp
(

− b2
n−i+1/(4r)

)
Thus, by multi-linearity, we obtain

det
(
Φ(i−n)(xn

j − bn−i+1)
)

1≤i,j≤n

=
∑

0≤ki≤n−i

1≤i≤n

det
((

n − i

k

)
i

(−1)i−n(4r)(i−n)/2Hki

(
xn

j /
√

4r
) (

−2bn−i+1/
√

4r
)n−i−ki

·ϕr
(
xn

j ) exp
(
xn

j bn−i+1/(2r)
)

exp
(

− b2
n−i+1/(4r)

))
1≤i,j≤n

=
n∏

i=1
exp

(
− b2

n−i+1/(4r)
)

·
n∏

j=1
ϕr
(
xn

j )
∑

0≤ki≤n−i

1≤i≤n

(
(−1)i−n(4r)(i−n)/2)n

·
n∏

i=1

(
n − i

k

)
i

(
−2bn−i+1/

√
4r
)n−i−ki · det

(
Hki

(
xn

j /
√

4r
)

· exp
(
xn

j bn−i+1/(2r)
))

1≤i,j≤n

Observe now that the map
(xn

1 , · · · , xn
n) 7→ det

(
Hki

(
xn

j /
√

4r
)

· exp
(
xn

j bn−i+1/(2r)
)

1≤i,j≤n

is antisymmetric and analytic in all variables in Rn
≤. Thus, by multilinearity, that is, the map

(xn
1 , · · · , xn

n) 7→
det
(
Hki

(
xn

j /
√

4r
)

· exp
(
xn

j bn−i+1/(2r)
)

1≤i,j≤n∏
i<j

(xn
j − xn

i )

for all (xn
1 , · · · , xn

n) ∈ Rn
<, can be expressed in terms of divided differences and by smoothness has

a continuous extension up to the boundary of Rn
≤. □
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We thus have the following estimating the ratio of transition densities of inhomogeneous and
homogeneous BLPP in terms of more analytically tractable functions.
Proposition 7.3. Fix r > 0, n ∈ N, a sequence (bℓ)n

ℓ=1 ∈ Rn
≥ such that bn = 0 and let K be the

cone of points x =
(
x1, x2, . . . xn

)
with xk =

(
xk

1, xk
2, . . . , xk

k

)
∈ Rk satisfying the inequalities

xk+1
i ≤ xk

i ≤ xk+1
i+1 .

Then we have that with qr as in Lemma 6.2 the following pointwise estimate

qr(xn
n,···x1

1;b1:n)
qr(xn

n,···x1
1;0) ≤

∫
K

νn
r (x) d

(
xk

j where
{

2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
∫

K
µn

r (x) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
where

νn
r (xn

1 , · · · , xn
n) =

n∏
i=1

exp
(

− b2
i /(4r)

)(
(4r)(i−n)/2)n · Gk(xn

1 , · · · , xn
n)

·
∑

0≤ki≤n−i

1≤i≤n

n∏
i=1

(
2|bn−i+1|/

√
4r
)n−i−ki

(
n − i

k

)
i

·
n∏

i=1
ϕr
(
xn

i

)
·
∏
i<j

(xn
j − xn

i )

µn
r (xn

1 , · · · , xn
n) = (2π)−n/2(2r)−n2/2(4πr)n/2

n∏
i=1

ϕr
(
xn

i

)
·

∏
i<j

(xn
j − xn

i )


and

Gk(xn
1 , · · · , xn

n) =

∣∣∣∣∣∣∣∣∣
det
(
Hki

(
xn

j /
√

4r
)

· exp
(
xn

j bn−i+1/(2r)
)

1≤i,j≤n∏
i<j

(xn
j − xn

i )

∣∣∣∣∣∣∣∣∣
where k = (0 ≤ ki ≤ n − i)1≤i≤n for all (x1

1, · · · , xn
n) ∈ Rn

≤.

In the following proposition, we now turn to re-express the ratios of determinants (the
denominators are Vandermonde determinants) into determinants of divided differences by a
simple induction argument.
Proposition 7.4. Fix n ∈ N and a non-decreasing sequence (bi)n

i=1 with bn = 0 and for
k = (0 ≤ ki ≤ n − i)1≤i≤n consider the function

Gk(xn
1 , · · · , xn

n) =

∣∣∣∣∣∣∣∣∣
det
(
Hki

(
xn

j /
√

4r
)

· exp
(
xn

j bn−i+1/(2r)
)

1≤i,j≤n∏
i<j

(xn
j − xn

i )

∣∣∣∣∣∣∣∣∣ for (x1
1, · · · , xn

n) ∈ Rn
<.

Then with fi : x 7→ Hki

(
x/

√
4r
)

exp
(
x · bn−i+1/(2r)) for 1 ≤ i ≤ n. Denote by

fi[y1, y2, · · · yn−1, yn] the n−th divided difference of fi for 1 ≤ i ≤ n which are defined as
fi[y] = fi(y), y ∈ R

fi[y1, y2, · · · yn−1, yn, yn+1] = fi[y2,···yn−1,yn,yn+1]−fi[y1,y2,···yn−1,yn,]
yn+1−y1

, y1 < · · · < yn+1.

Then, we have that

Gk(xn
1 , · · · , xn

n) =
∣∣∣det

(
fi[xn

1 , · · · , xn
j ]
)

1≤i,j≤n

∣∣∣ for (x1
1, · · · , xn

n)
=
∣∣∣det

(
f

(j)
i (ξij)

)
1≤i,j≤n

∣∣∣ for (x1
1, · · · , xn

n) ∈ Rn
<,

where ξij ∈ [xn
1 , xn

j ].
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Proof. First observe that by antisymmetry and multi-linearity, we have that
det(fi(xn

j ))1≤i,j≤n∏n−1
j=1 (xn

j+1 − xn
j )

= det(1j=1fi[xn
1 ] + 1j>1fi[xn

j , xn
j+1])1≤i,j≤n

and thus
det(fi(xn

j ))1≤i,j≤n∏n−1
j=1 (xn

j+1 − xn
j ) ·

∏n−2
j=1 (xn

j+2 − xn
j )

=
det(1j=1fi[xn

1 ] + 1j>1fi[xn
j−1, xn

j ])1≤i,j≤n∏n−2
j=1 (xn

j+2 − xn
j )

= det(1j=1fi[xn
1 ] + 1j=2fi[xn

1 , xn
2 ] + 1j>2[xn

j−2, xn
j−1, xn

j ])1≤i,j≤n.

Now, it becomes clear that using the recursive definition of the divided differences (7.4), we
obtain the desired result. The final equality is a standard fact and can be found in any reference
on the topic. □

Remark. Thus, by the smoothness of the fi, 1 ≤ i ≤ n, Gk has a continuous extension up to the
boundary of Rn

≤, n ∈ N.

In the following lemma, we use the previous proposition and Hadamard’s inequality to estimate
the above determinants of divided differences up to multiplicative constants by exponential and
polynomial factors.

Lemma 7.5. Fix n ∈ N and a non-decreasing sequence (bi)n
i=1 ∈ Rn

≥ with bn = 0 and for
k = (0 ≤ ki ≤ n − i)1≤i≤n consider the function

Gk(xn
1 , · · · , xn

n) =

∣∣∣∣∣∣∣∣∣
det
(
Hki

(
xn

j /
√

4r
)

· exp
(
xn

j bn−i+1/(2r)
)

1≤i,j≤n∏
i<j

(xn
j − xn

i )

∣∣∣∣∣∣∣∣∣ for (x1
1, · · · , xn

n) ∈ Rn
<.

Then, we have the following pointwise estimates

Gk(xn
1 , · · · , xn

n) ≤ eO(n2 log n)
(

b1
2r

∨ 1
)n2

· exp
(

n(xn
n)+ · b1
2r

)〈(xn
1 )− + (xn

n)+√
4r

〉n2

,

for (xn
1 , · · · , xn

n) ∈ Rn
≤ where ⟨·⟩ =

√
·2 + 1.

Proof. Using Lemma 7.4, we have

Gk(xn
1 , · · · , xn

n) =
∣∣∣det

(
f

(j)
i (ξij)

)
1≤i,j≤n

∣∣∣ for (x1
1, · · · , xn

n) ∈ intRn
≤,

where
fi(x) = Hki

(
x/

√
4r
)

exp
(
x · bn−i+1/(2r)

)
, x ∈ R, 1 ≤ i ≤ n.

Now, using the Leibniz rule, we further see that

f
(j)
i (x) = dj

dxj

(
Hki

(
x/

√
4r
)

exp
(
x · bi/(2r)

))
, x ∈ R

=
j∑

k=0

(
j

k

)(
bn−i+1

2r

)j−k dj

dxj

(
Hki

(
x/

√
4r
))

· exp
(
x · bn−i+1/(2r)

)
.

Now, to estimate the G, we use Hadamard’s inequality for determinants to obtain

Gk(xn
1 , · · · , xn

n) ≤
n∏

j=1

(
n∑

i=1
(f (j)

i (ξij))2
) 1

2

≤
n∏

j=1

 n∑
i=1

 j∑
k=0

(
j

k

)(
bi

2r

)j−k dk

dξk
ij

(
Hki

(
ξij/

√
4r
))

· exp
(
ξij · bn−i+1/(2r)

)2


1
2

.
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Note that the Hermite polynomials Hk, k ≥ 0 can be expressed explicitly as

Hn(x) = n!
⌊n/2⌋∑
n=0

(−1)n

n!(n − 2m)! (2x)n−2m x ∈ R, n ≥ 0.

From which we obtain the elementary estimates
|Hn(x)| ≤ n!2n

(
1 + |x|

)n
, x ∈ R,∣∣∣ dk

dxk Hk(x)
∣∣∣ ≤ 2n · n!⟨x⟩n, x ∈ R, 0 ≤ k ≤ n,

where ⟨·⟩ =
√

·2 + 1.
Now using the non-negativity and monotonicity of the bi, we obtain

Gk(xn
1 , · · · , xn

n)

≤
(

b1
2r ∨ 1

)n2

exp
(n(xn

n)+·b1
2r

) n∏
j=1

 n∑
i=1

 j∑
k=0

(
j

k

)
2ki · ki!

〈(xn
1 )− + (xn

n)+√
4r

〉ki

2


1
2

≤
(

b1
2r ∨ 1

)n2

exp
(n(xn

n)+·b1
2r

) 〈 (xn
1 )−+(xn

n)+√
4r

〉n2 n∏
j=1

(
n∑

i=1

(
2ki+j · ki!

)2
) 1

2

≤ 2n2 · (n!)n · 2(n+1)n/2
(

b1
2r ∨ 1

)n2

exp
(n(xn

n)+·bn

2r

) 〈 (xn
1 )−+(xn

n)+√
4r

〉n2

≤ eO(n2 log n)
(

b1
2r ∨ 1

)n2

exp
(n(xn

n)+·b1
2r

) 〈 (xn
1 )−+(xn

n)+√
4r

〉n2

.

□

Having estimated the Gk terms defined in (7.3) in terms of polynomial and exponential factors,
the integral estimates in Section 9.1 in the Appendix allow us to further estimate (6.1) in the
following proposition.

Proposition 7.6. Fix n ∈ N and let K denote the Gelfand-Tsetslin cone of points
x =

(
x1, x2, . . . xn

)
with xk =

(
xk

1, xk
2, . . . , xk

k

)
∈ Rk satisfying the inequalities

xk+1
i ≤ xk

i ≤ xk+1
i+1 .

Then, for a given ℓ > 0 and with f(xn
1 , · · · , xn

n) =
∏n−1

i=1 ϕℓ(xn
i ),∫

K
⟨(xn

1 )−⟩N f(xn
1 , · · · , xn

n)
∏
i<j

(xn
j − xn

i ) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
∫

K
f(xn

1 , · · · , xn
n)
∏
i<j

(xn
j − xn

i ) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
≤ N !(2ℓ)N/2Oℓ(edn2 log n)

(
exp

(
(n−1)((xn

n)+)
(2ℓ)1/2

)
+ exp

( (x1
1)−

(2ℓ)1/2

))
for some universal constant d > 0.
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Proof. Now observe that for any strictly positive integrable function (rapidly decaying)
f(xn

1 , · · · , xn
n), we have by Fubini∫

K
f(xn

1 , · · · , xn
n)
∏
i<j

(xn
j − xn

i ) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
=
∫

xn
1 ≤xn

2 ≤···≤xn
n−1≤xn

n

f(xn
1 , · · · , xn

n)
∏
i<j

(xn
j − xn

i )

·
∫

1K(xK) d
(

xk
j where

{
2 ≤ k ≤ n − 1
1 ≤ j ≤ k − 1

})
dxn

1 · · · dxn
n−1

where xK denotes a generic point in the Gelfand-Tsetslin cone K. First observe that by
expressing the ambient space R(n+1)n/2 into a union of totally ordered subsets R(n+1)n/2

σ , with
σ ∈ S(n+1)n/2 a permutation of indices, we obtain

K =
⋃

σ∈S(n+1)n/2

K ∩ R(n+1)n/2
σ

and observe that if for a fixed σ ∈ S(n+1)n/2, K ∩ intR(n+1)n/2
σ ̸= ∅, then intR(n+1)n/2

σ ⊆ intK
since membership in K is completely determined by a partial order which is implied by the total
order induced by σ, and taking the closure, R(n+1)n/2

σ ⊆ K. We can thus express
K =

⋃
σ∈S(n+1)n/2

Kσ

where Kσ is either R(n+1)n/2
σ or a subset of the boundary ∂R(n+1)n/2

σ , which has zero Lebesgue
measure.

Now with x1
1, · · · , xn

n fixed and strictly increasing, for any two σ, σ′ ∈ S(n+1)n/2 distinct
(preserving the above ordering), the induced Lebesgue measure of Kσ ∩ Kσ′ on the subset of
R(n+1)n/2 with said (xi

i)n
i=1 fixed vanishes. To see this, by the above we can assume both

Kσ = R(n+1)n/2
σ , Kσ′ = R(n+1)n/2

σ′ . Now, by a quick induction, for any two distinct permutations,
of coordinates, there must be at least a pair of points that have been interchanged in the ordering
(here this cannot be the ‘diagonal’ terms (xi

i)n
i=1, being fixed and distinct). It could either be two

non-diagonal diagonal entries or a combination of a diagonal entry and a non-diagonal entry. In
either case, the intersection lies in a hyperplane with codimension at most one minus that of the
ambient space (R(n+1)n/2−n) and so the induced Lebesgue measure is zero as claimed. Hence, by
inclusion-exclusion we see that the integral 7 can be expressed as∫

xn
1 ≤xn

2 ≤···≤xn
n−1≤xn

n

f(xn
1 , · · · , xn

n)
∏
i<j

(xn
j − xn

i )

·
∫ ∑

σ∈S(k+1)k/2,

Kσ

1Kσ d
(

xk
j where

{
2 ≤ k ≤ n − 1
1 ≤ j ≤ k − 1

})
dxn

1 · · · dxn
n−1.

Now each non-vanishing term∫
1Kσ (xK) d

(
xk

j where
{

2 ≤ k ≤ n − 1
1 ≤ j ≤ k − 1

})
can be partitioned into a sum over polynomial factors involving consecutive powers of (xn

j+1 − xn
j )

for 1 ≤ j ≤ n − 1 since all variables xk
i , 1 ≤ i < k ≤ n − 1 are integrated out in every total order

and each total order can be factorised into a product of indicators where variables are separated
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by the diagonal terms xi
i, 1 ≤ i ≤ n. Furthermore, we have that

∏
i<j

(xn
j − xn

i ) =
n−1∏
i=1

n−1∑
j=i

(xn
j+1 − xn

j )


=

n−1∏
i=1

n−1∑
j=i

(xn
j+1 − xn

j )

 .

Suppose now that
∏n−1

i=1 fi(xn
i ). Then the above allow us to express∫

K
f(xn

1 , · · · , xn
n)
∏
i<j

(xn
j − xn

i ) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})

=
(

n−1∑
k=1

∑
m1,m2,··· ,mk

admissible

∫
xn

1 ≤xn
2 ≤···≤xn

k
≤x1

1

k∏
i=1

fi(xn
i ) · (xn

2 − xn
1 )m1 · (xn

3 − xn
2 )m2

· · · (b − xn
k)mk dxn

1 · · · dxn
k · Ωm

k (xn
k+1, · · · , xn

n; x2
2, · · · xn

n)
)

for k ≤ n − 1 and m1, · · · , mk ∈ N such that
∑k

j=1 mj ≤ dn2 for some universal d > 0,
Ωm

k (xn
k+1, · · · , xn

n; x2
2, · · · xn

n) > 0 in intK, 1 ≤ k ≤ n − 1.
We will now need the elementary inequality for (ai)n

i=1 ∈ Rn
≥0, (bi)n

i=1 ∈ Rn
>0

a1 + a2 + · · · + an

b1 + b2 + · · · + bn
≤

n∑
i=1

ai

bi

and can be easily shown using an induction argument. We thus estimate for all N ∈ N∫
K

⟨(xn
1 )−⟩N f(xn

1 , · · · , xn
n)
∏
i<j

(xn
j − xn

i ) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
∫

K
f(xn

1 , · · · , xn
n)
∏
i<j

(xn
j − xn

i ) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})

≤
n−1∑
k=1

∑
m1,m2,··· ,mk

admissible

∫
xn

1 ≤xn
2 ≤···≤xn

k
≤x1

1

⟨(xn
1 )−⟩N ·

k∏
i=1

fi(xn
i ) · (xn

2 − xn
1 )m1 · · · · · (b − xn

k)mk dxn
1 · · · dxn

k

∫
xn

1 ≤xn
2 ≤···≤xn

k
≤x1

1

k∏
i=1

fi(xn
i ) · (xn

2 − xn
1 )m1 · · · · · (b − xn

k)mk dxn
1 · · · dxn

k

Now, if we further stipulate that fi = ϕℓ, for ℓ > 0, 1 ≤ i ≤ n − 1, we obtain by repeated
applications of Lemma 9.6, the estimate∫

K
⟨(xn

1 )−⟩N f(xn
1 , · · · , xn

n)
∏
i<j

(xn
j − xn

i ) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
∫

K
f(xn

1 , · · · , xn
n)
∏
i<j

(xn
j − xn

i ) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})

≤ N !(2ℓ)N/2O(edn2 log n)
(
exp

(
n(xn

n)+
(2ℓ)1/2

)
+ exp

( (x1
1)−

(2ℓ)1/2

)) n−1∑
k=1

∑
m1,m2,··· ,mk

admissible

1.
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Finally, observe that
∑

m1,m2,··· ,mk
admissible

1 can be estimated from above by the number of partitions of

O(n2), which famously has O(exp(cn)) asymptotics, see [HR18]. We finally arrive at the estimate

≤ N !(2ℓ)N/2O(edn2 log n)
(

exp
(

n(xn
n)+

(2ℓ)1/2

)
+ exp

(
(x1

1)−
(2ℓ)1/2

))
for some universal constant d > 0 (changing from line to line) using the bounds in Corollary 9.5
and the remark therein, which concludes the proof. □

Now, combining Lemma 7.5 and Propositions 7.3 and 7.6, we easily obtain the following
proposition, where we are not in a position to estimate the ratio of densities in Theorem 6.6 in
terms of analytically tractable quantities, that is up to exponential and polynomial factors.

Proposition 7.7. Fix r > 0, n ∈ N, then for a sequence b = (bℓ)n
ℓ=1 ∈ Rn

≥ such that bn = 0 and let
(H1, H2, · · · , Hm)(·) be a Brownian TASEP started from initial data b and let (G1, G2, · · · , Gm)(·)
be a Brownian TASEP started from the origin. As before, with K denote the Gelfand-Tsetslin
cone of points x =

(
x1, x2, . . . xn

)
with xk =

(
xk

1, xk
2, . . . , xk

k

)
∈ Rk satisfying the inequalities

xk+1
i ≤ xk

i ≤ xk+1
i+1 .

Then with the densities qr as defined in Lemma 6.2, we have the estimate

qr(xn
n,···x1

1;b1:n)
qr(x1

1,···xn
n;0) ≤

∫
K

νn
r (x) d

(
xk

j where
{

2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})
∫

K
µn

r (x) d
(

xk
j where

{
2 ≤ k ≤ n

1 ≤ j ≤ k − 1

})

≤ Or(edn2 log n)
n∏

i=1
exp

(
− b2

i /(4r)
)(

exp
(

n(xn
n)+

(2r)1/2
)

+ exp
( (x1

1)−
(2r)1/2

))
·
(

b1
2r ∨ 1

)n2

exp
(xn

n·
∑n

i=1 bi

2r

) (
1 + (xn

n)+√
4r

)n2

.

The following lemma controls the Radon-Nikodym derivative of inhomogeneous BLPP against
Brownian motion on compacts by chaining the estimates of the Radon-Nikodym derivative in
Theorem 6.6 to the estimates for Dyson Brownian motion in Proposition 4.1.

Lemma 7.8. Fix r > 0, m ≥ 1, a sequence b = (bℓ)m
ℓ=1 ∈ Rm

≥ with bm = 0 and for k ∈ J1, mK let

Hk(y) = B
↑b
k (y) , y ∈ [0, ∞) .

Furthermore, for k ∈ J1, m − 1K, let

Gk(y) = B
↑0n
k (y) , y ∈ [0, ∞) .

Suppose that the almost sure pointwise bound holds
dLaw(Hi)m

i=1(ℓ)
dLaw(Gi)m

i=1(ℓ) (x1, · · · , xm) ≤ f((x1)+, (xm)−) = g((x1)+) · edm(xm)− · ((x1)+ + (xm)− + b1)N

for some non-negative non-decreasing g, N ∈ N and dm > 0. Then, for any 0 < ℓ < r, we have
the following bound on the Radon-Nikodym derivative of H1 against rate two Brownian motion
(starting from the origin) on paths on [ℓ, r]

≤ cN · NN/2ed2
m/2 · g(ξ(ℓ)+) · (ξ(ℓ)+ + cm

√
ℓ + b1)N · cm(m−1)mm(m−1)∏m−1

j=1 j!

·(ξ(ℓ)+/
√

ℓ + 1)m · (ξ(r)+/
√

ℓ + 1)m .
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Proof. Fix A ⊆ C∗,∗([ℓ, r]) Borel measurable and observe that since the ensemble Hm
1:m(·) and

G1:m(·) are Markov process with the same transition kernel, we compute using [OY02, Theorem 7]
analogously to Proposition 4.1 and coupling the ensemble Gm

1:m(·) to the melon transform of
independent Brownian motions generating it through the RSK correspondence:

WBm
m(·) ≤ Gm(·) ≤ G1(·) ≤ WBm

1 (·)
to obtain

P(H1(·) ∈ A) = E
[dLaw(Hi)m

i=1(r)
dLaw(Gi)m

i=1(ℓ) (G1(ℓ), · · · , Gm(ℓ)) · 1(G1(·) ∈ A)
]

≤ E [f(G1(ℓ)+, Gm(ℓ)−) · 1(G1(·) ∈ A)]
≤ E [f(B1(ℓ)+, Bm(ℓ)−) · Cℓh(B1:m(ℓ))h(B1:m(r)) · 1(B1(·) ∈ A)]

where

Ct =

tm(m−1)/2
m−1∏
j=1

j!

−1

, t > 0

and h(x1, x2, · · · , xn) =
∏

1≤i<j≤m(xi − xj)+.
Thus, the Radon-Nikodym derivative of Hn against standard Brownian motion on [ℓ, r] is

pointwise bounded for µ-a.a. paths ξ by (essentially computing the marginal)

CℓE0 [f(ξ(ℓ)+, Bm(ℓ)−) · h(ξ(ℓ), B2(ℓ), · · · , Bm(ℓ)) · h(ξ(r), B2(r), · · · , Bm(r))]

= CℓE0

f(ξ(ℓ)+, Bm(ℓ)−) ·
∏

1<j≤m

(ξ(ℓ) − Bj(ℓ))+ ·
∏

1<j≤m

(ξ(r) − Bj(r))+

·
∏

2≤i<k≤m

(Bi(ℓ) − Bk(ℓ))+(Bi(r) − Bk(r))+



≤ CℓE0

f(ξ(ℓ)+, Bm(ℓ)−) ·
∏

1<j≤m

(ξ(ℓ)+ + Bj(ℓ)−)

·
∏

1<j≤m

(ξ(r)+ − Bj(r)−) ·
∏

2≤i<k≤m

(Bi(ℓ)+ + Bk(ℓ)−)(Bi(r)+ + Bk(r)−)



= CℓE0

g((ξ(ℓ))+) · edm(Bm)(ℓ)− · ((ξ(ℓ))+ + (Bm)(ℓ)− + b1)N ·
∏

1<j≤m

(ξ(ℓ)+ + Bj(ℓ)−)

·
∏

1<j≤m

(ξ(r)+ − Bj(r)−) ·
∏

2≤i<k≤m

(Bi(ℓ)+ + Bk(ℓ)−)(Bi(r)+ + Bk(r)−)



≤ Cℓed2
m/2g((ξ(ℓ))+)E0

((ξ(ℓ))+ + (Bm)(ℓ)− + b1)N ·
∏

1<j≤m

(ξ(ℓ)+ + Bj(ℓ)−)

·
∏

1<j≤m

(ξ(r)+ − Bj(r)−) ·
∏

2≤i<k≤m

(Bi(ℓ)+ + Bk(ℓ)−)(Bi(r)+ + Bk(r)−)

2


1/2
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≤ Cℓed2
m/2g((ξ(ℓ))+)

∥∥∥(ξ(ℓ)+ + b1 + Bm(ℓ)−
)N · (ξ(ℓ)+ + Bm(ℓ)−)

∥∥∥
2m(m−1)

)

·
∏

1<j<m

(ξ(ℓ)+ + ∥Bj(ℓ)−∥2m(m−1)) · (ξ(r)+ + ∥Bj(r)−∥2m(m−1))

·
∏

2≤i<k≤m

(∥Bi(ℓ)−∥2m(m−1) + ∥Bk(ℓ)−∥2m(m−1)) · (∥Bi(r)−∥2m(m−1) + ∥Bk(r)−∥2m(m−1))

≤ Cℓed2
m/2 · cN · NN/2 · g(ξ(ℓ)+) · (ξ(ℓ)+ + ∥Bm(ℓ)−∥2m(m−1) + b1)N · (ξ(ℓ)+ + ∥Bm(ℓ)−∥2m(m−1))

·
∏

1<j<m

(ξ(ℓ)+ + ∥Bj(ℓ)−∥2m(m−1)) · (ξ(r)+ + ∥Bj(r)−∥2m(m−1))

·
∏

2≤i<k≤m

(∥Bi(ℓ)−∥2m(m−1) + ∥Bk(ℓ)−∥2m(m−1)) · (∥Bi(r)−∥2m(m−1) + ∥Bk(r)−∥2m(m−1)) ,

by generalised Hölder, where ∥·∥m2(m−1) denotes the L2m(m−1)(P) norm and the fact that for a
standard normal random variable Z, we have the estimates

∥(Z−)n∥m ≤ cn · nn/2 ∥Z−∥n
m , n, m ∈ N

for some universal constant c > 0 using the O((·)1/2) asymptotics of moments of Z. The latter
also implies that for all 1 ≤ j ≤ m,

∥Bj(ℓ)−∥m(m−1) ≤ cm
√

ℓ ,

where c > 0 is a universal constant, and similarly for B(r) (which follows from the asymptotics of
the moments of the gaussian distribution). Thus, we have the further estimate for the
Radon-Nikodym derivative for µ-a.a. paths ξ

≤ Cℓ · cN · NN/2ed2
m/2 · g(ξ(ℓ)+) · (ξ(ℓ)+ + cm

√
ℓ + b1)N · (ξ(ℓ)+ + cm

√
ℓ)m · (ξ(r)+ + cm

√
ℓ)m

·
∏

2≤i<k≤m(cm
√

ℓ + cm
√

ℓ) · (cm
√

r + cm
√

r)

≤ cN · NN/2ed2
m/2 · g(ξ(ℓ)+) · (ξ(ℓ)+ + cm

√
ℓ + b1)N · (ξ(ℓ)+ + cm

√
ℓ)m · (ξ(r)+ + cm

√
ℓ)m

· cm(m−1)mm(m−1)∏m−1
j=1 j!

.

□

Now, we finally apply Lemma 7.8 and Proposition 7.7 to obtain the desired pathwise and L∞−

comparison of inhomogeneous BLPP against Brownian motion on compacts, while also estimating
from above the growth for all p > 1 of Lp norms of the Radon-Nikodym derivative as the number
of lines tends to infinity. This is the content of the following Theorem.

Theorem 7.9. Fix r > 0, m ≥ 1, a sequence b = (bℓ)m
ℓ=1 ∈ Rm

≥ with bm = 0 and let H(·) denote
inhomogeneous Brownian LPP started from b. Then, for all 0 < ℓ < r < ∞, we have that the
Radon-Nikodym of the law of H(·) against a rate two Brownian motion starting from the origin µ
on [ℓ, r] is in L∞−(µ|[ℓ,r]). In particular, with ξℓ,r,m,b denoting the law of H as defined above on
[ℓ, r], ∥∥∥∥∥dξℓ,r,m,b

dµ|[ℓ,r]

∥∥∥∥∥
Lp(µ|[ℓ,r])

= Op(edpm2 log m), forall p > 1.

for some universal in m ∈ N (though possibly p-dependent) constant dp > 0 for all p > 1.
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Proof. First recall from Definition 5.1 that H(·) is the top line H1(·) of Brownian TASEP
(H1, H2, · · · , Hm)(·) started from b.

Now, suppose first that bm = 0. Then, using Lemma 7.8 we conclude that the Radon-Nikodym
derivative of

dLaw(Hi)m
i=1(·)

dLaw(Gi)m
i=1(·) ≤ O(edm2 log m)

(
exp

(
m(ω1(ℓ))+

(2ℓ)1/2

)
+ exp

(
− (ωm(ℓ))−

(2ℓ)1/2

))
·
(

bm
2ℓ ∨ 1

)m2

exp
(m(ωm(ℓ))+·bm

2ℓ

) (
1 + (ωm(ℓ))+√

4ℓ

)m2

on paths ω ∈ Cm
∗,∗([ℓ, r]) such that ωi(·) ≤ ωj(·) for all 1 ≤ i < j ≤ m for some universal constant

d > 0. Now, using Proposition 7.7 we obtain the following pointwise bound
dξℓ,r,m,b

dµ|[ℓ,r]
≤ Oℓ(edm2 log m) ·

(
bm
2ℓ ∨ 1

)m2

· exp
( (ξ(ℓ))+·

∑m

i=1 bi

2ℓ

)
·
(
exp

(
m(ξ(ℓ))+
(2ℓ)1/2

)
+ e

1
4ℓ

))
·(ξ(ℓ)+ + cm

√
ℓ)m2 ∏

1≤i<j≤m(ξ(ℓ)+/
√

ℓ + 1) · (ξ(r)+/
√

ℓ + 1)
on paths ξ on [ℓ, r] for some universal constants c, d > 0. Now this clearly gives the desired
growth estimates and L∞−(µ|[ℓ,r]) control on the Radon-Nikodym derivative.

Now for the general case, observe that we obtain inductively using the definition of the Pitman
transform that

Hk−1(y) = b1 + WL̃1(y) , y ≥ 0
and Hm = Bm − bm, where L̃ = (Bk−1 − bm, Hk), (Hℓ)m

ℓ=1 is the ensemble obtain by consecutively
reflecting upwards the family (Bℓ − bm)m

ℓ=1 of independent rate two Brownian motions starting
from (bℓ − bm)m

ℓ=1. Thus, we need to chain the Radon-Nikodym derivative of ξℓ,r,m,b against a rate
two Brownian motion starting at bm with that of a rate two Brownian motion starting from the
origin. We thus obtain as above

dξℓ,r,m,b

dµ|[ℓ,r]
≤ Oℓ(edm2 log m) ·

m∏
i=1

exp
(

− (bi − bm)2/(4ℓ)
)

·
((b1 − bm)

2ℓ
∨ 1
)m2

· exp
( (ξ(ℓ)−bm)·

∑m

i=1(bi−bm)
2ℓ

)
· exp

(
m(ξ(ℓ)−b1)+

(2ℓ)1/2

)
·((ξ(ℓ) − bm)+ + m

√
ℓ)m2+m · ((ξ(r) − bm)+/

√
ℓ + 1)m · e

ξ(ℓ)bm
2ℓ exp

(
− b2

m/(4ℓ)
)

on paths ξ on [ℓ, r] for some universal constants c, d > 0 which, again, gives the desired growth
estimates and L∞−(µ|[ℓ,r]) control on the Radon-Nikodym derivative of the law of H1 as defined
above on [ℓ, r] against a rate two Brownian motion starting from the origin on [ℓ, r], concluding
the proof. □

Remark. • Note that by translation, the increment process H(·) − H(ℓ) on [ℓ, r] has a
Radon-Nikodym derivative against rate two Brownian motion on [ℓ, r] that only depends
on the values (bℓ − bm)m

ℓ=1. In particular, applying Proposition 4.1 with ξ̃ℓ,r,m,b denoting
the law of H(· + ℓ) − H(ℓ) on [0, r − ℓ] we obtain∥∥∥∥dξ̃ℓ,r,m,b

dµ

∥∥∥∥
Lp(µ)

=
m∏

i=1
exp

(
− (bi − bm)2/(4ℓ)

)
·
((b1 − bm)

2ℓ
∨ 1
)m2

·Op,ℓ,r

(
edm2 log m+cℓ

(∑m

i=1(bi−bm)
)2
)

,

for some constants cℓ,r, d > 0 independent of m ∈ N and all p > 1. The same can be said
if one shifts downward, that is, start with initial conditions (bℓ − b1)m

ℓ=1.
• In the special case of ‘almost’ homogeneous boundary data, by a special coupling to

Brownian motion in the Gelfand-Tsetslin cone, one can obtain much simpler pathwise
estimates on the Radon-Nikodym derivative of inhomogeneous BLPP, see Proposition 9.9
in the Appendix.
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8. Future directions and applications

In this section, we will discuss some applications of the pathwise and L∞− estimates obtained
thus far for inhomogeneous Brownian LPP. A first application will be to consider a simplified
model for the KPZ fixed point, see [SV21] and obtain Radon-Nikodym derivative estimates; this
is the content of Theorem 7.9. This model is relevant because the KPZ fixed point can be realised
as inhomogeneous Airy LPP of ‘random depth’ and initial data, see [SV21]. The definition of the
above is the same as that for inhomogeneous Brownian LPP, save for the random environment
which is the parabolic Airy line ensemble. One can exploit the Brownian nature of the parabolic
Airy line ensemble obtained in [CH14] and study the KPZ fixed point within the framework of
Brownian TASEP.

A first step in this direction providing some quantitative control for the actual KPZ fixed point
starting from some appropriate initial data is the main result of [TS]. In that paper, we use the
estimates in Theorem 7.9 as a crucial technical input.

8.1. RN derivative of BLPP with “random depth” with unbounded support. We now
obtain pathwise and L∞− estimates for the Radon-Nikodym derivative of inhomogeneous BLPP
of ‘random depth’, which we use as a toy model for the KPZ fixed point as defined in [SV21].
This model is inspired by a reduction of the KPZ fixed point to BLPP of “random depth” since
one can exploit the Brownian structure of the random ensembles involved in its construction,
particularly, the Brownian Gibbs property of the Airy line ensemble, see [CH14] to reduce the full
problem to that of inhomogeneous BLPP incurring the cost given by an appropriate
Radon-Nikodym derivative.

Theorem 8.1. Fix r > 0, and let B = (B1, B2, · · · ) ∈ CN([0, ∞)) be an ensemble of independent
rate two Brownian motions starting from the origin. Furthermore, let (Gℓ)∞

ℓ=1 be an almost surely
non-increasing family of random variables independent from B. Suppose further that there exists
a σ

(
Gℓ : ℓ ∈ N

)
-measurable random positive integer L0 that is a stopping time with respect to the

filtration σ
(
Gℓ : ℓ ∈ J1, nK

)
n∈N and a universal constant c > 0 such that

sup
r∈[0,∞)

ecr3
P(L0 ≥ r) < ∞ .

Moreover, suppose there exists an ϵ > 0 such that for all m > 0 on the event {L0 ≤ m},

max
1≤ℓ≤m

(Gℓ)− ≤ Cm
1
2 −ϵ,

for some universal positive constant C > 0. Finally, suppose that there exists another positive
constant such that

sup
r∈[0,∞)

edr3
P((G1)+ ≥ r) < ∞ . (8.1)

Now, suppose H(·) is a continuous stochastic process on the positive reals such that for all m ∈ N,
on the event {L0 ≤ m}

H(y) = max
1≤ℓ≤m

(Gℓ + B[(0, ℓ) → (y, 1)]) , y ≥ 0 .

Then, for all 0 < ℓ < r < ∞, we have that the Radon-Nikodym of the law of H(·) against a rate
two Brownian motion starting from the origin µ on [ℓ, r] is in L∞−(µ).
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Proof. Fix A ⊆ C∗,∗([ℓ, r]) Borel measurable. Then we estimate for all m ∈ N using Theorem 7.9
P(H(·) ∈ A) = P(H(·) ∈ A, L0 ≤ m) + P(L0 ≥ m + 1)

≤ P(Hm(·) ∈ A, L0 ≤ m) + P(L0 ≥ m)
≤ E

[∥∥∥dξℓ,r,m conditioning (Gℓ)m
ℓ=1

dµ

∥∥∥
Lp(µ)

· 1(L0 ≤ m)
]

µ(A)1− 1
p + P(L0 ≥ m)

≤ E
[
Op(edp·m3−δ )

]
µ(A)1− 1

p + P(L0 ≥ m)

for some universal in m ∈ N (though possibly p-dependent) constant dp > 0 for all p > 1 and
δ ∈ (0, 3). Now, without loss of generality, assume that µ(A) > 0 and let m ∈ N be the unique
positive integer such that µ(A) ∈ [1/em(3− δ

2 )
, 1/e(m−1)(3− δ

2 )
). Now fix 1 < r < p and estimate,

P(H(·) ∈ A) ≤ E
[
Op(edp·m3−δ )

]
µ(A)1− 1

p + em3− δ
2 · P(L0 ≥ m) · e−m(3− δ

2 )

≤ Op(edp·m3−δ )µ(A)1− 1
p + em3− δ

2 · P(L0 ≥ m) · µ(A)
≤ Op(edp·m3−δ )µ(A)

p−r
pr + em3− δ

2 · P(L0 ≥ m) · µ(A)1− 1
r

≤ Op

(
sup
m∈N

{
edp·m3−δ e− p−r

pr
(m−1)(3− δ

2 )
+ ecm3 · P(L0 ≥ m)

})
µ(A)1− 1

r .

(*)

Thus, for all 0 < ℓ < r < ∞, we have that the Radon-Nikodym derivative of the law of H(·)
against a rate two Brownian motion starting from the origin µ on [ℓ, r] is in Lp−(µ). Since, p was
arbitrary then allows us to conclude the proof of the theorem. □

Note that here L0, the ‘random depth’ of the inhomogeneous BLPP in Theorem 7.9 is meant to
stand for the input from geodesic geometry on the Airy line ensemble. More specifically, it is the
intercept of semi-inifinite geodesics in the parabolic Airy line ensemble, see [TS, Definition 4.2
and Lemma 4.2]. At present, we are only able to obtain that these geodesic intercepts have
exponentially stretched tails, and not the tails in (8.1). However, we do believe that the latter is
achievable and consistent with other results in the KPZ universality class regarding transversal
fluctuations of semi-infinite geodesics in discrete environments.

Notwithstanding, with the estimates obtained in Theorem 7.9, we are still able to obtain a
form of quantitative Brownian regularity for the increments of the KPZ fixed point started from
‘meagre’ initial data in the following theorem.

Theorem 8.2. (Quantitative Brownian regularity, [TS, Theorem 6.2]) Let ht(·) := L(t; h0), t ≥ 0
be the KPZ fixed point started from initial data h0 : R → R ∪ {−∞}. Then, fixing t > 0, K ⊆ R
compact, and for any ℓ < r both bounded, with |ℓ| + |r| ≤ y0 for some y0 > 0, one obtains the
estimates for all Borel measurable A ⊆ C0,∗([0, r − ℓ]) with µ(A) > 0,

P(ht(· + ℓ) − ht(ℓ) ∈ A)

≤ OK,t,y0,ϵ

(
exp

(
dKM̃2)µ(A)1/8 + exp

(
−d′

K,t,y0,ϵ

log1/882−ϵ log
(

1/µ(A)bK,t,y0,ϵ
)

M1/882−ϵ

))
,

for some constants dK , d′
K,t,y0,ϵ, bK,t,y0,ϵ > 0 uniformly in initial data in some class F . In

particular, the class F consists of initial data that are bounded from above by some absolute
constant, finite on a sufficiently meagre (in terms of how small δ-ball covers it has for all δ > 0)
‘max-plus’ support (which is tuned by parameters M, ϵ > 0), contained in K. Such initial data
includes finite narrow wedge initial data of all sizes and locations, since finite sets always meet the
meagreness criterion [TS, Definition 4.3].
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9. Appendix

9.1. Integral estimates. In this subsection, we control the growth rate of ‘cumulants’ of the
integrands used to estimate (7.3) where the flavour of most arguments is inductive, owing to the
recursive nature of the iterated integrals under consideration.

Lemma 9.1. Fix k ∈ N, ℓ > 0, m1, m2, · · · , mk ∈ N and λ > 0 and consider the functions

hm1,··· ,mk
(b) =

∫
x1≤x2≤···≤xk≤b

e−λx1
k∏

i=1
e−

x2
i

2 · (x2 − x1)m1 · · · · · (b − xk)mk dx1 · · · dxk, b ∈ R .

and

gm1,··· ,mk
(b) =

∫
x1≤x2≤···≤xk≤b

k∏
i=1

e−
x2

i
2 · (x2 − x1)m1 · · · · · (b − xk)mk dx1 · · · dxk, b ∈ R .

Then there exists a universal constant d > 0 such that
hm1,··· ,mk

(b) ≤ eλ2/2e−(k−1)λ2/2 · e(k−1)λb · gm1,··· ,mk
(b + λ), b ∈ R .

Proof. We proceed again by induction. The base case is clear upon performing a change of
variables. Indeed,

hm1(b) =
∫

y≤b
e−λye− y2

2 · (b − y)m1 dy

= eλ2/2
∫

y≤b
e− (y+λ)2

2 · (b + λ − (y + λ))m1 dy

= eλ2/2
∫

y≤b+λ
e− (y)2

2 · (b + λ − y)m1 dy

= eλ2/2gm1(b + λ), b ∈ R .

Suppose the claim were true for some k ≥ 2. Then we have that

hm1,··· ,mk+1(b) =
∫ b

−∞
e− (y)2

2 hm1,··· ,mk
(y)(b − y)mk+1 dy

≤ eλ2/2e−(k−1)λ2/2
∫ b

−∞
e− (y)2

2 e(k−1)λy · gm1,··· ,mk
(y + λ)(b − y)mk+1 dy

≤ eλ2/2e−kλ2/2ekλb
∫ b+λ

−∞
e− (y)2

2 · gm1,··· ,mk
(y)(b + λ − y)mk+1 dy

= eλ2/2e−(k−1)λ2/2ekλb · gm1,··· ,mk+1(b + λ), b ∈ R.

completing the induction. □

Lemma 9.2. Fix k ∈ N, ℓ > 0 and m1, m2, · · · , mk, mk+1 ∈ N and consider the function

gm1,··· ,mk
(b) =

∫
x1≤x2≤···≤xk≤b

k∏
i=1

e−
x2

i
2 · (x2 − x1)m1 · · · · · (b − xk)mk dx1 · · · dxk , b ∈ R.

Then there exists a universal constant d > 0 such that
gm1,··· ,mk

(b + 1) ≤ Ck,m1,··· ,mk
· (1 + e−kb) · gm1,··· ,mk

(b), b ∈ R

where Ck+1,m1,··· ,mk+1 = 2mk+1(Ck,mek+1 ∨ ed
∑k

i=1 mi log mi), and C1,m1 = O(2m1).
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Proof. Indeed, we proceed by induction. To see this note that for the inductive step

gm1,··· ,mk+1(b) =
∫ b

−∞
e− (y)2

2 gm1,··· ,mk
(y)(b − y)mk+1 dy

=
∫ ∞

0
e− (b−y)2

2 gm1,··· ,mk
(b − y)(y)mk+1 dy, b ∈ R

and

gm1,··· ,mk+1(b + 1)
gm1,··· ,mk+1(b) =

∫ b

−∞
e− y2

2 gm1,··· ,mk
(y)(b + 1 − y)mk+1 dy∫ b

−∞
e− y2

2 gm1,··· ,mk
(y)(b − y)mk+1 dy

+

∫ b+1

b
e− y2

2 gm1,··· ,mk
(y)(b + 1 − y)mk+1 dy∫ b

−∞
e− y2

2 gm1,··· ,mk
(y)(b − y)mk+1 dy

≤ 2mk+1−1

∫ b

−∞
e− y2

2 gm1,··· ,mk
(y)
(
1 + (b − y)mk+1

)
dy∫ b

−∞
e− y2

2 gm1,··· ,mk
(y)(b − y)mk+1 dy

+

∫ 1

0
e− (b+1−y)2

2 gm1,··· ,mk
(b + 1 − y)ymk+1 dy∫ ∞

0
e− (b−y)2

2 gm1,··· ,mk
(b − y)ymk+1 dy

≤ 2mk+1−1 + 2mk+1−1

∫ b

−∞
e− y2

2 gm1,··· ,mk
(y) dy∫ −(b)−−1

−∞
e− y2

2 gm1,··· ,mk
(y) dy

+ Ck

∫ 1

0
e− (b+1−y)2

2 (1 + e−k(b−y))gm1,··· ,mk
(b − y)ymk+1 dy∫ ∞

0
e− (b−y)2

2 gm1,··· ,mk−1(b − y)ymk+1 dy

≤ 2mk+1−1 + 2mk+1−1

(∫ b
−(b)−−1 +

∫−(b)−−1
−∞

)
e− (y)2

2 gm1,··· ,mk
(y) dy∫−(b)−−1

−∞ e− (y)2
2 gm1,··· ,mk

(y) dy

+ Ck · ek+1(1 + e−kb)e−b
∫ 1

0 eby− y2
2 gm1,··· ,mk

(b − y)(y)mk+1 dy∫∞
0 eby− y2

2 gm1,··· ,mk−1(b − y)(y)mk+1 dy

≤ 2mk+1 + Ckek+1−b(1 + e−kb)

+ 1b≤02mk+1−1Ckek−b(1 + e−k(b−1)) + 1b≥0
2mk+1−1 ∫ b

−1 e− (y)2
2 gm1,··· ,mk

(y) dy∫−1
−∞ e− (y)2

2 gm1,··· ,mk
(y) dy

≤ 2mk+1 + Ckek+1−b(1 + e−kb) + 1b≤02mk+1−1Ckek−b(1 + e−k(b−1))

+ 2mk+1−11b≥0

∫∞
−∞ e− (y)2

2 gm1,··· ,mk
(y) dy∫−1

−∞ e− (y)2
2 gm1,··· ,mk

(y) dy
.
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Now observe that we can estimate ∫
R

e− (y)2
2 gm1,··· ,mk

(y) dy

=
∫
R

∫
x1≤x2≤···≤xk≤y

e− y2
2

k∏
i=1

e−
x2

i
2 · (x2 − x1)m1 · · · · · (y − xk)mk dx1 · · · dxk dy

≤
∫
Rk+1

e− y2
2

k∏
i=1

e−
x2

i
2 · |x2 − x1|m1 · · · · · |y − xk|mk dx1 · · · dxk dy

≤ 2
∑k

i=1 mi

∫
Rk+1

k+1∏
i=1

e−
x2

i
2 ·
(
|x2|m1 + |x1|m1

)
· · · · ·

(
|xk+1|mk + |xk|mk

)
dx1 · · · dxk+1

≤ 2
∑k

i=1 mi+ked
∑k

i=1 mi log mi

for a universal constant d > 0 using independence and the asymptotics of moments of a gaussian
random variable. Furthermore, repeated applications of Lemma 9.6 give the lower bound

Ck,m ≤
∫ −1

−∞
gm1,··· ,mk

(y) dy ,

for Ck,m = ck ∏k
i=1

1
imi for some universal constant c > 0. Combining the above, we arrive at

gm1,··· ,mk+1 (b+1)
gm1,··· ,mk+1 (b) ≤ 2mk+1 + 1b≤02mk+1−1Ckek−b(1 + e−k(b−1))

+Ckek+1−b(1 + e−kb) + 2mk+1−11b≥0ck · ed
∑k

i=1 mi log mi

≤ Ck+1(1 + e−(k+1)b)

for universal constants c, d > 0 where Ck+1 = 2mk+1(Ckek+1 ∨ ed
∑k

i=1 mi log mi). This concludes the
induction. □

As an easy corollary of Lemma 9.2 we obtain the following lemma.

Corollary 9.3. Fix k ∈ N, ℓ > 0 and m1, m2, · · · , mk ∈ N and consider the functions

hm1,··· ,mk
(b) =

∫
x1≤x2≤···≤xk≤b

e−x1
k∏

i=1
e−

x2
i

2 · (x2 − x1)m1 · · · · · (b − xk)mk dx1 · · · dxk, b ∈ R.

and

gm1,··· ,mk
(b) =

∫
x1≤x2≤···≤xk≤b

k∏
i=1

e−
x2

i
2 · (x2 − x1)m1 · · · · · (b − xk)mk dx1 · · · dxk, b ∈ R.

Then there exists a universal constant d > 0 such that
hℓ

m1,··· ,mk

gℓ
m1,··· ,mk

(b) ≤ Ck,m · (e(k−1)b + e−b), b ∈ R.

where Ck+1,m,mk+1 = 2mk+1(Ck,mek+1 ∨ ed
∑k

i=1 mi log mi) and C1,m1 = O(2m1).

We also quickly deduce the following corollary by scaling.

Corollary 9.4. Fix k ∈ N, ℓ > 0, ℓ > 0 and m1, m2, · · · , mk ∈ N and consider the functions

hℓ
m1,··· ,mk

(b) =
∫

x1≤x2≤···≤xk≤b
e− x1

2ℓ

k∏
i=1

e−
x2

i
4ℓ · (x2 − x1)m1 · · · · · (b − xk)mk dx1 · · · dxk, b ∈ R.

and

gℓ
m1,··· ,mk

(b) =
∫

x1≤x2≤···≤xk≤b

k∏
i=1

e−
x2

i
4ℓ · (x2 − x1)m1 · · · · · (b − xk)mk dx1 · · · dxk, b ∈ R.
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Then there exists a universal constant d > 0 such that
hℓ

m1,··· ,mk

gℓ
m1,··· ,mk

(b) = h
1/2
m1,··· ,mk

g
1/2
m1,··· ,mk

(b/(2ℓ)1/2) ≤ Ck,m ·
(

e
(k−1)b

(2ℓ)1/2 + e
− b

(2ℓ)1/2

)
, b ∈ R.

where Ck+1,m,mk+1 = 2mk+1(Ck,mek+1 ∨ ed
∑k

i=1 mi log mi) and C1,m1 = O(2m1).

Proof. By a change of variables in both integrals and Corollary 9.4 we have
hℓ

m1,··· ,mk

gℓ
m1,··· ,mk

(b) = h
1/2
m1,··· ,mk

g
1/2
m1,··· ,mk

(b/(2ℓ)1/2) ≤ N !(2ℓ)N/2 · Ck,m ·
(

e
(k−1)b

(2ℓ)1/2 + e
− b

(2ℓ)1/2

)
, b ∈ R.

where Ck+1,m,mk+1 = 2mk+1(Ck,mek+1 ∨ ed
∑k

i=1 mi log mi) and C1,m1 = O(2m1). □

Combining the above integral estimates gives the following corollary.

Corollary 9.5. Fix N, k ∈ N, ℓ > 0, and m1, m2, · · · , mk ∈ N and consider the functions

f ℓ
m1,··· ,mk

(b) =
∫

x1≤x2≤···≤xk≤b
|x1|N

k∏
i=1

e−
x2

i
4ℓ · (x2 − x1)m1 · · · · · (b − xk)mk dx1 · · · dxk, b ∈ R.

and

gℓ
m1,··· ,mk

(b) =
∫

x1≤x2≤···≤xk≤b

k∏
i=1

e−
x2

i
4ℓ · (x2 − x1)m1 · · · · · (b − xk)mk dx1 · · · dxk, b ∈ R.

Then there exists a universal constant d > 0 such that
f ℓ

m1,··· ,mk

gℓ
m1,··· ,mk

(b) ≤ N !(2ℓ)N/2 · Ck,m ·
(

exp
(

kb

(2ℓ)1/2
)

+ exp
(

− b

(2ℓ)1/2

))
, b ∈ R.

where Ck+1,m,mk+1 = 2mk+1(Ck,mek+1 ∨ ed
∑k

i=1 mi log mi) and C1,m1 = O(2m1).

Proof. First observe that

|x|N ≤ N !(2ℓ)N/2 · e|x|/(2ℓ)1/2 ≤ N !(2ℓ)N/2 ·
(
ex/(2ℓ)1/2 + e−x/(2ℓ)1/2)

, x ∈ R.

And so we estimate
f ℓ

m1,··· ,mk

gℓ
m1,··· ,mk

(b)(b) ≤ N !(2ℓ)N/2 ·
eb/(2ℓ)1/2

gℓ
m1,··· ,mk

(b) + hℓ
m1,··· ,mk

(b)
gℓ

m1,··· ,mk
(b)

with hℓ
m1,··· ,mk

(b) as in Corollary 9.4 and so we have

f ℓ
m1,··· ,mk

gℓ
m1,··· ,mk

(b) ≤ N !(2ℓ)N/2 ·
(
eb/(2ℓ)1/2 +

hℓ
m1,··· ,mk

(b)
gℓ

m1,··· ,mk
(b)

≤ N !(2ℓ)N/2 ·
(
eb/(2ℓ)1/2 + Ck,m · (e

(k−1)b

(2ℓ)1/2 + e
− b

(2ℓ)1/2 )
)

≤ N !(2ℓ)N/2 · Ck,m ·
(

exp
(

kb
(2ℓ)1/2

)
+ exp

(
− b

(2ℓ)1/2

))
where Ck+1,m,mk+1 = 2mk+1(Ck,mek+1 ∨ ed

∑k

i=1 mi log mi) and C1,m1 = O(2m1). □

Remark. Observe that Ck = O(eck2 log k) for some universal constant c > 0 given the constraint
that

∑k
i=1 mi = O(k2).

The following lemma is a stability result for the structural form of pointwise estimates of terms
that appear in estimates of the inhomogeneous transition densities 7.3.
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Lemma 9.6. Fix m ∈ N, let g : R → R be a smooth function such that there exists an N ∈ N with
the following estimate

C1(θ, β)⟨y⟩−1 · e−β(y)− · e−θ(y)2
− ≤ g(y) ≤ C2(N, θ, β)⟨y⟩N · e−θ(y)2

− , y ∈ R.

for some θ > 0, C1(θ, β), C2(N, θ, β) > 0. Then, we have the upper and lower bounds

C ′
1(θ, β)⟨(x)− ∨ 1⟩−1e−(θ+1/2)(x)2

−e−(x)−
(

β+3
)

≤
∫ x

−∞
e− (y)2

2 g(y)(x − y)m dy

≤ C ′
2(N, m, θ, β)⟨x⟩N+m+1e−(θ+1/2)(x)2

− , x ∈ R.

for C ′
1(θ, β) = C1(θ, β) c

(2θ+1)m
21/2

β+3
2θ+1 +21/2 e(θ+1/2)( β+2

2θ+1 )2
e−(θ+1/2)

(
β+3
2θ+1

)2

and

C ′
2(N, m, θ, β) = d(m+N) log(m+N) · C2(N, θ, β), for a universal constant c > 0, that is of the

same form as 9.6. Furthermore, for all λ > 0, K ∈ N∫ x

−∞
⟨y⟩Keλ(y)−e− y2

2 g(y)(x − y)m dy ≤ CN,K,M,m,θ,β,λ⟨x⟩N+K+m+1e
(

β+3
)

·(x)−

·
∫ x

−∞
e− (y)2

2 g(y)(x − y)m dy x ∈ R.

where
CN,K,M,m,θ,β,λ = C1(θ, β) · C2(N, θ, β)d(N+K+m) log(N+K+m) · (2θ + 1)m

· e
λ2

2θ+1 e(θ+1/2)
(

β+3
2θ+1

)2

e−(θ+1/2)
(

β+2
2θ+1

)2

for a universal constant d > 0 and ⟨·⟩ = (·2 + 1)1/2.

Proof. Using the pointwise bounds in 9.6

C1(θ, β)
∫ x

−∞
e− y2

2 ⟨y⟩−1 · e−β(y)− · e−θ(y)2
−(x − y)m dy

≤
∫ x

−∞
e− y2

2 g(y)(x − y)m dy ≤ C2(N, θ, β)
∫ x

−∞
⟨y⟩N e− y2

2 · e−θ(y)2
−(x − y)m dy .

The lower bound can be further estimated from below∫ x

−∞
e− y2

2 ⟨y⟩−1 · e−β(y)− · e−θ(y)2
−(x − y)m dy

≥ 1
(2θ + 1)m

∫ −(x)−−1/(2θ+1)

−∞
⟨y⟩−1 · eβy · e−(θ+1/2)(y)2

− dy

≥ 21/2 1
(2θ + 1)m

∫ ∞

(x)−+1/(2θ+1)

1
y ∨ 1e−βy · e−(θ+1/2)y2 dy

≥ 23/2 c

(2θ + 1)m

∫ ∞

(x)−+1/(2θ+1)
e−(β+2)ye−(θ+1/2)(y)2 dy

≥ c

(2θ + 1)m
e(θ+1/2)( β+2

2θ+1 )2
∫ ∞

(x)−
e−(θ+1/2)

(
y+ β+3

2θ+1

)2

dy

≥ c

(2θ + 1)m
e(θ+1/2)( β+2

2θ+1 )2
⟨
(
(x)− + β + 3

2θ + 1
)

∨ 1⟩−1e−(θ+1/2)
(

(x)−+ β+3
2θ+1

)2

= c

(2θ + 1)m
e(θ+1/2)( β+2

2θ+1 )2
e−(θ+1/2)

(
β+3
2θ+1

)2

· 21/2

β+3
2θ+1 + 21/2

⟨(x)− ∨ 1⟩−1e−(θ+1/2)(x)2
−e−(x)−

(
β+3

)
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for some universal constant c > 0, using the asymptotics of the error function, see Section 9.5 in
the Appendix, and the easily checked fact

⟨
(
x + α

)
∨ 1⟩−1 ≥ 21/2

α + 21/2 ⟨x ∨ 1⟩−1, x, α ≥ 0 ,

in the last inequality. Now the upper bound is also estimated∫ x

−∞
e− y2

2 ⟨y⟩N · e−θ(y)2
−(x − y)m dy ≤

∫ x

−∞
⟨y⟩N · e−(θ+1/2)(y)2

−(x − y)m dy

≤
∫ x

−∞
⟨y⟩N · e−(θ+1/2)(y)2

−(⟨x⟩ + ⟨y⟩)m dy

≤ 2m
m∑

k=0
⟨x⟩m−k

∫ x

−∞
⟨y⟩N+k · e−(θ+1/2)(y)2

− dy

≤ 2m
m∑

k=0
⟨x−⟩m−k

(∫ −(x)−

−∞
+
∫ x

−(x)−

)
⟨y⟩N+k · e−(θ+1/2)(y)2

− dy

≤ 2m
m∑

k=0
⟨x⟩m−k

(∫ −(x)−

−∞
⟨y⟩N+k · e−(θ+1/2)(y)2

− dy + 1x≥0⟨x⟩N+k+1
)

≤ 22m+N
m∑

k=0
⟨x⟩m−k

(∫ ∞

(x)−
(y + 1)N+k · e−(θ+1/2)(y)2 dy + 1x≥0⟨x⟩N+k+1

)
≤ d(m+N) log(m+N)⟨x⟩N+m+1e−(θ+1/2)(x)2

−

for a universal d > 0, where in the last line the comparison (|y| ∨ 1) ≤ ⟨y⟩ ≤ 21/2(|y| ∨ 1) and
repeated integration by parts. Thus, we have the upper and lower bounds

C ′(θ, β)⟨(x)− ∨ 1⟩−1e−(θ+1/2)(x)2
−e−(2θ+1)(x)−

(
β

2θ+1 +2
)

≤
∫ x

−∞
e− y2

2 g(y)(x − y)m dy.

≤ C ′
2(N, m, θ, β)⟨x⟩N+m+1e−(θ+1/2)(x)2

− , x ∈ R.

for
C ′(θ, β) = C1(θ, β) 1

(2θ + 1)m
e(θ+1/2)( β+2

2θ+1 )2
e−(θ+1/2)

(
β+3
2θ+1

)2

and
C ′

2(N, m, θ, β) = d(m+N) log(m+N) · C2(N, θ, β) ,

for a universal constant c > 0. The bounds on g and some analogous manipulations give∫ x

−∞
eλ(y)−e− y2

2 g(y)(x − y)m dy ≤ C2(N, θ, β)
∫ x

−∞
⟨y⟩N eλ(y)−e− y2

2 e−θ(y)2
−(x − y)m dy

≤ C2(N, θ, β)
∫ x

−∞
⟨y⟩N eλ(y)−e−(θ+1/2)(y)2

−(x − y)m dy

= C2(N, θ, β) · e
λ2

2θ+1

∫ x

−∞
⟨y⟩N e−(θ+1/2)(y−+ λ

2θ+1 )2
(x − y)m dy

= C2(N, θ, β) · e
λ2

2θ+1

(∫ −(x)−

−∞
+
∫ x

−(x)−

)
⟨y⟩N e−(θ+1/2)(y−+ λ

2θ+1 )2
(x − y)m dy

= C2(N, θ, β) · e
λ2

2θ+1

(∫ ∞

(x)−
⟨y⟩N e−(θ+1/2)(y+ λ

2θ+1 )2
(x + y)m dy
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+1x≥0

∫ x

−(x)−
⟨y⟩N e−(θ+1/2)(y+ λ

2θ+1 )2
(x − y)m dy

)

≤ d(N+m) log(N+m)C2(N, θ, β) · e
λ2

2θ+1 ⟨(x)+⟩N+m⟨(x)−⟩N+me(x)−e−(θ+1/2)(x)2
−

= d(N+m) log(N+m)C2(N, θ, β) · e
λ2

2θ+1 e(x)−e(θ+1/2)
(

β
2θ+1 +2

)2

· ⟨(x)+⟩N+m⟨(x)−⟩N+m+1⟨(x)− ∨ 1⟩−1e(2θ+1)
(

β+3
2θ+1

)
·(x)−e(x)−e−(θ+1/2)

(
(x)−+ β+3

2θ+1

)2

≤ d(N+m) log(N+m)C2(N, θ, β) · e
λ2

2θ+1 e(θ+1/2)
(

β+3
2θ+1

)2

· (2θ + 1)m

ce(θ+1/2)( β+2
2θ+1 )2

⟨x⟩N+m+1e
(

β+4
)

·(x)−
∫ x

−∞
e− y2

2 ⟨y⟩−1e−β(y)−e−θ(y)2
−(x − y)m dy

≤ CN,M,m,θ,β,λ⟨x⟩N+m+1e
(

β+4
)

·(x)−
∫ x

−∞
e− y2

2 g(y)(x − y)m dy

for some universal constant d > 0, and

CN,M,m,θ,β,λ = C1(θ, β) ·C2(N, θ, β)d(N+m) log(N+m) · (2θ +1)m ·e
λ2

2θ+1 e(θ+1/2)
(

β+3
2θ+1

)2

e−(θ+1/2)
(

β+2
2θ+1

)2

.

□

9.2. Uniform pathwise Radon-Nikodym deriative estimates for homogeneous BLPP.
Using the pathwise estimates from Proposition 4.1, we are now in a position to prove a uniform of
spatial increments of homogeneous BLPP against Brownian motion on compacts; this is the
content of the following proposition.

Proposition 9.7. Fix a time horizon T > 0 and depth m ∈ N and consider the Brownian LPP
process on [ℓ, r] for 0 < ℓ < r

B[(−T, m) → (·, 1)].
Now, the increment process

hT (· + ℓ) = B[(−T, m) → (· + ℓ, 1)] − B[(−T, m) → (ℓ, 1)]
has a Radon-Nikodym derivative XT on [0, r − ℓ] against a rate two Brownian motion with almost
sure pointwise bound

cm(m−1)nm(m−1)∏m−1
j=1 j!

·EZ

[
(Z+ + 1)m(m−1)/2 · ((ξ(r − ℓ) +

√
T + ℓZ)+/

√
T + r + 1)m(m−1)/2

]
on paths ξ on [0, r − ℓ] where Z is an independent centred variance 2 Gaussian random variable
for some universal constant c > 1.

Furthermore, it follows that there is a non-negative Y ∈ L∞−(µ) such that supT ≥0 XT ≤ Y a.s.
In other words, the family of Radon-Nikodym Derivatives (XT )T ≤0 is tight with respect to the rate
two Wiener measure on [0, r − ℓ].

Proof. First observe that using Proposition 4.1 the process B[(0, m) → (·, 1)] on [T + ℓ, T + r] has
a Radon-Nikodym against rate two Brownian motion with pointwise bound

cn(n−1)nn(n−1)∏n−1
j=1 j!

· (ξ(T + ℓ)+/
√

T + ℓ + 1)m(m−1)/2 · (ξ(T + r)+/
√

−T + r + 1)m(m−1)/2

for some universal constant c > 1 on paths ξ on [T + ℓ, T + r]. Now, using Proposition 9.8 the
process hT (·) on [0, r − ℓ] has a Radon-Nikodym against rate two Brownian motion with pointwise
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bound

cm(m−1)nm(m−1)∏m−1
j=1 j!

·EZ

[
(Z+ + 1)m(m−1)/2 · ((ξ(r − ℓ) +

√
T + ℓZ)+/

√
T + r + 1)m(m−1)/2

]
where Z is an independent centred variance 2 Gaussian random variable for some universal
constant c > 1, as required. □

9.3. Increment regularisation. We record a regularisation lemma for the Radon-Nikodym
derivatives of a continuous process against the Wiener measure on compacts away from zero and
its increments. In particular for 0 < ℓ < r, one sees that under the map

Φ : C∗,∗([ℓ, r]) → C0,∗([0, r − ℓ]) : ξ(·) 7→ ξ(· + ℓ) − ξ(ℓ)
the induced map mapping Radon-Nikodym derivatives is ‘contractive’ under suitable
assumptions, in the sense described below.

Proposition 9.8. (Increment regularisation) Let 0 < ℓ < r and b ∈ R. Let B be a continuous
process on [0, ∞) such that the law of B is absolutely continuous against rate two Brownian
motion starting from the origin away from zero. Suppose furthermore that for 0 < ℓ < r, the
Radon-Nikodym derivative is pointwise almost surely bounded by

f(ξ(ℓ), ξ(r))
for some non-negative measurable function f : R2 → R on paths ξ on [ℓ, r]. Then, the joint law of
(B(ℓ), B(· + ℓ) − B(ℓ)) restricted to [0, r − ℓ] is absolutely continuous with respect to the measure
λ × µ, where λ is the one-dimensional Lebesgue measure and µ denotes the law of a rate two
Brownian motion starting from (0, 0) restricted to [0, r − ℓ] with a.e.-pointwise bound on points
(y, ξ) ∈ R≥ × C∗,∗([0, r − ℓ]),

g(y, ξ(r − ℓ))
for some non-negative measurable function g (non-decreasing in its last argument if f is).
Furthermore, the following ‘contractivity’ is observed for all p > 1∥∥∥∥dΦ∗B

dΦ∗µ

∥∥∥∥
Lp(Φ∗µ)

≤
∥∥∥∥dB

dµ

∥∥∥∥
Lp(µ)

, p > 1 ,

where Φ∗ denotes the pushforward under the map Φ as in (9.3).

Proof. Fix A ⊆ R≥ × C∗,∗([0, r − ℓ]) Borel measurable and estimate
P((B(ℓ), B(· + ℓ) − B(ℓ)) ∈ A)
≤
∫

C∗,∗([ℓ,r])
1(ξ(ℓ), ξ(· + ℓ) − ξ(ℓ)) ∈ A) · f(ξ(ℓ), ξ(r))µ(dξ)

And by the Markov property (independent increments) enjoyed by Brownian motion we have
P((B(ℓ), B(· + ℓ) − B(ℓ)) ∈ A)
≤
∫

C∗,∗([ℓ,r])
1(ξ(ℓ), ξ(· + ℓ) − ξ(ℓ)) ∈ A) · f(ξ(ℓ), ξ(r))µ(dξ)

=
∫

C∗,∗([0,r−ℓ])

∫
R

1(x, ξ(·)) ∈ A) · f(x, ξ(r − ℓ) + x)ϕℓ(x)λ(dx)µ(dξ)

and we thus arrive at the a.e.-pointwise bound on points (y, ξ) ∈ R≥ × C∗,∗([0, r − ℓ]),
g(y, ξ(r − ℓ)) = f(y, ξ(r − ℓ) + y)ϕℓ(y)
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for some function g non-decreasing in its last argument. This means that we have the following
norm estimates for all p > 1∥∥∥dΦ∗B

dΦ∗µ

∥∥∥
Lp(Φ∗µ)

=
(
E0[EB̂(r−ℓ)[f(B(ℓ), B̂(r − ℓ) + B(ℓ))]p]

)1/p∥∥∥dB
dµ

∥∥∥
Lp(µ)

= (E0[f(B(ℓ), B(r))p])1/p .

Now, by Hölder, we observe that∥∥∥∥dΦ∗B

dΦ∗µ

∥∥∥∥
Lp(Φ∗µ)

≤
∥∥∥∥dB

dµ

∥∥∥∥
Lp(µ)

, p > 1 ,

which concludes the proof. □

Note that Proposition 9.8 suggests the estimates in Section 7 can be improved, though in the
case of inhomogeneous BLPP it is not clear how one might proceed, as one needs a refinement of
the ratios of densities coming from 6.2.

9.4. Monotonicity properties of Radon-Nikodym derivatives of inhomogeneous
BLPP. We now briefly consider inhomogeneous Brownian LPP with ‘almost’ homogeneous
initial data (that is only the first entry is non-vanishing). In the following proposition, we obtain
Radon-Nikodym derivative estimates of inhomogeneous BLPP with the above data against
Brownian motion on compacts. This argument notably bypasses the technical proof of Theorem
6.6, relying only on a coupling of the Brownian motion in the Gelfand-Tsetslin cone to a larger
collection of interlaced diffusions.

Proposition 9.9. Let 0 < ℓ < r and B1 be a Brownian motion starting from b > 0 and let
B2, B2 · · · , Bn+1 be Brownian motions on [0, ∞) starting from the origin where B1:n+1 are
mutually independent. For k ∈ J1, n + 1K define

Hk(y) = B↑(b, (0)n
ℓ=1
)

k
(y) , y ∈ [0, ∞) .

Then, for all ℓ > 0, the joint law of (H1(ℓ/2), H2(ℓ/2), H2(· + ℓ/2) − H2(ℓ/2)) restricted to
[0, r − ℓ

2 ] is absolutely continuous with respect to the measure λ2 × µ, where λ is the
one-dimensional Lebesgue measure and µ denotes the law of a rate two Brownian motion starting
from the origin restricted to [0, r − ℓ

2 ] with a.e.-pointwise bound on points
(y, z, ξ) ∈ R2

≥ × C∗,∗([0, r − ℓ/2]),
g(y, z, ξ(r − ℓ/2))

for some function g non-decreasing in its last argument.

Proof. Fix C ⊆ R2
≥, A ⊆ C∗,∗([0, r − ℓ/2]) Borel measurable and upon conditioning estimate using

an argument analogous to that in Proposition 4.1
P((H1(ℓ/2), H2(ℓ/2)) ∈ C, (H2(· + ℓ/2) − H2(ℓ/2)) ∈ A)

= P((H1(ℓ/2), H2(ℓ/2)) ∈ C, (H2(· + ℓ/2) − H2(ℓ/2)) ∈ A, NoInt)
+P((H1(ℓ/2), H2(ℓ/2)) ∈ C, (H2(· + ℓ/2) − H2(ℓ/2)) ∈ A, NoIntc)

where the event NoInt is the event that {B1 > H2 on [0, ℓ/2]}. On NoIntc, H1(ℓ/2) can be coupled
with the homogeneous ensemble generated by H2:n+1 and a rate two Brownian motion starting
from the origin (in place of B1); on NoInt, H1(ℓ/2) = B1(ℓ/2) and we thus have the estimate

P((H1(ℓ/2), H2(ℓ/2)) ∈ C, (H2(· + ℓ/2) − H2(ℓ/2)) ∈ A)
≤ P((Bn+1(ℓ/2), H2(ℓ/2)) ∈ C, (H2(· + ℓ/2) − H2(ℓ/2)) ∈ A)

+P((H1(ℓ/2), H2(ℓ/2)) ∈ C, (H2(· + ℓ/2) − H2(ℓ/2)) ∈ A)
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where in the second term, we take b = 0 (in a slight abuse of notation). Concentrating on the
second term, we obtain using the fact that H2 can be realised as the top line of a Dyson Brownian
motion (which under another abuse of notation in the conditioning below, we will write as H2:n+1)

= E
[
1((H1(ℓ/2), H2(ℓ/2)) ∈ C) · E

[
1((H2(· + ℓ/2) − H2(ℓ/2)) ∈ A)|H2:n+1|[0,ℓ/2]

]]
≤ E

[
1(H1(ℓ/2), H2(ℓ/2)) ∈ C) · EH2:n+1(ℓ/2)

[
h(B̂+H2:n+1(ℓ/2))

h(H2:n+1(ℓ/2)) 1(B̂1(·)) ∈ A)
]]

,

where B̂1:n(·) are independent rate two Brownian motions starting from the origin. We further
estimate using independence

P((H1(ℓ/2), H2(ℓ/2)) ∈ C, (H2(· + ℓ/2) − H2(ℓ/2)) ∈ A)
≤ E

[
1((H1(ℓ/2), H2(ℓ/2)) ∈ C) · EB̂2:n

[
h(B̃+H2:n+1(ℓ/2))

h(H2:n+1(ℓ/2))

]
1(B̂1(·)) ∈ A)

]
.

Here we take the coupling of (W (B1, H2)1, H2)(·) on paths given in [War07] under the measure
Qn,+

0,0 on paths on W n+1,n = {(x, y) ∈ Rn+1 × Rn : x1 ≤ y1 ≤ x2 ≤ . . . ≤ yn ≤ xn+1} where the
canonical coordinate process (X, Y ) evolves as interlaced Brownian motions such that, crucially
for us, we have that (Xn+1, Yn) d= (W (B1, Γn

n)1, Γn
n) on paths (using the deterministic result of

[RY13, lemma 2.1]), where Γn
n denotes the top curve of an n−dimensional Dyson Brownian

motion starting from the origin. The reason this is done is there is a nice form for the entry law of
(X, Y ) under Qn,+

0,0 and will be exploited below.
Particularly, we can compute the density of (H1(ℓ/2), H2:n+1(ℓ/2)) to be equal to

qn
ℓ/2(x, y) = n!

Zn+1
(ℓ/2)−(n+1)2/2 exp

{
−
∑

i

x2
i /(2ℓ)

}∏
i<j

(xj − xi)


∏

i<j

(yj − yi)

 ,

where the normalisation constant Zn+1 = (2π)(n+1)/2∏
j<n+1 j!. For ease of notation, we define

the function f : Rn+1
≥ → R≥0

h(x1:n+1) =
∏

1≤i<j≤n+1
(xj − xi), (x1, · · · , xn+1) ∈ Rn+1

≥ .

We are now able to estimate the above probability using equation (4) and thus obtain the
contribution to the pointwise upper bound on the density of the joint law (absolute continuity has
already been established, see [SV21])

P((H1(ℓ/2), H2(ℓ/2)) ∈ C, (H2(· + ℓ/2) − H2(ℓ/2)) ∈ A)

≤
∫

A

∫
W n+1,n

1((xn+1, yn) ∈ C) n!
Zn+1

(ℓ/2)−(n+1)2/2
n+1∏
i=1

ϕℓ/2(xi) · h(x1:n+1)

·EB̂2:n

[
h((ξ, B̂2:n)(r − ℓ/2) + y1:n)

]
dx1:n dy1:nµ(dξ)

=
∫

A

∫
C

g(y, x, ξ(r − ℓ/2)) dx1:n dy1:nµ(dξ)

g is non-decreasing in its last argument and B̂1:n is a Brownian motion starting from the origin.
The contribution from the non-intersection term is analogously derived by estimating and using
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independence
P((B1(ℓ/2), H2(ℓ/2)) ∈ C, (H2(· + ℓ/2) − H2(ℓ/2)) ∈ A)

≤ E
[
1((B1(ℓ/2), H2(ℓ/2)) ∈ C) · EB̂2:n

[
h(B̂(ℓ/2)+H2:n+1(ℓ/2))

h(H2:n+1(ℓ/2))

]
1(B̂1(·)) ∈ A)

]
≤ Cℓ/2E

[
1((B1(ℓ/2), W1(ℓ/2)) ∈ C) · h(W1:n(ℓ/2)) · EB̂2:n

[
h(B̂(ℓ/2) + W1:n(ℓ/2))

]
1(B̂1(·)) ∈ A)

]
=
∫

A

∫
Rn+1

1((y, xn) ∈ C)h(x1:n)ϕℓ/2(y − b)
n∏

i=1
ϕℓ/2(xi) · E

[
h((ξ, B̂2:n)(r − ℓ/2) + x1:n)

]
dx1:n dy1:nµ(dξ)

=
∫

A

∫
C

g′(y, x, ξ(r − ℓ/2)) dx1:n dy1:nµ(dξ) ,

where Cℓ/2 is as in proposition 4.1, for g′ non-decreasing in its last argument and W1:n, B̂1:n are
Brownian motion starting from the origin. Combining the above, and using that sets of the form
C × A generate the product Borel sigma algebra we conclude. □

9.5. Error function asymptotics. Set

erf(x) = 2√
π

∫ x

0
e−x2

dx, x ∈ R.

Now observe first that for all z2 ∈ R, ℓ > 0
√

πℓ

2 z2

[
1 − erf

(−z2

2
√

ℓ

)]
+ ℓe−

z2
2

4L > 0.

We also have by the asymptotics of the error function (see [AS48]) for r > 0
√

πℓ

2

[
1 − erf

(
r

2
√

ℓ

)]
=

√
πℓ

2

[
2
√

ℓ√
πr

e− r2
4L + R

(
r

2
√

ℓ

)]
where R(x) is a remainder bounded by

|R(x)| ≤ 3
4
√

π

e−x2

x3

for all x > 0. A quick computation shows that for r2 ≥ 6L
√

πℓ

2

[
1 − erf

(
r

2
√

ℓ

)]
≥ ℓ

2r
e− r2

4L .

Note that we can further refine the asymptotic expansion 9.5 for the error function to obtain
for r > 0 √

πℓ

2

[
1 − erf

(
r

2
√

ℓ

)]
=

√
πℓ

2

[
2
√

ℓ√
πr

e− r2
4L − 8L

3
2

2
√

πr3 e− r2
4L + R̃

(
r

2
√

ℓ

)]
where R̃(x) is a remainder bounded by

|R̃(x)| ≤ 15
8
√

π

e−x2

x5

for all x > 0. A quick computation shows that for r2 ≥ 30L

−
√

πℓ

2 r

[
1 − erf

( −r

2
√

ℓ

)]
+ ℓe− r2

4L ≥ ℓ2

r2 e− r2
4L .
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