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Significance

Learning a neural network from data requires solving a complex
optimisation problem with millions of variables. This is done by
stochastic gradient descent (SGD) algorithms.

One can study the case of two-layer networks and derive a
compact description of the SGD dynamics in terms of a limiting
partial differential equation.

Among other consequences, this shows that SGD dynamics do
not become more complex when the network size increases.



* The setting of supervised learning
« Data points (x;, y;) € RZXR,i € Niid.
e x->feature vector, y -> label
#Mﬂ * Model dependence of label on the feature vector
0} ) /(A/ - * Inatwo layer-network, this dependence is modelled by

1
bl Vv \ oty oo 9(x;0) = ﬁz .(x: 6)
& oIt N * N isthe number of hidden units (neurons)

e 0,: R*XRP - R is an activation function

, * 0=(0));y, 0; € RPare parameters, often 8; = (a;, b;, w;) and
9N 0.(x;0;) = a;o({w;, x) + b;)
O forsomeo:R - R
G;Cxi @N) * Ideally, parameters should be chosen to minimise the risk

Ry(0) = E{£(y,9(x;0))}
For a loss function £: RXR — R, in this case £(y,9) = (y — $)?



Setup

* The parameters are learned by stochastic gradient Descent (SGD).
* Inthe present case, this amounts to the iteration

0! = 6f + 25, (yk — 9 (xi; 6%))Ve, 0.(xi; 07)
where % = (0") are the parameters after k iterations, siis a step size and (xy, yx) is the kth sample (samples are iid.

~P).
e Can express the risk (generalisation error) as

Ry(0) = Ry + Z V(o)) +— Z u(e;,o;)

i,j=1
where V(0) = —E{yo.(x; 0)},U(04,0,) = E{o.(x; 01)0* (x;0,)} and Ry = E{y?} that is the risk of the trivial predictor

y =0.
* The population risk depends on parameters through their empirical distribution

1 N
AN) — E
p N ._1 691_

1=
« We can thus consider a risk function defined for p € P(RP), the space of probability measures on R?
R(p) = Ry +2[V(0)p(d6) + [U(8,,0;) p(db,) p(db,)



Informal Overview of Main Result

* The authors prove that the SGD is well approximated by a continuum dynamics described below.
* Suppose the step size in the SGD is given by s, = &€(ke), for £: R,y = Ry a sufficiently regular
function

* Denoting the empirical distribution of parameters after k SGD steps /’)‘,EN) = % §:v=1 gk, it is shown
l

that ﬁ,(cN)converges in the weak sense to p;, when N = o0, & = 0, where the asymptotic dynamics is

the solution to the PDE

0cpe = 2§(t)Ve - (pcVoW(6; pr)),
namely, the distributional dynamics (DD), where ¥(8; p) =V (0) + [ U(0,0")p(d6").

 The above PDE can be viewed as a gradient flow for the cost function R(p)in the space (P(RP), W,),
where W, is the Wasserstein 2-metric.



The PDE formulation leads to several insights and simplifications. One can exploit symmetries in the data
distribution

P.

For instance, if P is invariant under rotations, one can look for a solution to the above PDE that has the same
symmetry, thereby reducing the dimensionality of the problem, thereby making theoretical and numerical

analysis easier. (This is indeed the case for the classification problem of two isotropic Gaussians mentioned
later).

This is not possible for the finite—N dynamics since no arrangement of the points {04, ..., @y} € R% is
invariant under rotations, say.



Technical Assumptions

Al.t — &(t) is bounded Lipschitz, with fooo E(t)dt = o
A2. The activation function (x, @) — o,.(x; 0) is bounded, with a sub-Gaussian gradient. Labels
yx are bounded.

A3. The gradients @ — VV(8), (64, 0;) — Vg U(64,0;) are bounded, and Lipschitz continuous

Also define the following error term that quantifies in a non-asymptotic sense the accuracy of the PDE
model:

erryp(z) = J1/Nve-[JD +log(N/e) + z]




Main Theorem

Assume that conditions A1, A2, A3 hold. For p, € P(RP), the SGD dynamics with initialisation (0?)i<N~p0 and step

size s, = €é(ke).Fort = 0, let p; be the solution of the PDE (DD). Then, for any fixed k, ﬁ,((N)converges weakly to p;
almost surely along any sequence (N, & = &y) such that N/log(1/gy) — o0, &y — 0. Further, there exists a constant C

(depending uniquely on the a priori bounds derived from conditions A1, A2, A3) such that, for any f: RPxR — R, with
“f”oo; “f”Lip < 118 < 1;

k€[0,T /e]NN

N
sup |57 7(6%) - / £(0)pre(d0)| < Ce erry,n(2),

sup Ry (6% — R(pre)| < Ce“" erry p(2),
k€[0,T/e]NN

2

With probability at least1 —e ™% .



Proof Sketch

"Propagation of chaos argument”

The conditions Al and A3 are sufficient for the existence and uniqueness of solutions to the PDE (DD)
(interpreted in the weak sense).

Discrete SGD dynamics for % = (Gi")i<N, approximates some non-linear dynamics in continuous time.

The sub-gaussianity and Lipschitz continuity assuptions enables the use of concentration inequalities
(Azuma-Hoeffding) to derive maximal inequalities for the deviation of the above discrete and non-linear
dynamics that further controls the terms in the statement of the theorem.




Empirical Validation on Toy Example

Centred Isotropic Gaussians: classification of Gaussians with 1o Mteration 10°  lteration 4x10° Iteration 10’
The same mean. That is, assume the joint law P of (y, x) to be: SGD o1

. . —— PDE
with probability 1/2:y = +1,x~N(0, (1 + A)?1,) oo6f | —TEE 1 00e 01

. ope . - ~ _ 2 '
with probability 1/2:y = —-1,x N(O, 1-47) Id) - o 0.08

0.06
For the activation function set 0,(x; 0;) = c({w;, x)), where g is 0.02 0.02 o
a simple piecewise linear function. | 002
00 *‘1 2 3 4 5 0O ; 2 3 4 5 00 1 2 3 4 5

Run SGD with (w?)i<N~iidp01 where pois spherically symmetric. Fig. 1. Eyolution of the radial distributk?n p; for the isotropic Gaussian

. = . model, with A = 0.8. Histograms are obtained from SGD experiments with
Fig. 1 reports the result of such an experiment. d =40, N =800, initial weight distribution po =N(0,0.8?/d - I5), and step

size e=10"% and &(t)=1. Continuous lines correspond to a numerical
solution of the DD

Due to the symmetry of the distribution P, the distribution p; remains sphericall symmetric for all t and is hence
completely determined by the distribution of the norm ||w||,. This distribution satisfies a reduced, one-dimensional PDE.




Illustration of LLN for single-layer neural network performing digit classification on MNIST data
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Figure 1: Distribution of parameters for a neural network trained on MNIST dataset. Clockwise: N = 1,000,
N = 10,000, N = 100,000, and N = 250,000 hidden units.
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